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Abstract. Closed form expressions to calculate the exponential of a general multivector (MV) in
Clifford geometric algebras (GAs) Clp,q are presented for n = p+q = 3. The obtained exponential
formulas were applied to find exact GA trigonometric and hyperbolic functions of MV argument.
We have verified that the presented exact formulas are in accord with series expansion of MV
hyperbolic and trigonometric functions. The exponentials may be applied to solve GA differential
equations, in signal and image processing, automatic control and robotics.

Keywords: Clifford (geometric) algebra, exponentials of Clifford numbers, computer-aided
theory.

1 Introduction

In Clifford geometric algebra (GA) the exponential functions with the exponent repre-
sented by a simple blade are well known and used widely. In case of complex algebra (the
complex number algebra is isomorphic to Cl0,1 GA) the exponential can be expanded
into a trigonometric function sum by de Moivre’s theorem. In 2D vector space including
Hamilton quaternions, the exponential is similar to de Moivre’s formula multiplied by
exponential of the scalar part [6, 13, 19, 21]. In 3D vector spaces, only special cases are
known. Particularly, when the square of the blade is equal to ±1, the exponential can be
expanded in de Moivre-type sum of trigonometric or hyperbolic functions, respectively.
However, general expansion in a symbolic form in case of 3D algebras Cl3,0, Cl1,2,
Cl2,1 and Cl0,3, when the exponent is a general multivector (MV), is more difficult. The
paper [6] considers general properties of functions of MV variable for Clifford algebras
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n = p + q 6 3, including the exponential function, for this purpose using the unique
properties of a pseudoscalar I in Cl3,0 and Cl1,2 algebras. Namely, the pseudoscalar
in these algebras commutes with all MV elements and I2 = −1. This allows to intro-
duce more general functions, in particular, the polar decomposition of all multivectors.
A different approach to resolve the problem is to factor, if possible, the exponential
into product of simpler exponentials, for example, in the polar form [15, 16, 18, 22].
General bivector exponentials in Cl4,1 algebra were analyzed in [5]. In coordinate form
the difficulty is connected with the appearance of both trigonometric and hyperbolic
functions simultaneously in the expansion of exponentials as well as the mixing of scalar
coefficients from different grades.

In this paper a different approach, which presents the exponential in coordinates and
which is more akin to construction of de Moivre formula, was applied. Namely, to solve
the problem, the GA exponential function is expanded into sum of basis elements (grades)
using for this purpose the computer algebra (Mathematica package). Although in this way
obtained final formulas are rather cumbersome, however, their analysis allows to identify
the obstacles in constructing the GA coordinate-free formulas. The formulas presented in
this paper can be also applied to general purpose programming languages such as Fortran,
C++ or Python.

In Section 2 the notation is introduced. The final exponential formulas in the coordi-
nates are presented in Sections 3–5 in a form of theorems. The particular cases that follow
from general exponential formulas are given in Section 6. Relations of GA exponential to
GA trigonometric and hyperbolic functions are presented in Section 7. Possible applica-
tion of the exponential function in solving spinorial Pauli–Schrödinger equation is given
in Section 8. In Section 9, we compare finite GA series of trigonometric functions with
the exact formulas that follow from exponential. Finally, in Section 10, we discuss further
development of the problem.

2 Notation

In the inverse degree lexicographic ordering used in this paper, the general MV in GA
space is expanded in the orthonormal basis {1, e1, e2, e3, e12, e13, e23, e123 ≡ I}, where
ei are basis vectors, eij are the bivectors and I is the pseudoscalar.1 The number of
subscripts indicates the grade. The scalar is a grade-0 element, the vectors ei are the grade-
1 elements, etc. In the orthonormalized basis the geometric products of basis vectors
satisfy the anticommutation relation

eiej + ejei = ±2δij .

For Cl3,0 and Cl0,3 algebras, the squares of basis vectors are, correspondingly, e2i = +1
and e2i = −1, where i = 1, 2, 3. For mixed signature algebras such as Cl2,1 and Cl1,2,
we have e21 = e22 = 1, e23 = −1 and e21 = 1, e22 = e23 = −1, respectively. The general

1An increasing order of digits in basis elements is used, i.e., we write e13 instead of e31 = −e13. This
convention is reflected in opposite signs of some terms in formulas.
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MV of real Clifford algebras Clp,q for n = p+ q = 3 can be expressed as

A = a0 + a1e1 + a2e2 + a3e3 + a12e12 + a23e23 + a13e13 + a123I

≡ a0 + a+A+ a123I,

where ai, aij and a123 are the real coefficients, and a = a1e1 + a2e2 + a3e3 and A =
a12e12 + a23e23 + a13e13 is, respectively, the vector and bivector. I is the pseudoscalar,
I = e123. Similarly, the exponential B will be denoted as

B = eA = b0 + b1e1 + b2e2 + b3e3 + b12e12 + b23e23 + ba13e13 + a123I

≡ b0 + b+ B + b123I.

We start from the Cl0,3 geometric algebra (GA), where the expanded exponential in
the coordinate form has the simplest MV coefficients.

3 MV exponential in Cl0,3 algebra

Theorem 1 [Exponential function of multivector in Cl0,3]. The exponential of MV

A = a0 + a1e1 + a2e2 + a3e3 + a12e12 + a13e13 + a23e23 + a123I

is another MV

exp(A) = b0 + b1e1 + b2e2 + b3e3 + b12e12 + b13e13 + b23e23 + b123I,

where the real coefficients are

b0 =
1

2
ea0
(
ea123 cos a+ + e−a123 cos a−

)
,

b123 =
1

2
ea0
(
ea123 cos a+ − e−a123 cos a−

)
,

b1 =
1

2
ea0
Å
ea123(a1 − a23)

sin a+
a+

+ e−a123(a1 + a23)
sin a−
a−

ã
,

b2 =
1

2
ea0
Å
ea123(a2 + a13)

sin a+
a+

+ e−a123(a2 − a13)
sin a−
a−

ã
,

b3 =
1

2
ea0
Å
ea123(a3 − a12)

sin a+
a+

+ e−a123(a3 + a12)
sin a−
a−

ã
,

b12 =
1

2
ea0
Å
− ea123(a3 − a12)

sin a+
a+

+ e−a123(a3 + a12)
sin a−
a−

ã
,

b13 =
1

2
ea0
Å
ea123(a2 + a13)

sin a+
a+

− e−a123(a2 − a13)
sin a−
a−

ã
,

b23 =
1

2
ea0
Å
−ea123(a1 − a23)

sin a+
a+

+ e−a123(a1 + a23)
sin a−
a−

ã
,

(1)
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and where

a+ =
»
(a3 − a12)2 + (a2 + a13)2 + (a1 − a23)2,

a− =
»
(a3 + a12)2 + (a2 − a13)2 + (a1 + a23)2.

When either a+ = 0 or a− = 0 or the both are equal to zero simultaneously, the formula
yields special cases considered in Section 3.1.

Proof. The simplest way to prove the above formula exp(A) is to check explicitly its
defining property

∂ exp(At)

∂t

∣∣∣∣
t=1

= A exp(A) = exp(A)A, (2)

where A is assumed to be independent of t. Since we have a single MV that always
commutes with itself, the multiplications from left and right by A coincide. After differ-
entiation with respect to scalar parameter t and then setting t = 1, we find that in this
way, obtained result indeed is A exp(A). To be sure, we also checked Eq. (2) by series
expansions of exp(At) up to order 6 with symbolic coefficients and up to order 20 with
random integers using for this purpose the Mathematica package [4].

3.1 Special cases of Theorem 1

Let Det(A) be the determinant of MV [2,7,17,23]. The determinant of the sum of vector
a and bivector A parts of A simplifies to

Det(a+A) =
(
(a3 − a12)2 + (a2 + a13)

2 + (a1 − a23)2
)

×
(
(a3 + a12)

2 + (a2 − a13)2 + (a1 + a23)
2
)

= a2+a
2
−

from which follows that special cases will arise when Det(a+A) = 0. Since the formulas
for a+ and a− are expressed through square roots, it is interesting to find a MV to which
the square roots are associated. In [3, 11] an algorithm to compute the square root of MV
in 3D algebras is provided. It seems reasonable to conjecture that the special cases in
exponential are related to isolated square roots of the center aS + aII of the considered
algebra, where the scalars aS and aI are defined by

aS = −(a+A) · (a+A) = a21 + a22 + a23 + a212 + a213 + a223,

aI = −(a+A) ∧ (a+A)I = −2(a3a12 − a2a13 + a1a23).

In Cl0,3 algebra the explicit formula for the center is −(a+A)(a+A) = aS + aII . In
particular the square root of the center can be written as√

aS + aII = aR + aP I, (31)

https://www.journals.vu.lt/nonlinear-analysis
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where

aR + aP I =


±aS+

√
a2S−a2I+aII

√
2
√
aS+
√
a2S−a2I

,

±aS−
√
a2S−a2I+aII

√
2
√
aS−
√
a2S−a2I

if a2S > a2I . (32)

From this follows that a+ and a− in Eq. (1) can be expressed as a2+ = aS + aI =
(aR+aP )

2 and a2− = aS−aI = (aR−aP )2. Note that in (3) the both required conditions
aS > 0 and a2S > a2I are satisfied for all values of MV coefficients, except when the
vector and bivector parts of MV are absent. From this we conclude that the condition
a+ = 0 (or a− = 0) is equivalent to the determinant being zero, Det(aS + aII) =
(aS + aI)

2(aS − aI)2 = a4+a
4
− = 0.

The special cases in Theorem 1 occur when whichever of denominators, a+ or a−,
in the coefficients turns to zero. Though at first glance, we could compute corresponding
limits, for example, lima+→0 sin a+/a+ = 1, in fact, the formula in this case becomes
simpler because the condition a+ = 0 implies that a3 = a12, a2 = −a13 and a1 =
a23. Therefore, the terms in vector and bivector components that include corresponding
differences vanish altogether. Similarly, the case a− = 0 implies three conditions a3 =
−a12, a2 = a13 and a1 = −a23 that nullify the corresponding terms in vector and
bivector components too. On the other hand, in scalar and pseudoscalar components, we
can simply replace corresponding cos a+ and cos a− by 1. Thus, the listed special cases
actually represent the special cases already found in the analysis of algorithm of MV
square root in [3]. After identification of a0 and a123 with coefficients in [3], a0 ≡ s and
a123 ≡ S, we find the following equivalence relations a2+ = aS + aI = 0 ⇔ s = −S,
a− = aS − aI = 0⇔ s = S and a− = a+ = 0⇔ s = S = 0, respectively.

4 MV exponentials in Cl3,0 and Cl1,2 algebras

Theorem 2 [Exponential function in Cl3,0 (upper) and Cl1,2 (lower signs)]. The
exponential of MV

A = a0 + a1e1 + a2e2 + a3e3 + a12e12 + a13e13 + a23e23 + a123I

is another MV

exp(A) = ea0
Å
b0 +

b1
|c|

e1 +
b2
|c|

e2 +
b3
|c|

e3 +
b12
|c|

e12 +
b13
|c|

e13 +
b23
|c|

e23 + b123I

ã
,

where real coefficients bi...j are

b0 = cos a123 cos a− cosh a+ − sin a123 sin a− sinh a+,

b123 = sin a123 cos a− cosh a+ + cos a123 sin a− sinh a+,

b1 = cosh a+ sin a−
(
(a−a1−a+a23) cos a123 − (a+a1+a−a23) sin a123

)
+ sinh a+ cos a−

(
(a+a1+a−a23) cos a123 + (a−a1−a+a23) sin a123

)
,

(41)
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b2 = ± cosh a+ sin a−
(
(±a−a2+a+a13) cos a123 + (∓a+a2+a−a13) sin a123

)
+ sinh a+ cos a−

(
(a+a2∓a−a13) cos a123 + (a−a2±a+a13) sin a123

)
,

b3 = cosh a+ sin a−
(
(a−a3∓a+a12) cos a123 ∓ (±a+a3+a−a12) sin a123

)
+ sinh a+ cos a−

(
(a+a3±a−a12) cos a123 + (a−a3 ∓ a+a12) sin a123

)
,

b12 = cosh a+ sin a−
(
(±a+a3+a−a12) cos a123 ± (a−a3∓a+a12) sin a123

)
+ sinh a+ cos a−

(
(∓a−a3+a+a12) cos a123 + (±a+a3+a−a12) sin a123

)
,

b13 = ∓ cosh a+ sin a−
(
(a+a2∓a−a13) cos a123 + (a−a2±a+a13) sin a123

)
+ sinh a+ cos a−

(
(±a−a2+a+a13) cos a123 + (∓a+a2+a−a13) sin a123

)
,

b23 = cosh a+ sin a−
(
(a+a1+a−a23) cos a123 + (a−a1−a+a23) sin a123

)
+ sinh a+ cos a−

(
(−a−a1+a+a23) cos a123 + (a+a1+a−a23) sin a123

)

(42)

with

|c| =
»
a2S + a2I = a2+ + a2−, (51)

where
aS = a21 ± a22 ± a23 ∓ a212 ∓ a213 − a223,
aI = 2(a3a12 − a2a13 + a1a23),

(52)

and

a+ =


1√
2

√
aS + |c|, aI 6= 0,

√
aS , aI = 0 and aS > 0,

0, aI = 0 and aS < 0,

a− =


1√
2

aI√
aS+|c|

, aI 6= 0,

0, aI = 0 and aS > 0,
√
−aS , aI = 0 and aS < 0.

(53)

When both a+ = 0 and a− = 0 or, alternatively, both aS = 0 and aI = 0, the
formulas are associated with special cases considered below in Section 4.1.

Proof. It is enough to check the defining property (2). The validity was also checked by
expanding in Taylor series up to order 6 with symbolic coefficients and up to order 20
using random integers.

Since both Cl1,2 and Cl3,0 algebras are represented by C(2) matrices, they are mutu-
ally isomorphic. Therefore, the same formula may be used for Cl3,0 and Cl1,2 algebras
without modification if one takes into account one-to-one equivalence. For example, either
e2 ↔ e13, e3 ↔ e12 or, alternatively,

e1 ↔ e12, e2 ↔ e13, e3 ↔ e1,

e12 ↔ e23, e13 ↔ e2, e23 ↔ e3.

Those not explicitly listed being the same.

https://www.journals.vu.lt/nonlinear-analysis
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4.1 Special cases of Theorem 2

The determinant of sum of vector and bivector parts of MV A in this case is

Det(a+A) =
(
4
(
a3a12 − a2a13 + a1a23

)2
+
(
a21 ± a22 ± a23 ∓ a212 ∓ a213 − a223

)2)2
=
(
a2S + a2I

)2
= a2+ + a2−,

where upper signs are for Cl3,0, and lower for Cl1,2 algebra. Equation (5) shows that
special cases occur again when Det(a+A) = 0. The isolated square roots of c = aS+aII
of Cl3,0 algebra are given by (both signs for both algebras)

√
c =

√
aS + aII = ±

aS +
»
a2S + a2I + aII

√
2
√
aS +

»
a2S + a2I

= ±(a+ + a−I),

where the root
»
a2S + a2I is a norm: |c| =

√
cc̃ =

»
a2S + a2I = a2++a

2
−. The coefficients

aS and aI represent coefficients at scalar and pseudoscalar of geometric product a + A
by itself. In particular, for Cl3,0 algebra, the explicit form is (a+A)(a+A) = aS+aII ,
where aS and aI are expressed through inner and outer products, aS = (a+A)·(a+A) =
a21 ± a22 ± a23 ∓ a212 ∓ a213 − a223 (upper signs for Cl3,0 and lower for Cl1,2 algebra) and
aI = −(a+A) ∧ (a+A)I = 2(a3a12 − a2a13 + a1a23).

The denominator in (4) vanishes when |c| =
»
a2S + a2I = a2+ + a2− = 0. It is

easy to see that in this case, all vector and bivector coefficients become zero b1 = b2 =
b3 = b12 = b13 = b23 = 0. Then, in the expressions for b0 and b123, we have to take
cosh a+ = cos a− = 1 and sinh a+ = sin a− = 0. After identification with coefficients
of [3], a0 ≡ s and a123 ≡ S, these conditions again are analogues of the only possible
special case when s = S = 0 in the square root of MV for Cl3,0 [3].

5 MV exponential in Cl2,1 algebra

Theorem 3 [Exponential function in Cl2,1]. Exponential of MV

A = a0 + a1e1 + a2e2 + a3e3 + a12e12 + a13e13 + a23e23 + a123I

is another MV

exp(A) = b0 + b1e1 + b2e2 + b3e3 + b12e12 + b13e13 + b23e23 + b123I,

where

b0 =
1

2
ea0
(
ea123 co

(
a2+
)
+ e−a123 co

(
a2−
))
,

b123 =
1

2
ea0
(
ea123 co

(
a2+
)
− e−a123 co

(
a2−
))
,

(61)
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b1 =
1

2
ea0
(
ea123(a1 + a23) si

(
a2+
)
+ e−a123(a1 − a23) si

(
a2−
))
,

b2 =
1

2
ea0
(
ea123(a2 − a13) si

(
a2+
)
+ e−a123(a2 + a13) si

(
a2−
))
,

b3 =
1

2
ea0
(
ea123(a3 − a12) si

(
a2+
)
+ e−a123(a3 + a12) si

(
a2−
))
,

b12 =
1

2
ea0
(
−ea123(a3 − a12) si

(
a2+
)
+ e−a123(a3 + a12) si

(
a2−
))
,

b13 =
1

2
ea0
(
−ea123(a2 − a13) si

(
a2+
)
+ e−a123(a2 + a13) si

(
a2−
))
,

b23 =
1

2
ea0
(
ea123(a1 + a23) si

(
a2+
)
− e−a123(a1 − a23) si

(
a2−
))

(62)

with
a2+ = −(a3 − a12)2 + (a2 − a13)2 + (a1 + a23)

2,

a2− = −(a3 + a12)
2 + (a2 + a13)

2 + (a1 − a23)2,

and

si
(
a2±
)
=


sin
√
a2±√

a2±
, a2± > 0,

sinh
√
−a2±√
−a2±

, a2± < 0,
co
(
a2±
)
=

{
cos
»
a2±, a2± > 0,

cosh
»
−a2±, a2± < 0.

When either a2+ = 0 or a2− = 0 or both are zeroes, the formula yields special cases
considered in Section 5.1.

Proof. The same as for Cl0,3 and Cl3,0 algebras; see Eq. (2).

5.1 Special cases of Theorem 3

Determinant of the sum of vector and bivector in A yields

Det(a+A) =
(
−(a3 − a12)2 + (a2 − a13)2 + (a1 + a23)

2
)

×
(
−(a3 + a12)

2 + (a2 + a13)
2 + (a1 − a23)2

)
= a2+a

2
−.

The special cases occur when Det(a+A) = 0. As for previous algebras, they are related
to the isolated roots of the element of the center aS + aII of Cl2,1. In particular, for the
root of the center, we find √

aS + aII = aR + aP I,

aR + aP I =


±aS+

√
a2S−a2I+aII

√
2
√
aS+
√
a2S−a2I

if aS +
»
a2S − a2I > 0 and a2S > a2I ,

±aS−
√
a2S−a2I+aII

√
2
√
aS−
√
a2S−a2I

if aS −
»
a2S − a2I > 0 and a2S > a2I .

https://www.journals.vu.lt/nonlinear-analysis
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So, in Cl2,1 algebra, we have up to four roots. The real coefficients aS and aI are equal
to coefficients (which are elements of the algebra center) of geometric product a+A by
itself. In particular, for Cl2,1 algebra, the explicit form is (a +A)(a +A) = aS + aII ,
where aS = (a+A) · (a+A) = a21 + a22 − a23 − a212 + a213 + a223 and aI = (a+A) ∧
(a+A)I = 2(a3a12 − a2a13 + a1a23).

In (6), a+ and a− then again can be expressed as

a2+ = aS + aI = (aR + aP )
2 = −(a3 − a12)2 + (a2 − a13)2 + (a1 + a23)

2

a2− = aS − aI = (aR − aP )2 = −(a3 + a12)
2 + (a2 + a13)

2 + (a1 − a23)2.

After comparison with Cl0,3 algebra case, we see that the explicit expressions now have
different signs and, in general, can acquire positive and negative values. Since these ex-
pressions are present inside the square root of exponential, we formally have to introduce
functions si(a2±) and co(a2±) (see Eq. (6)) in order to ensure real arguments for both
functions.

When denominator a+ or a− in Eq. (6) acquires zero value, we have a special case.
This corresponds to the condition Det(aS+aII) = (aS−aI)2(aS+aI)2 = 0. Therefore,
conditions a2+ = aS + aI = 0 and a2− = aS − aI = 0 define special cases. This requires
to modify some of the terms in Eq. (6), i.e., these terms have to be replaced by limits
lima±→0 si(a

2
±) = 1. Note that now the coefficients in vector and bivector components

that include a+ or a−, in general, do not necessary vanish, unless the both a2+ and a2− are
equal to zero simultaneously. This is a different situation compared to Cl0,3 algebra for
which the corresponding terms in the component expressions always vanish.

Once more, we note that after identification of the coefficients with those in [3], a0 ≡
s and a123 ≡ S, the mentioned special cases correspond to special cases of square root
of MV when a2+ = aS + aI = 0 ⇔ s = −S, a− = aS − aI = 0 ⇔ s = S and
a− = a+ = 0⇔ s = S = 0, respectively.

6 Particular cases: Pure bivector, vector and (pseudo)scalar

Equating appropriate coefficients (bi or bij) to zero from formulas (1), (4) and (6), one can
derive the exponentials of blades and compare them with those in the literature, mainly
for Cl3,0 and Cl0,3 algebras. For mixed signature algebras, to authors knowledge, such
formulas are presented below for the first time.

6.1 Exponential of bivector

In this case the exponential of a pure bivector A = a12e12 + a13e13 + a23e23 can be
expressed in a coordinate-free form. The general formulas (1), (4) and (6) then reduce to

eA =


cos |A|+ A

|A| sin |A| for Cl3,0,Cl0,3, A2 < 0,

cosh |A|+ A
|A| sinh |A| for Cl1,2,Cl2,1, A2 > 0,

cos |A|+ A
|A| sin |A| for Cl1,2,Cl2,1, A2 < 0,
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where

|A| =
®√
A2 if A2 > 0,√
−A2 if A2 < 0,

and A2 =


−a212 − a213 − a223 for Cl3,0,Cl0,3,
−a212 + a213 + a223 for Cl2,1,
+a212 + a213 − a223 for Cl1,2.

6.2 Exponential of vector

In the case of pure vector a = a1e1 + a2e2 + a3e3, the magnitude is |a| =
√
±a2, where

the root must be a positive real number. Then the general formulas reduce to

ea =


cosh |a|+ a

|a| sinh |a| for Cl3,0, a2 > 0,

cos |a|+ a
|a| sin |a| for Cl0,3, a2 < 0,

cosh |a|+ a
|a| sinh |a| for Cl1,2,Cl2,1, a2 > 0,

cos |a|+ a
|a| sin |a| for Cl1,2,Cl2,1, a2 < 0,

where

|a| =
®√

a2, a2 > 0,√
−a2, a2 < 0,

and

a2 =


±(a21 + a22 + a23) for Cl3,0 (+ sign), Cl0,3 (− sign),
a21 + a22 − a23 for Cl2,1,
a21 − a22 − a

,
3 for Cl1,2.

Thus, |a| =
√
a21 + a22 + a23 for both Cl3,0 and Cl0,3.

6.3 Exponent of scalar + pseudoscalar

When A = a0 + a123I , the type of the function depends on sign of I2, minus sign for
Cl3,0 and Cl1,2, and plus sign for Cl0,3 and Cl2,1,

ea0+a123I =

®
ea0(cos a123 + I sin a123) for Cl3,0,Cl1,2,
ea0(cosh a123 + I sinh a123) for Cl0,3,Cl2,1.

All listed in this section formulas are well known [21], and they readily follow from
general formulas (1), (4) and (6). One also can check that the identity eAe−A=e−AeA=1
holds, i.e., the inverse of exponential can be obtained by changing the sign of the
exponent.

7 Relations of the exponential to GA trigonometric and hyperbolic
functions

The geometric product is noncommutative. However, any two GA functions of the same
argument, for example, f(A) and g(A), that can be expanded in the Taylor series,
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commute: f(A)g(A) = g(A)f(A). Indeed, for any chosen finite series expansion, we
have a product of two polynomials of a single variable A. Since the MV always commutes
with itself, it follows that a well-behaved functions of the same MV argument commute
too.

As known, the elementary trigonometric and hyperbolic functions in GA are defined
by exactly the same series expansions as their commutative counterparts [6,19,21]. For an
arbitrary MV, the GA hyperbolic functions can be defined similarly as for ordinary func-
tions. However, the GA trigonometric functions, in general, exist for specific real GAs
only. The latter are characterized by a commutative pseudoscalar and property I2 = −1
[6] and therefore can be defined for Clifford algebras Cl3,0 and Cl1,2 only. In order to
define them for the algebras Cl0,3 and Cl2,1, we have to introduce imaginary unit, i.e., in
these algebras, trigonometric functions exist only when they are complexified.

As known, scalar trigonometric and hyperbolic functions are linked up through the
imaginary unit i =

√
−1, for example, cos(ix) = cosh(x) for all x ∈ R. For MV

functions, similar relations also exist if apart from i the pseudoscalar I is included:

cosh(IA) = cos(iIA), sinh(IA) = −i sin(iIA).

Also, trigonometric and hyperbolic functions of MV A can be expressed through the
exponentials if one remembers that I2 = −1 for Cl3,0 and Cl1,2, and I2 = +1 for
Cl0,3 and Cl2,1,

sinA =

®
I
2 (e
−IA − eIA) for Cl3,0,Cl1,2,

i
2 (e
−iIA − eiIA) for Cl0,3,Cl2,1,

cosA =

®
1
2 (e
−IA + eIA) for Cl3,0,Cl1,2,

1
2 (e
−iIA + eiIA) for Cl0,3,Cl2,1,

(7)

where IA is the dual to multivector A. As suggested at the beginning of this section, the
hyperbolic GA functions do not require imaginary unit, thus we have

sinhA =
1

2

(
eA − e−A

)
, coshA =

1

2

(
eA + e−A

)
. (8)

From the above formulas follows various relations between GA trigonometric and hy-
perbolic functions that are analogues of the well-known scalar relations. As an example,
a few of them are given below:

cos2 A+ sin2 A = 1, cosh2 A− sinh2 A = 1,

sin(2A) = 2 sinA cosA = 2 cosA sinA,

cos(2A) = cos2 A− sin2 A.

Also, it should be noted that GA sine and cosine functions, as well as hyperbolic GA
sine and cosine functions, commute: sinA cosA = cosA sinA and sinhA coshA =
coshA sinhA.

Nonlinear Anal. Model. Control, 27(1):179–197, 2022

https://doi.org/10.15388/namc.2022.27.24476


190 A. Dargys, A. Acus

Apart from relations between the exact hyperbolic sine-cosine functions and the ex-
ponential given in Eq. (8) we can write an exact formula for hyperbolic tangent as well
(see the beginning of this section),

tanhA = sinhA cosh−1 A = cosh−1 A sinhA, (9)

and likewise for cothA functions. After substitution of exponential formulas (8) into the
right-hand side of (9), we obtain general tanhA. However, as a first step in deriving exact
formula for tanhA, at first, one must compute the exact inverse of hyperbolic cosine. How
to compute the inverse MV in case of general Clifford algebras is described in [2,14,23].
For this purpose, the adjugate and determinant of MV may be needed,

A−1 =
Adj(A)

Det(A)
, Adj(A)A = AAdj(A) = Det(A). (10)

Here Det is the determinant of MV, which in 3D can be computed with the help of
involutions [2, 7, 17]

Det(A) = AÃÛAÛ̃A, (11)

where Ã denotes reverse MV, and ÛA is grade inverse of MV A. Although the computation
of inverse of general 3D MV is straightforward, the resulting symbolic expression is too
large to be presented here. For this purpose, numerical calculations are more suited. Also,
in Section 9, we shall profit from numerical calculations by Mathematica.

8 Applications

8.1 Time-dependent GA equation with a simple Hamiltonian

The spinor evolution under the action of magnetic field is considered. The field (vector)
is assumed to consist of two parts, constant parallel to e3 and rotating in e12 plane with
angular frequency ω,

B(t) = B0e3 +B1

(
e1 cos(ωt) + σe2 sin(ωt)

)
.

The sign number σ determines the rotation sense. When σ = −1, the field of amplitude
B1 is rotating clockwise, and when σ = 1, anticlockwise.

The time-dependent Pauli–Schrödinger equation in the presence of homogeneous B(t)
field for a spinor ψ, which is the MV of Cl3,0 algebra, is

dψ

dt
=

1

2
γIB(t)ψ, (12)

where γ is the gyromagnetic ratio. This GA equation can be solved by rotating frame
method (in physics it is called the rotating wave approximation) if the following rotor
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S = exp(−σe12ωt/2) is applied to Eq. (12). Multiplying from left by reverse of S and
then differentiating with respect to time, we find

d(S̃ψ)

dt
=

dS̃

dt
ψ + S̃

dψ

dt
=

1

2

(
σe12ωS̃ψ + S̃γIB(t)ψ

)
=

1

2

(
σe12ω + γIS̃B(t)S

)
(S̃ψ).

When σ = ±1, the product

S̃B(t)S = B0e3 +B1 cos(σωt)(e1 cosωt+ σe2 sinωt)

+B1 sin(σωt)(e2 cosωt+ σe1 sinωt)

reduces to time-independent field S̃B(t)S = B1e1+B0e3. Therefore, the GA differential
equation becomes

d(S̃ψ)

dt
=

1

2
(σe12ω + e23ω1 + e12ω0)(S̃ψ), (13)

where ω0 = γB0, ω1 = γB1. Since Eq. (13) has a constant MV coefficient, its solution
is the exponential function

(S̃ψ) = exp

Å
1

2
(σe12ω + e23ω1 + e12ω0)

ã
(S̃ψ)0.

At t = 0 the initial MV is (S̃ψ)0 = ψ(0). Multiplying from left by S and expanding the
second exponential according to Section 6.1, finally, we have

ψ = e−σe12ωt/2

Å
cos

αt

2
+ α−1

(
e23ω1 + e12(ω0 + σω)

)
sin

αt

2

ã
ψ(0), (14)

where α = ((σω + ω0)
2 + ω2

1)
1/2/2.

Equation (14) describes the evolution of the total spinor, which is a mixture of up and
down spinor states ψ = ψ↑+ψ↓ and normalized, ψψ̃ = 1. In GA the up and down spinor
eigenstates are, respectively, described by basis scalar 1 and basis bivector e13 [12]. We
shall assume that the spinor initially is in the up eigenstate, ψ(0) = ψ↑ = 1. Then the
evolution of the state ψ↓ is given by projecting ψ onto the down eigenstate e13 [12]. The
result is

ψ↓ = −〈e13ψ〉+ 〈e13ψe12〉e12 = α−1
Å
sin

αt

2

Å
e12 cos

αt

2
− sin

σαt

2

ãã
.

The probability to detect the down spin at the moment t then is

P↓(t) = ψ↓ψ̃↓ =

Å
ω1 sin(

1
2 t
√
(σω + ω0)2 + ω2

1)√
(σω + ω0)2 + ω2

1

ã2
.
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Figure 1. The probability P↓(t) to find the spin in the down direction when the magnetic field B0 = B0e3
linearly increases from B0 = −2 to B0 = 2 in the time interval T = (tfin− tini) = 500. The exciting field B1

that flips the spin from ↑ to ↓ direction, as shown in the insets by long vertical arrows, is rotating in e12-plane:
clockwise in (a) and anticlockwise in (b). The insets show the up and down spin eigenenergies as a function
of magnetic field strength. In (a) the absorption and in (b) the stimulated emission take place that are the main
processes that determine performance of a laser, which is the acronym of “light absorption [and] stimulated
emission [of] radiation”. Other parameters in the calculation: ω = 1, ω1 = 0.05.

At resonance, when σω + ω0 = 0 (for clockwise rotation, −ω + ω0 = 0, and for
anticlockwise rotation, ω − ω0 = 0) the probability oscillates, P↓(t) = sin2(ω1t/2) =
sin2(γB1t/2) with the frequency that depends on exciting field amplitudeB1. In quantum
mechanics, such rotating field induced oscillations between up and down states are called
Rabi oscillations. If magnetic field ω0 = γB0 changes very slowly (adiabatically) in the
interval T >> 2π/ω, then in the vicinity of resonance the probability peaks related with
Rabi oscillations will appear; see Fig. 1. The moment of the appearance depends on the
rotation sense via sign number σ. The observed asymmetry between (a) and (b) panels
in Fig. 1 is the manifestation of selection rules for quantum transition under action by
rotating magnetic field.

8.2 Relations to even Cl+1,3 and Cl+3,1 geometric algebras

If isomorphism rules between 4-dimensional even subalgebra of Cl1,3 and full Cl3,0
algebra are made of, namely,

Cl+1,3 ↔ Cl3,0, e23 ↔ e12, e24 ↔ e13, e34 ↔ e23,

e1234 ↔ e123, e12 ↔ e1, e13 ↔ e2, e14 ↔ e3

or, alternatively,

Cl+1,3 ↔ Cl3,0, e23 ↔ e23, e24 ↔ e13, e34 ↔ e12,

e1234 ↔ e123, e12 ↔ e3, e13 ↔ e2, e14 ↔ e1,

it is easy to obtain explicit formulas for physically important cases of exponentials of
general even MVs that represents spinors in Cl1,3 algebra.

In case of Cl3,1 the following rules may be used for this purpose:

Cl+3,1 ↔ Cl3,0, e12 ↔ e12, e13 ↔ e13, e23 ↔ e23,

e1234 ↔ e123, e14 ↔ e1, e24 ↔ e2, e34 ↔ e3
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or, alternatively,

Cl+3,1 ↔ Cl3,0, e12 ↔ e23, e13 ↔ e13, e23 ↔ e12,

e1234 ↔ e123, e14 ↔ e3, e24 ↔ e2, e34 ↔ e1.

9 Numerical comparison between exact formulas and their series
expansion

In this section a comparison between exact MV formulas obtained in Section 7 and finite
series expansion is made. The numerical form of MVs is used for this purpose. The
knowledge of exact formulas allows to investigate the rate of convergence of finite GA
trigonometric and hyperbolic series in Cl3,0 algebra. The following MV

A′ =
1

N

(
4 + e1 + 3e2 − 5e3 + 10e12 + 9e13 − 9e23 − 4I

)
, I = e123, (15)

is used for this purpose where the integer numbers were generated randomly. The nor-
malization factor N helps to make trigonometric series convergent. Up to 8 significant
figures are given in numerical evaluation of symbolic (exact) formulas from Section 7. Of
course, obtained exact formulas can be used to compute trigonometric functions of any
MV even if respective Taylor series does not converge, for example, at large coefficients
and N = 1. Our primary intention here is however to compare answers provided by exact
formula and series expansion.

9.1 GA hyperbolic functions

The trigonometric function series can be made to converge if in (15), we chose large
enough N but not too large. We have found that the optimal factor must be larger than the
determinant norm of MV in Eq. (11). The norm is defined as the determinant of A raised
to fractional power 1/k, where k = 2dn/2e, i.e., |A| = (Det(A))1/k. This norm can be
interpreted as a number of MVs A in a MV product needed to define Det(A). In our case,
Det(A) in Eq. (11) consists of geometric product of four MVs, therefore, for 3D algebras
(n = 3), we have k = 2d3/2e = 22 = 4, and the determinant norm is |A| = 4

√
Det(A).

For the chosen MV A′, we find Det(A′) = 71129 and |A′| = 4
√
71129 ≈ 16.33. Since the

strict analysis of convergence2 of multivector series is outside the scope of this article, we
will divide the chosen MV by the nearest larger integer 17 > 16.33. Due to multiplicative
property of the determinant Det(AA) = Det(A)Det(A), division by any scalar that is
larger than the determinant norm factor 1/|A| ensures that determinants of series terms
make a decreasing sequence, i.e., |Det(A)| > |Det(AA)| > · · · > |Det(AA · · ·A)|,
and, therefore, we may anticipate that MV series will tend to converge or at least will
yield meaningful answer. For GA series, we have profited by the standard exponential,

2If, instead, for example, we divide the MV by the largest coefficient in the considered MV, then we
immediately would find that tanhA series fails to converge.
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trigonometric and hyperbolic series [1]. In particular, for tanhA, we have used tanhA =
A− (1/3)A3 + (2/15)A5 − (17/315)A7 + (62/2835)A9 + · · · .

To illustrate, let us compute hyperbolic functions sinhA, coshA, cosh−1 A and3

tanhA of normalized MV argument A′′,

A′′ =
1

17
(4 + e1 + 3e2 − 5e3 + 10e12 + 9e13 − 9e23 − 4I). (16)

Substituting A′′ into exact symbolic formulas Eqs. (8) and (9) (where inverse MV is
computed using (10) and (11)) and then evaluating exact expressions numerically up to
8 significant figures (the last digit is exact), we obtain

sinhA′′ = 0.0806082− 0.0230640e1 + 0.0787983e2 − 0.1724390e3

+ 0.5504206e12 + 0.4830460e13 − 0.4666026e23 − 0.2082492I,

coshA′′ = 0.6039792− 0.1111834e1 − 0.0900922e2 + 0.0825265e3

+ 0.1730832e12 + 0.1354867e13 − 0.1084358e23 − 0.2939648I,

tanhA′′ = 0.6231177 + 0.3099294e1 + 0.4271905e2 − 0.5723737e3

+ 0.4466951e12 + 0.4439088e13 − 0.4997530e23 + 0.0547345I.

For comparison, we provide answers obtained by finite series expansions

sinh6 A
′′ = 0.0806569− 0.0229633e1 + 0.0788338e2 − 0.1724240e3

+ 0.5500202e12 + 0.4827078e13 − 0.4662941e23 − 0.2076350I,

cosh6 A
′′ = 0.6040721− 0.1111303e1 − 0.0900394e2 + 0.0824681e3

+ 0.1730517e12 + 0.1354672e13 − 0.1084281e23 − 0.2939312I,

tanh6 A
′′ = 0.7629316 + 0.3616722e1 + 0.5029447e2 − 0.6765545e3

+ 0.5446755e12 + 0.5387139e13 − 0.6033886e23 − 0.1176009I,

tanh40 A
′′ = 0.6231595 + 0.3099902e1 + 0.4272145e2 − 0.5723697e3

+ 0.4464672e12 + 0.4437168e13 − 0.4995786e23 + 0.0550762I.

The subscripts at hyperbolic functions indicate the number of terms that has been included
in the summation of finite series to get the result. It can be seen that tanhA converges
much slower than coshA and sinhA. The latters are directly related to exponential. For
tanhA, we have had to include 50 terms to get six exact figures. If instead in (15) we
would take different factor N 6 4

√
71129 and then try to compute tanhA by standard

(textbook) series expansion, then we would immediately find that the series fails to con-
verge, whereas exact formula that follows from exponential yields meaningful answer.
One can also easily check that all MV functions of the same argument commute pairwise
up to assumed precision.

3The function cosh−1(A) approximately can be calculated from series cosh−1(A) =
∑∞

n=0 EnAn/n!,
where En are the Euler coefficients, and the condition cosh−1(A) cosh(A) = 1. In fact the latter condition
gives the Euler numbers. In case of inverse trigonometric function, we have cos−1(A) =

∑∞
n=0 EnA2n/(2n!)

and cos−1(A) cos(A) = 1. Similar relations exist for hyperbolic and trigonometric tangent functions but now,
instead of Euler numbers, there appear Bernoulli numbers Bn [1].
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9.2 GA trigonometric functions

Here we restrict ourselves to Cl3,0 algebra for which I2 = −1. The exact formulas in
the exponential form for sinA and cosA in Eqs. (7) have been used. The numerical MV
given by Eq. (16) was inserted to find the following exact GA functions presented below
with 8 significant figures,

sinA′′ = 0.4142215 + 0.1561775e1 + 0.2887099e2 − 0.4312306e3

+ 0.6127064e12 + 0.5664210e13 − 0.5864014e23 − 0.2430952I,

cosA′′ = 1.3837580 + 0.1075001e1 + 0.0726490e2 − 0.0516785e3

− 0.2436586e12 − 0.1984718e13 + 0.1707105e23 + 0.4152926I,

tanA′′ = 0.0520468− 0.0321336e1 + 0.0568865e2 − 0.1373908e3

+ 0.4876809e12 + 0.4261388e13 − 0.4091069e23 − 0.1473168I.

On the other hand, using series expansion of sinA, cosA and tanA, we find

sin6 A
′′ = 0.4141938 + 0.1560854e1 + 0.2886852e2 − 0.4312611e3

+ 0.6131181e12 + 0.5667705e13 − 0.5867229e23 − 0.2437297I,

cos6 A
′′ = 1.3838520 + 0.1075543e1 + 0.0727025e2 − 0.0517373e3

− 0.2436926e12 − 0.1984933e13 + 0.1707199e23 + 0.4153298I,

tan6 A
′′ = 0.0958579 + 0.0035747e1 + 0.0832419e2 − 0.1588803e3

+ 0.4184797e12 + 0.3705885e13 − 0.3625310e23 − 0.0454115I,

tan40 A
′′ = 0.0522097− 0.0320415e1 + 0.0569781e2 − 0.1374922e3

+ 0.4876273e12 + 0.4261060e13 − 0.4090946e23 − 0.1472580I.

The subscripts at trigonometric functions show the number of terms that has been used in
series expansion to get the result.

10 Discussion and conclusions

Since the obtained exponentials are expressed in coordinates, the final formulas appear
rather complicated. In geometric Clifford algebra the formulas in coordinate-free form
may be desirable. The main problem is with vectors and bivectors the components of
which, as seen from Eqs. (1), (4) and (6), are entangled mutually. To avoid the entangle-
ment, a better strategy4 would be to avoid MV expansion in components at all as done
in [6].

Let us take Cl3,0 and introduce the following complex quantity [9]

H =
(
(a1 − ia23)

2 + (a2 − ia31)
2 + (a3 − ia12)

2
)1/2

,

H∗ =
(
(a1 + ia23)

2 + (a2 + ia31)
2 + (a3 + ia12)

2
)1/2

4It should be noted that at present the existing symbolic packages can do calculations in a concrete orthogonal
frame (basis) rather than with simple blades directly.
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so thatHH∗ is a real number. Introduction of the imaginary unit makes the formulas more
compact and permits trigonometric-hyperbolic expansion of eA. In the expanded form the
vector and bivector coefficients in HH∗ represent the sum of 81 terms that consist of
various products of ai and aij . However, the function H can be written very compactly if
coordinate-free form is used [9],

H = a2 +A2 + 2iI a ∧ A.

The same motive is seen in the coefficients a+ and a− that appear in Theorem 1.
Furthermore, the coefficients may be given a similar shape:

a+ =
√
a2 −A2 + 2Ia ∧ A, a− =

√
a2 −A2 − 2Ia ∧ A.

So, there appears a chance to construct a MV exponential functions having a compact and
coordinate-free forms, which will be more useful and efficient in various practical GA
applications.

In conclusion, we have been able to expand the GA exponential function of a general
argument into MV in the coordinate form for all four 3D Clifford geometric algebras. The
expansion has been applied to get exact expressions for trigonometric and hyperbolic GA
functions and to investigate the convergence of respective series. It was found that both
trigonometric and hyperbolic GA sine-cosine series convergence is satisfactory if GA se-
ries is limited to more than 6 terms. However, the convergence of tangent series is slower,
about 40 significant figures are needed to reach similar precision. We think that such an
expansion of the exponential will be useful in solving GA differential equations [8,10,24],
in signal and image processing, in automatic control and robotics [20].
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