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Abstract. The paper deals with a stationary non-Newtonian flow of a viscous fluid in unbounded
domains with cylindrical outlets to infinity. The viscosity is assumed to be smoothly dependent
on the gradient of the velocity. Applying the generalized Banach fixed point theorem, we prove
the existence, uniqueness and high order regularity of solutions stabilizing in the outlets to the
prescribed quasi-Poiseuille flows. Varying the limit quasi-Poiseuille flows, we prove the stability of
the solution.
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1 Introduction

Asymptotic behaviour of solutions of elliptic and parabolic equations in domains with
noncompact boundaries was considered in [12], where the first theorems on stabilization
of solutions were proved. They were called Phrigmen-Lindel6f theorems. The stationary
elasticity equations in unbounded domains are studied in [15], and the stabilization the-
orems were associated there with the Saint-Venant principle. For the stationary and non-
stationary Stokes and Navier—Stokes equations with no-slip condition at the boundary of
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the outlets, these questions were studied in [1,9-11,21-24, 28], and for the viscoelastic
flows, in [25]. For the non-Newtonian flows with viscosity depending on the gradient
of the velocity, the existence, uniqueness and asymptotic behaviour in the outlets were
studied in [13, 20]. Note that this non-Newtonian rheology governs the blood circulation
in vessels (see [2, pp. 8489, 196-200]).

A part of theoretical interest for partial differential equations, this set of questions
is important for construction of asymptotic expansions of solutions in thin domains.
Namely, matching of the asymptotic solutions via the boundary layer method leads ex-
actly to the scaled partial differential equations in unbounded domains with cylindrical
outlets (see, e.g., [16-19] for Newtonian flows and [14] for the power law fluids). In
particular, results of the present paper are used for the construction of an asymptotic ex-
pansion of a non-Newtonian flow in a network of thin cylinders, modeling blood vessels.

In the present paper the results obtained in [20] will be extended and generalized.
First, we reconstruct the pressure, while in [20], only the weak formulation of the problem
without pressure was studied. Second, in order to reconstruct the pressure, we need to have
more regularity for the solution, so we will prove the third-order regularity of the velocity
and second-order regularity of the pressure in weighted spaces with exponential decay at
infinity. Of course, we need more regularity (C®) for the viscosity v, depending on the
shear rate y. However, we will rid of a restrictive condition of boundedness of V(v (y)y),
which was assumed in [20]. Finally, we will focus on the questions of stability of solutions
with respect to the quasi-Poiseuille flows to which they stabilize in the outlets. These new
theorems are important for the construction of boundary layers of non-Newtonian flows.

The paper has the following structure. In Section 2, we give the definition of the
domain with outlets. In Section 3, we cite and prove some auxiliary results: embed-
ding inequalities in domains with cylindrical outlets and a lemma on the stabilization
to a constant for functions with exponentially decaying gradient. In the same Section 3,
we recall some results for the stationary Stokes equation and prove the weak Banach
contraction principle. This theorem generalizes the classical Banach fixed point theorem.
This result is well known in the mathematical community and is widely used. However,
we could not find the proof in literature. Therefore, for the reader’s convenience, we
present a proof. This generalization is used in the proofs of the regularity of the solutions.
The main problem for the stationary non-Newtonian flow in unbounded domains with
outlets is formulated in Section 4. In Section 5 the quasi-Poiseuille flow for the stationary
non-Newtonian equations in an infinite tube is studied. A Poiseuille flow is an exact
solution to the equations of the fluid motion (Stokes, Navier—Stokes) in an infinite cylinder
with the no-slip condition at the boundary, with a linear pressure with respect to the
longitudinal variable, and with the velocity vector having only longitudinal component
(called normal velocity) different from zero; this normal velocity depends only on the
transversal variables. A quasi-Poiseille (or Higen—Poiseuille) flow is an exact solution
having the same structure and corresponding to some non-Newtonian rheology. Such
flows for various rheologies were studied in [2,6,7,26,27]. Contrary to [20], where also
the quasi-Poiseuille flow was studied, we focus on the regularity issues. Finally, Section 6
contains the main results of the paper: existence and uniqueness of a regular classical
solution (velocity and pressure) and continuity of the solution with respect to the data
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of problem (stability). The proof of continuity of the solution in the norm W?2:2 for the
velocity and L? norm for the gradient of the pressure needs the regularity “plus one” of
the solution. It explains the difference of norms in Theorems 5 and 6.

2 Definitions of domains

Consider the domain 2 C R™, n = 2, 3, with J cylindrical outlets to infinity: {2 = {29 U
(szl 12;), where (2 is a bounded domain, 20N (2; = 0 forj e {1,...,J}, 2;N2 =0

for j # 1, 4,1 € {1,...,J}, and the outlets to infinity (2, in some coordmate systems
2 = (2 20 xnj)) (17, 20)"), having the origins within the boundary of

domain {2y, are given by the relations

where o; are some bounded domains in R™™!, cross-sections of the cylinders (see
Fig. 1). Assume that for any k € {1,...,J}, there exists a ; > 0 such that the cylinder
{z) e R™ 20 € 0y, —6; < x(l ) < O} C {29. Denote d,, the maximal diameter of the
cross-sections o;. We assume that the boundary 942 is C3-regular and that 92N 982 # ()
has a positive measure. Evidently, there exists a positive real number R > d,, such that
the ball Br = {z € R™: |z| < R} contains (2.

We introduce the following notation:

O ={ze 2 a9 <k}, wip =2\ Q]k,

Wik = wWik—1 Uwjg Uwjky, = U ( U ij>
7=0

where j = 1,...,J, and k > 0 is an integer.

|
|
|
|
|
|
|
|
|
|
v
X

“@)
1

Figure 1. Domain {2.
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3 Auxiliary results

3.1 Embedding inequalities in domains with cylindrical outlets

Let 2 C R", n = 2,3, be domain with J outlets to infinity. We define in {2 weighted
function spaces. Denote 8 = (3, . .., 3), define a smooth function ¢g(x),

(b ( ) 0, .%‘EQ(),
x) = , ,
s Bxgj), xeﬁj,xgj)>2,j:1,...,<],

and set Eg(x) = exp{2¢g(x)}.
Denote by ng’Q(Q), I > 0, the space of functions obtained as the closure of C§°({2)

in the norm
. 1/2
o 2
||uHWé‘2(Q) = ( Z /Eﬁ(x)’D u(x)f dx)

ler|=0

and set W2’2(Q) = Eg(ﬁ) Notice that for 8 > 0, the elements of the space W/éQ(Q)
exponentially vanish as |z| — +oo.

Lemma 1 [Poincaré’s inequality]. There exists a constant C' > 0 independent of 8 such
that for any function u € W;’2((2), the following inequality holds:

HUHig(Q) < C||VU||3:;(Q)-

Proof. For the proof, see, e.g., [20]. O

Lemma 2.

(i) For any function u € W;’Q(Q), the inequality holds:
1/2 14 4
1Bl a0y < CHU”Wé‘%Q)' M
(ii) For any function u € WE’Q(Q), the inequality holds:
1/2 12 2
(127 “HLOC(Q) S CHu||W;'2(Q)' 2

Proof. (i) Let us represent the domain (2 as a union of bounded domains:

J oo
2=0U (U ijk)
j=1k=1
In every wjj, we have the inequalities

el L ) < llullin 2 3)
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with the constant ¢ independent of k. Multiplying inequalities (3) by ¢*P% and having in
mind that %% ~ e87% in wjk, We obtain

||e5$(1j) Bl ol

2
) S CHUIIiv;*2<n>’|e ullwraue)-

0l agpy < elle® ulliy g,

Here the constants depend on 3 only. Summing these inequalities over k and j and adding
the inequality Hu||‘i4(_%) < c||uH%V1,2(QO), we obtain (1).

(i) By same token, using the inequalities

||U\\%oo(wjk) < C||U||%V2~2(wj,€)7 ||UH%<>0(90) < CHUH%WJ(QU)a
we get (2). O]

Lemma 3. Let us define the half-cylinder II'™ = {x = (z,2') € R™: 2/ € 0,2 €
(0, +o00 ; where o is a bounded domain in R"~1 with Lipschitz boundary. Suppose that
pe WhA(IT) and

/ |Vp(x)}2e2ﬂz dz'dz < 400, B>0.

Then there exists a constant pg such that the following estimate holds:

/’pzx p0| e?$% da’ dz < BQ/!Vp |e252dx’dz.
I+

Proof. First, we prove that the mean Value p(z) = f p(z,2") dz’ is a bounded function.
Let z > 0. Since p(z) )+ J5 P'(r) dr and since

z

( / p(r) dr) < / [P () dr / e 2" dr,
0 0

0

1/2
‘ | |+c</‘p 2BZdz>
1/2
< ’13 !—l—c( / /’8210 z a:)’ e2h% da’ dz) < const.

It is easy to prove that there exists a constant pg such that lim,_, 1, p(z) = po. Indeed,
since p(z) is bounded, there is a sequence {zx } such that limy_, o p(zx) = po for some

constant pg < +oo. Consider
400 1/2
c( / /|8Zp(z,x’)|2e252 dz’ dz) .

https://www.journals.vu.lt/nonlinear-analysis
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Passing to the limit as kK — 400, we get
1/2

+oo
5(2) — po| < c< / /|8Zp(z,x’)|29252 da’ dz) — 0 asz— +oo.

Now, by Poincaré’s inequality,
& [ e =)
2 [ |p(e. ') = p2)[|0:pz,0)] o' + 2 [ [p(,) - p(a)||5'(2)]
20/ p(z,2") — p(2)|* da’ + c/ |azp(z,;)\2dx'
c”/ Vp(z,2')|* da. U

Let z < £ < r < 2z. Integrating the last inequality from & to r yields

[1e.a) - ple) o
</}p(r,x’)—p(r)’2dx’—|—c/r/’Vp(z,x’)fdx’dz
o ¢ o
c/|Vx’p(r,x'){2dx'+c//|Vp(z,x’)|2dx’dz.

§ o

Multiplying both sides of the last inequality by €?’" and integrating with  from z to 2z
yields

L gae g2 _ / ple.a) - 5()] do’

26
2z T
c//’VI/p(r,m’)|2e25rdx’dr—l—c/ewr//’Vp(y,;v’)|2d:v’dydr
z O z § o

2z
c//’pr(r,a:’)’%zﬁrdx’dr

z O

c 22 2z 2
—&-%eﬁ Bz _ //}V (Y, x 'gydx’dy.

Nonlinear Anal. Model. Control, 26(6):1166-1199, 2021
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From this it follows that
/ = 2 / 6*252 28371
|p(f,x)—p(§)’ dx gcm |V /prx)} da’ dr

—|—c//|V oy, T 2ﬁydaz’dy—>0 as £ — +oo0.

Here we used that £ € [z,2z], and so, £ — 400 implies z — +oco. By the triangle
inequality we get lim._, o [ |p(2,2") — po|? dz’ = 0. In order to finish the proof of the
lemma, we need an auxiliary inequality

+oo +oo
2 1 2

/ |f(t)]7e*Pdt < 7 / |f/(t)| ¥t at )

0 0
(for the proof see [18, Cor. 7.1]), which holds for any function f such that |, O+°° |f/(t)|? x
Pt dt < 400, limy—4o0 f(t) = 0. Applying (4) to f(2) = ([, |p(z, 2) — pol? daz")1/2,
we obtain

—+o0

/e2ﬁz/|p(z,m’)fpo|2dx’dz

0
2

. 1/2
52 / 28219 </|p z,z') p0| dx) dz
+oo 2
<L / e28% L /|p(z ') — pol|0.p(z,2')| da’| dz
- B (J, Ip(z,2") = pol* da’)1/2 ’ o
0 o
1 +oo
. 2
< 5 / e /|8zp(z,x’)| dz’ dz. O
0 o
Remark 1. From the last lemma it follows that if [, Eg(z)|Vp(z)|? dz < +oo, then
there exist constants p;, j = 1,2, ..., J, such that
2 2
/|p( derZ/exp Qﬁl’(j) |p pj’ dx < C/Eﬁ(x)|Vp(x)| de.
2 i=lg; %}

3.2 Stokes problem

Consider now the Stokes problem in the domain {2 with J outlets to infinity:
—vAv+Vp=1f, =x¢€{2, 5)

divv=0, x¢€{, vign = 0.

https://www.journals.vu.lt/nonlinear-analysis
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Let H(£2) be the space of divergence-free functions of W12(£2). It is well known (see
[3,4,8]) that there exists a unique weak solution v € H({2) to (5), which satisfies the
integral identity v [, Vv - Vpdz = [, f -ndz for all n € H(f2) and the estimate
IVVIZ2(0) < cllfllz (o)

The following Agmon—Duglis—Nirenberg (ADN)-type theorem is proved in [24] (see
Theorem II1.3.2).

Theorem 1. Let | be an integer, | > 0 Let 02 € C't2. There exists a positive B,
such that for all § € (0, B,] and f € W ( ), the weak solution v belongs to the space
Wl+2 *2(£2), and there exists a pressure function p with Vp € Wﬂ 2(£2) such that the

pair (v(x), p(x)) satisfies equations (5) almost everywhere in (2. The following estimate
holds:

||v||W;+2’2(Q) + HVPHW}SQ(Q) <c ||f||W;,2(Q).
Moreover, the local estimate

holds with the constant c independent of K.

3.3 Weak Banach contraction principle

Theorem 2. Let X and Y be reflexive Banach spaces, X C Y, |z|ly < ||z||x for
all x € X. Suppose that M C X is a closed, bounded set, M # 0, and the mapping
T : M — M satisfies the inequality

Tz — Ty|ly <k|z—ylly withk <1 Va,yec M. @)
Then T admits exactly one fixed point x, € M: Tx, = x,.
Proof. Let us define a sequence {z,,} by the recurrent formulas
Tpy1 =TTyn, xo€ M. (8)

Since 1" maps the bounded set M to itself, there exists a positive constant ¢y such that
lznllx < ¢o and ||Tz,||x < co. Since the space X is reflexive, there exists a subse-
quence {x,, } such that

X X
xnk - x*a T-Tnk - y*7 m*7y* E M (9)

For simplicity, we will not distinguish in notation the subsequence {z,,} and the se-
quence {z,,}. From (7) it follows that

I Txn — Txpially < k"||xo —z1]ly =0 asn — +oo.
Therefore, {T'x, } is strongly convergent in Y and T'z,, 5 Y. From (8) we obtain

w=T2, 1 Sy, L, (10)

Nonlinear Anal. Model. Control, 26(6):1166-1199, 2021
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Thus, ||Tz, — Tz«|ly < k|lzn — 24|y — 0asn — 400, and hence,
Tx, = Y. (11)
Relations (10) and (11) yield Tz, = x.. The uniqueness of the fixed point is obvious. [

4 Formulation of the problem

Let n = 2,3, vy, A be positive constants. Let v be a bounded C3-smooth function
R™("+1)/2 5 R such that for all y € R™("+1)/2,

vy <A, |[Vely)| <A, |[V(vy)| <4, V()| <4, (12

where A is a positive constant independent of .
Consider the steady state boundary value problem for the non-Newtonian fluid motion
equations in the domain {2

—div ((vo + A (3(v)))D(v)) + Vp=1£, z €L,

. (13)
divv=0, =z€i?, v]gn =0,

where D(v) is the strain rate matrix with the elements d;; = (Jv;/0z; + 0v;/0x;)/2,
J(v) = (di2,d13,da3,d11,d22,d33) if n = 3, and §(v) = (di12,d11,d2) if n = 2,
feW;?(02).8>0.

We look for the solution v having prescribed fluxes F; over the cross sections o; of
outlets to infinity:

/v~ndS:Fj7 i=12...,J, (14)
where '
J
> Fj=0. (15)
j=1

Here and below an integral over o is understood as an integral over any orthogonal cross-
section of {2;. Note that this integral for a divergence-free vector function is independent
of the position of this cross-section.

Since div v = 0, equations (13) can be written in the form

—%Av + Vp = Adiv (v(¥(v))D(v)) +f, z€ 2,

divv=0, x€{2, v]gn =0.

S Non-Newtonian quasi-Poiseuille flow

5.1 Ecxistence of non-Newtonian Poiseuille flow with prescribed pressure slope

The non-Newtonian Poiseuille flow with the strain rate dependent viscosity was studied in
the book [2] and recently in [20]. We will need below some extended versions of theorems
proved there.

https://www.journals.vu.lt/nonlinear-analysis
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Let us recall the definition of a quasi-Poiseuille flow for equations (13). Let o be
a bounded domain with Lipschitz boundary in R”~!. Consider in the infinite cylinder
II = R X ¢ the Dirichlet boundary value problem

—div ((vo + Av(¥(u)))D(u)) + Vp =0, z € I,
diva=0, ze€ll, ulgg =0,

where ’y(V) = (dlg7 d13, d23, 0, 0, O) ifn= 3, and ’Y(V) = (dlg, 0, 0) ifn=2 (below we
will see that for the quasi-Poiseuille flow, d;; = 0).

Define a quasi-Poiseuille flow as a couple (V p_, Pp, ) such that Vp_(z) = (vp_ (z'),
0,...,0)T, and Pp_(z) = —az; + B, a, 8 € R, 2’ = (xa,...,1,), where vp,_ is the
solution of the following problem:

/

—% div,, ((VQ + /\V(”yp(vpa)))vxlvpa) =a, x €o,

(16)
vp, ‘80’ = 0.

Here ’.}/p(’l)pa) = (Vm/vpa/2,070) ifn = 2, ’.}/P(UPQ) = (Vm/UPQ/ZO,O,O) ifn = 3,
and « is the given pressure slope.

Theorem 3. Let do € C3. For any oy > 0, there exists \g = \o() such that for all
A € (0, o] and any || < v, problem (16) admits a unique' solution vp, € W12 (o) N
W32(o). The solution vp,, satisfies the estimate

v, [wseo) < clal, a7
where the constant ¢ depends only on o.
Proof. Let L be an operator WL2(o) N W32(5) — Wh2(o) N W32() such that for
any v € WH2(a) N W32(g), V = Lo is a solution of the Poisson problem
Vo
—?AV:h(v)—i-a, T € o, Vl]gs = 0, (18)

where

h(v) = %/\ divy (v(9p(v))Varv)

1

= A (3p@)Av + (Ve ) (Vo (ip(0)) - Varo].

Using the embedding W32 (o) < W1°°(o) and conditions (12), we obtain

11520y < X2 (10 r22(0) + 0 1Fraz o) V12 (0)
<

A ([[vlfys.2(0) + [0lirs.2(0)) - (19)

Here and below the uniqueness takes place only in some ball, where the contraction principle is applied.

Nonlinear Anal. Model. Control, 26(6):1166-1199, 2021
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Analogously,

‘Vw/h(v)’ < c)\(‘Vi,v 2 + |Vi/v QIVIW

+ ’Vi,v

’wav

+ ’Vi,v

and using, in addition, the embedding W32 (a) — W?2%(q), we derive

||vz’h(U)H2L2(a) < C)‘2(HU||12/V32(0') + ||’UH%/V3’2(O') + ”v”?/VBvZ(o'))' (20)

Define in W32(5) N W2(0) a closed bounded set Br, = {u € W32(s) N W2(0):
lullws2() < Ro}. Assume that v € Bg,. Then (19) and (20) yield the estimate

1B+ allfy12 0y < A*(RE + RG + R) + clal”. (21)
Then for the solution of the Poisson equation (18), the following estimate holds:

VI < 1A (RS + Bg + R) + el 22)
Set Mg = ca|ag|? and RZ = 2M@ and suppose that

9 1

< =2
c1(24+4Mg +8MF) 7

Then from (22) it follows that H,CUH%,VS,Q(G) < R§. The last inequality implies that the
operator £ maps the closed bounded set Bg, C W32(a) N W12(a) onto itself.

Let us show that £ is a contraction in W172(0). Multiplying equations (18) by an
arbitrary € W12 (o) and integrating by parts, we get

1
%/Vm/(ﬁv)-vx/ndx': —5)\/V("yp(v))vz/v-Vx/ndx’—f—a/ndx’.

g [

Thus, for any v1, v € Bp,, the following equality holds:

? / Vg;f(ﬁvl - [,1}2) . Vw/ndx/

lea

1
— [ oro0) (T = ) T

— %)\/ (v(¥p(v1)) = v(¥p(v2))) Varvg - Varnda!

=Ji+ Jo. (23)

Using Young’s inequality, we obtain

)\2
‘Jll < %/|Vm,n‘2dx+037/‘vm/’ul—VI/02|2dJ;/.
0

https://www.journals.vu.lt/nonlinear-analysis
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Using (12),
|V(’.YP(U1)) - V(’.VP(W)) }2 < sup ‘Vyl/(y)|2|vz/v1 — Varvg|?
Yy

< 02|vr’v1 - VI/U2|2,

we have

[ T2] < VO/Ivz nl? da’ + 20 /IV 01 = Varvgl*|Vorvaf* da’
A2
< @/|Vz/7l|2dx' + 627 sup ‘Vm/v2‘2/|vib/v1 — Vaurvg|* da’
z'€o
/va nf? da’ +

)\2
%/ vafnlzdx’+c%R3/|w1 — Vet da.
o 0

HU2||W32 o | | Varvr — Voo |? da’
(o)

Therefore, taking in (23) n = Lv; — Cvg, we derive the inequality

%Hvx/(&’l — Luvy) ||L2(0' ||V (Loy — 'CU?)HQL?(U)
)\ 2
+ 2 [eoB + 5] [V (1 = 0)[
and it follows that
4(C3 + c3R?
[V (01 — Lo)|[22, < /\2(31/02030)||VI,(U1 —00)[2a-

Let

v,
A2 = min O}
o { 4(Cs + c3R3)

Then for any A € (0, o), operator £ is a contraction in W12(g) with the contraction
factor )
24(C5 + c3 Rp)

2
)

=A <1,

and by Theorem 2 there exists a unique fixed point vp, of the operator £, which is
a solution of problem (16).
From estimates (20), (21) applied to the fixed point vp, it follows that

b+ allfye oy < eA?(1+ RS + Ro)[vr, sz g + claf?,
and thus, by (22)
||UP ||W3 2(0) S Cl/\2(1 + R2 + R4) H'UP ||W3 2(g) + C2|04|
If A < A, the last estimate implies (17). O]

Nonlinear Anal. Model. Control, 26(6):1166-1199, 2021
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5.2 Operator relating the pressure slope and the flux

Define F'(« f vp, (z') da’ the flux corresponding to the pressure slope —a. Note
that in the case of the steady Newtonian flow (the steady form of Navier—Stokes or Stokes
equations), F'(«) is proportional to c. This case corresponds to the value A = 0, and so,
F(a) = ko, where k = [ 0p(z') da’, and 0p is a solution of the Poisson equation

v . .
—?OAz/vp =1, 2’ €o, ip=0, 2’ €do.

We consider as well the operator (function) corrector of the non-Newtonian flux with
respect to the Newtonian one: G(«) = F(«) — ka, and prove that for sufficiently small
A > 0, G(«) is a contraction.

The next lemma is an extension of Lemma 2.3 and Corollary 2.4 [20].

Lemma 4. For any g > 0, there exists a number \1 = A\1(ag) such that for any
A € (0, \] and every |a| < «v, the solution vp,, of problem (16) is a Lipschitz-continuous
function with respect to o in the norm |V - ||12(). Moreover F(«) is a Lipschitz-
continuous function with respect to .

Proof. Letup, € W2(g)NW32(0) and vp,, € W12(0) NW32(0) be two solutions
of problem (16) corresponding to o = a1 and a = o, respectively. By Theorem 3 these
solutions exist if A € (0, Ag(vo)). Moreover, the following estimates hold:

v, lwszo) < clagl, i=1,2.
Using the integral identities

o

1
B Vm/vpai ~Vz/ndx’ = 75/\/1/(’.)/p(1)pni))vz/1}pai . Vx/ndsc’

[ea g

ai/ndx’, i=1,2, Ve W (o), (24

subtracting (24) with ¢ = 2 from (24) with ¢ = 1, taking n = vp,, — UP,, and using
arguments similar to those at the end of the proof of Theorem 3, we get

||Vav’UPa1 — Vaiop,, ||2L2(o)

A . .

< */’V yp(vp,,)) —v(vp(ve,,))[IVarvr, |[Vervp, — Veop,,|dz!
+*/|I/ ")/P "Up “VI’UPal Vx/vpa2|2dx’
+|Ol1—0£2|/|'l}pal —Upa2|d£L’/

< ada|[Varve,, = Vavr,, 120 + a1 — e2lV]olllve,, —vr,, 22
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where |0 = mes(0). If A < min{Ag(a), 1/(cacp)} = A1, then from the last inequality
it follows that

||Vx/ (’Upal — vPQQ)HLZ(U) < e/ |olar — asl. (25)

Further,
[F(n) — Flaz)| < / [or,, (@) = vp,, (2)] d2’ < VToTlom, — vp,, o2
< e/ |0l[|[Var (vp,, —vp,, ) z2(0) < erv/|ol|ar — aal,

and this estimate completes the proof. O

Lemma 5. For any ag > 0, there exists a number Ao = Aa(o) < A1(ow) such that for
all X € (0, \a], the operator k~*G(«) is a contraction on the interval [—a, a).

Proof. Denote ¥4, (2') = a10p(2), Day(2’) = atp(a’), where |o;| < . Then
Uay — vUp,, and Uq, — vp,, satisfy the following problems for m = 1 and m = 2:
17 -
7§OAZE/ (Uam — Upam
(ﬁa1n - anl)‘aﬂ' - O

), 2’ €o,

am

A
)= 5 divg (V("VP(UPW,))Vr’UP

Subtracting one problem from another, we get for w = (34, — vp, ) — (¥a, — vp,, ) the
following relations:

_%A$/w = %divwx (V("yp(vpal))vmlvpal

—v(¥p(VPay))Varvpa,), ' €0,
w|ag =0.

Applying a standard a priori estimate for the solution of the Poisson equation with Dirich-
let conditions, we obtain

A
Hvx’w||L2(a) < 070 ||V(W./P(’UP041>)vx"UPa1 - V(;YP(UPOCQ))vx/,UPOZQ ||L2(U)’

and by using similar arguments as before we obtain from inequalities (17), (25)
for A < )\1(0&0)

IVaorwll 2oy < csAag +1)||Var (vp,, —vp, < e |ag — sl

02)HL2(0')

So, finally,
‘ / wda’
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Since
/wdx’ = (koq — F(oq)) — (kg — F(ag)) = Gaz) — G(ow),

we have
H*IIG(QQ) - G(o)| < cgk Aag — agl.

So, if A < Aa(ag) = min{A(a),~/cs}, then G/k is a contraction with the factor
g=csr A< 1L O

Remark 2. The same proof shows that if the constant £~ ! is replaced by another constant
K~ > 0, then for any ag > 0, there exists a number Xy = \j(ag) < A;(ap) such that
for all A € (0, \y], the operator K ~'G(«) is a contraction on the interval [—a, cvg).

Lemma 6. sgn(F(a)) = sgn(a).
Proof. Indeed,
aF(a) = /owpa da’

o

1
= —/5 divy: ((vo + Av(vp(vp,)))Vervp, )up, do’

1
= / 5(1/0 + Av(§p(vp,)))Varvp, - Vaup, dz’ > 0. O

o

Lemma 7. For any Fy > 0, there exists \3 = A3(Fp) such that for all A € (0, \s]
and every F' € (—Fy, Fy), there is a unique pair (vp, , «) satisfying (16) and such that
F(a) = [ vp,(2')dz" = F. Moreover, the following estimates hold:

lor w2y S CIF|, o] < ¢|F]. (26)

Proof. F is a Lipschitz continuous function. So, for any fixed Fj, we can find a number
ag = ag(Fp) such that for all A € (0, min{A; (), A2(ao)}), Lemma 4 holds, and for
a € [—ag, ag|, we have |F(a)| < Fp. So,

|s ' F()| = [ F(a) —a+a| = [ 'G(a) + o] 2 ||a] — [T G(a)|].
Since by Lemma 4, F'(«) is Lipschitz continuous and, by Lemma 5, k= 'G(«) is a con-
traction, we conclude that there exist constants 0 < a; < a9 such that

atlal < [T F(@)] < azlal.

Therefore, for every F' € (—Fy, Fy), there exists at least one o € [—ap(Fp), ao(Fp)]
such that F'(«) = F.
In order to prove the uniqueness of o, we argue by contradiction: suppose that there

are two such number oy and «g, ie., F(a1) = F(ag) = F. Then, by definition,
|k 1G(a1) — k7 G(a2)| = |as — az|. But this contradicts the fact that k= 1G(a) is
a contraction, and so ov; = «a. O
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5.3 Continuity of the non-Newtonian Poiseuille flow

Theorem 4.

(i) For any «y, there exists Ay = My(ap) such that for all X € (0, \4] and every
aq, 0 € (—ap, ag), there holds the estimate

lve,, —vpe,, llw22(0) < clar — azl. 27

(i) For any Fy, there exists A\s = As(Fy) such that for all A € (0, \5] and every
F, Fy € (—Fy, Fy), there holds the estimate

lve,, —vp,, llw22(0) < c[F1 — Fal, (23)
where F; = [ vp, (¢')da’,i=1,2.

Proof. (i) Let Fy > 0, ap > 0 such that ag < cFy with ¢ from (26), and let \; =
A1(ag) be the number defined in Theorem 3, A3 = A3(Fp) be the number defined in
Lemma 7. Then due to these theorem and lemma, for A € (0, min{\;, A3}] and every
a1,z € (—ap, ag), there exist solutions (vp, , 1) and (vp,, , az2) of problem (16) such
that vp, € W*?(0), and the following estimates

lvp,, lwsz2o) < Clag|, i=1,2,

hold. Moreover, |a;| < cFp. The difference v = vp, — vp,, satisfies the equations

_%A(UPQ1 —wp,,) =h(vp, ) = h(vp,,) + (1 —az), = €0, 09
U|5)0 = 07
where
1. .
h(u) = 5)\ div,, (I/(’)/p(u))vm/u)

= %A[u(‘yp(u))Am/u + (Vo (3p@) (Var (Vo) T - Vo]

It is easy to calculate that

\h(vp,,) = h(ve,,)|

< C/\(|V2(’Upa1 - Upa2)| + }VQUPQZHV(UPQI - vpaz)f
+ |V21}pm1 ||V'UPQ1 ||V(Upa1 — UPa2)| + |V1}pa1 ||V2(Upa1 — UPa2)|)'
By using Sobolev embedding theorems we get the inequality
Hh(vpoq) - h(vpaz)HL2(a)
< A|[V2(0r., = 0P| 2o + 0P, lwoeio 0p., —vpa, w2
+ ||UPW1 H%Vw(g)||7fPa1 —vp,, ||W2v2(<7) + ||71Pa1 ||W3’2(0)||UPQ1 —Vp,, wa(a))

< C)\(FO + Fg) H’Upa1 —Up,, ||W2>2(0)-
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Therefore, the classical estimate for the Poisson equation (29) yields

H('UPal B UP°2)||W2>2(0') < C*A(FO + Foz) HUP(XI o vP”z ||W2’2(0')

+C‘Oé1 —042|. (30)
If A < 1/(c.(Fy + F2)), (30) implies
lve,, —ve,, llw22() < clar — asl. (3D

Thus, inequality (27) is proved.

(i) Let A2 = A3(Fp) be the number defined in Lemma 7. By the definition of the
function G(a) = F(a) — ko we have

G(o) — G(az) = (F(a1) — F(az)) — s(oq — ag).
Thus,
lag — as] < &_1|F(a1) — F(a2)| + |/$_1G(a1) . n_lG(a2)|.

Since for sufficiently small A, the operator e («) is a contraction (see Lemma 5), the
last estimate yields

lay — ao| < k7Y F(a1) — F(a2)| + v]en — as
with v < 1, and thus,
lar — ao| < ¢|F(a) — Flag)| = ¢|Fy — F|. (32)

From (31) and (32) follows (28). O]

6 The non-Newtonian flow equations in domain with cylindrical
outlets to infinity

6.1 Existence and uniqueness of a solution

Consider the domain {2 C R"™ with J cylindrical outlets to infinity. We assu hat th
boundary 942 is C*-regular. Consider in §2 problem (13)-(15). Denote F = Z'jjzl FjQ.
Let Fj be a nonnegative number. By Lemma 7 there exists a number Ay depending on
Fy such that for every A € (0, A\go) and for any set of fluxes (Fy, ..., Fy) such that
F < Fy, there exist J pressure slopes o; and corresponding J quasi-Poiseuille flows
Ve, (2) = (vp, (2'),0,...,0)T € W2(0;), defined in cylinders IT; = {z(/) € R™,
2’ e o a9 ERY, j=1,...,J, such that F(a;) = Fj.

We define cut-off functions y; associated to each outlet {2; as C' (3)_smooth functions
vanishing everywhere in {2 except for the outlet 2;, where they depend on the local
longitudinal variable xgj ) only, are equal to zero if xgj ) < 1, and equal to one if :vgj ) > 2,
and put

J J
Vy = ZXjVPQj7 P, = _ZXjOéjngj),
Jj=1 j=1

https://www.journals.vu.lt/nonlinear-analysis
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It is easy to see that for h(z) = div V, (z) = Z] 1 X (zgj)) (x(j)'),

supph C 2\ 2O,
Moreover, from the condition Z'J.]:l F; = 0 it follows that [, h(z)dz = 0. Finally,
estimates (17) and (26) yield

[Pllwz2(@e) < CZ lop,, w220, < cF

Since h € W22(23)), by results in [5], there exits a vector field W € W2(2G3))n
W32(£23)) such that div W (z) = —h(z) and

[Wllws2ee) < cllhllwe220m) < cF. (33)
Moreover, since supp h C §(2), ‘W can be constructed such that supp W C ﬁ(g).
Extend the functions W and V. by zero into the whole {2 and set
V,(z) = W(z) + Vy (). (34)

Then

9j

and for x € £2;\ {23, the vector-field Vx (z) coincides with the velocity part Vp. (2()")
of the corresponding Poiseuille flow. Note that the vector field W has zero flux. ’
By denoting in (13) R
v=u+V,, D =q+ Py, (35)

where P, = Z}]:1 X0 x{, we obtain the following problem:

—div[(vo + W (i (u+V)))Du+ V)] +V(g+Py) =f in,

divu=0 in{2, u=0 ondf,
(36)

/u~ndS:0, j=1,...,J.

T

Theorem 5. Assume that 0f2 € C*. Then for any fo > 0 and Fq > 0, there exist
numbers Ay = AO(FO,fO) > 0 and 8. > 0 such that for all X € (0, Ag], B € (0, 8]
andfor any f e Wﬁ %(92) satisfying I£llwi20) < fo and any set (Fy, ..., Fy) with

Z] 1F2 F3, problem (13), (1 ) (15) possesses a umque solunon (v,p)?
admlttlng representation (35) with u € Wﬁ %(), Vq € Wé (02), ) Jow a(z)dz = 0.

2The uniqueness takes place only in some ball, where the contraction principle is applied, and we have in
mind the uniqueness only for solutions admitting representation (35).
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The following estimate holds:

||u|\3\,32 +IVqll? Wi S c(lIFI3, 12 T F?). 37)
Moreover, there exist constants q1, qo, . . . , qy such that
/|q \de—l—Z/exp 25:101 ’q —qj‘ dx
o i=lg,
2
< c/Eﬂ(x)’Vq(a:)‘ dz < c(||f||$/\};12(m +F?). (38)

Proof. Define K as the operator W 2(2)NH(Q) — WEQ(Q) N H({2) such that for
any U € Wg 22)NH(D), (KU, q) is a solution of the problem

—%AICU +Vg=HU+V,)+f,
divKU = O7 K:U‘ag = 0,

(39)

where
H(U+V,) = ?A\Afx — VP + Adiv[v(3(U + V) D(U + V)]

After subtracting and adding the expression \ div(y(f'y(\A/'X))D(\AfX)), we write H in the
form

H(U + \Y% ) =g+ )\div[y('(U +{/‘X))D(U + vx) - V('.V(VX))D({}X”’

where g = V0/2AV + Adiv(v(¥ (VX))D(\A/'X)) — VP,.. The function g has compact
support, supp g C 9(3) and

<

I&l3y12 o) < CFIP=c) F7 (40)

Note that
Vu(H(U+ V) = (Vyr®)l,—suiv,) VIU+Vy),
Vr(3(Vy) = (VoW —swy) VAV,
where V+ is the Jacobian matrix of 7, and

H)‘(V v )|y—"y(U+\7 ))TV'.Y(U‘F\AIX) _)‘(Vyy(y”y::y(u_m?x)) V'Y H£2
c)\supHV v(y)||V? U||£2(Q

NV ®)l,—suiv.) wv ) = MV ®)l,—sw) VIV
< cAsup ‘Vz ||V’y V|IVU.
Y
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Since
Adiv[v(3(U + V) D(U + V) — v(5(V,) D(V,)]
= Adiv [v(5(U + V,)) D(U) + (v(%(U + V) = v(%(V,))) D(V,)]
= VT (3(U + V,)) - D(U) 4 Av(5(U + V) div D(U)
(

AV (3(U+ V) = VIu(3(V)))) - D(Vy)
+ AU+ Vy)) = v(3(Vy))) div D(
by using (12) we obtain the estimate
)‘| div [V(’Y(U + \Afx))D(U + ‘Afx) - V('Y(\Afx))D(‘Afx)] |
< cAsup ’Vyy(y)||VU|(‘V2U| + |V2\A/X|) + cAsup |V(y)||V2U’
y y

<

T

<)
<

+ cAsup ‘Vyy(y)||V2U| \V\A/X\
Y

+exsup [V2u(y)|[VU[VV || V2V, | + [V2U))
Yy

< AA(|VU||V?U| + |V2U| + [VU|| V2V, |
+ |V2U||VV | + [VU||[VV, |([V?V, ]| + [V2U))).
Using the embedding inequalities (1), (2) and estimates (26), (33), we obtain
2 2 2
H|VUHV2U|Hcg(Q) S 222 ’Eé/QVU‘ HVQUHz:g(Q) S C”UH?/vg’?(m;

9V U250

/ vw|*|v?ul? dz+ZZ/E,3|V X; Ve, )PIVUP de

03) J=1k=2
< sup |[VW(a)|’ /]VQU] dz
€N
Q)
+CZZ sup |vp | + |V, vp,. |)/E/3|V2U|2dl”
j=1k=2%C7

Wik
2

N3

J J oo
e e Iyssey D / 5| V*U[* dr
j=1 j=1k
J o
<CF2</\V2Udex+Z
j=1k

/E |v2U\ dx) cF2||U||W3z
2(3)

=2,
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Let us estimate the integrals containing the terms |VU|? \VVX\ |V2V | a
V2V, |2 VU2 Inequalities (1), (2) and (3) yield

V>V IV Ul 23 )

/ VW | |VU|2dx+ZZ/Eﬂ|V2 (X;jVe.,)|IVUP dz
00 j=1k= 2

< swp |VU@)[? /|v2vv| dz
xc3)
0(3)

1/2 1/2
+Z (/ V2 (x;vp.,)] dx) </E§|VU|4dx>

Wy

< AU g0 W co> Jon a3 ST
Jj=1 j=1k=2

< cF?|u)? )
H ”ng2(9)

Similar considerations give us also the estimates

IV VAV VAV Ol 23 o)

< / (VW VW + |[V2W |V V2 + [V2V [ [VW]?) VU de

0@
J oo
+ZZ/Eﬁyv (Ve )| [V Ve, IVUP dz
Jj=1k=2,
X CF4||UHW32(_Q)7
H\VVXHVU||V2U|H£2(Q) cF2||UHW3,z(Q).

Collecting the above inequalities and adding (40), we derive

HH(U+V )| (F2+/\2(||U||432 +|[Ul3,

52(02) + F2HUH12/V

|L2(Q) (£2) 52(2)

+F4HU||W32 +F2HU||‘;VS,2(Q))), 41)
Similarly,
|V div[v(4(U + V,))D(U + V) — v(5(V,)) D(V,)]|
<e((|V°U] +[V2UP) (14 [VU| + [VU[[V V)
+ |V2U||VV, | + |V2U| V2V, | + |V2U||[VU|| V2V, |

https://www.journals.vu.lt/nonlinear-analysis
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+ |[V2UP WV, | + [V2U|[V2V, [V V| + [VU|(| V3V, |
+ VAV IOV + [V2V, [+ |72V, 2]V V).

The E% -norm of this expression is evaluated according to the following scheme:
in each product of gradients, the first-order terms [VU| and |VV | are evaluated by
sup,c o |VU(x)| and sup, ., V'V (z)], the second-order terms VU] and V2V, | are
evaluated in the Lz-norm, finally, the third-order terms [V*U[ and V3V, | are evaluated
in the L‘% norm. Then we apply the embedding inequalities of Lemma 2. So, for the
gradient of H, we obtain the estimate

[VH(U +V,) c(F*+ N (|[U]l5, 220 T Leils + ||UH§VE,2

HﬁQ(Q) (£2) Wi (2) (£2)

+ F2||U||Ws 2 + F2||U||Ws 2 T F2||U||ivg,2(m

+ F4||U||3Vg,2(m + F6||U||3Vg,2(m)). (42)

From (41) and (42) it follows that the right-hand side R = f + H(U + \A/X) of
system (39) satisfies the estimate

IRy 2y < 1 (1132 ) + F) + X202 (Ulya2 ) + U305 g
F U2 520 + FPIUIS 52 o + F2IUL s
” HW22(_Q) H ”WZQ(Q) ” ||W22(Q)

+ F2||U\|§v;,2 + F4\|U||3V;,2(m + F6||U\|§v;,2

(2) (n))'

Then, by Theorem 1, for sufficiently small 5 > 0, the solution (KU, ¢) of the Stokes
problem (39) is subject to

IIICUIIWsz +\|Vq||3v;,2(9)
X CBHRHV\};YZ(Q)
<ea(If|202, 00 + F2) + X2e5 (U8 5z, . + [|U||A 5.
4 (1l I\W;z( ) ) 5 (] IIW§2(Q) [ I\Wgz
+F2||U||W32 —|—F2||U||?/V3,2
) T FIU2 ) + FOIUIS

(£2)

11Ul

(£2) (2)

+F|ul? (43)

WSQ W32 .Q))

Assume that
101y gy < 2ea (€110 + FE) = M.

Then from (43) it follows

2 2
s oy + IVl

1
< 5M2 +esNPMP(M* + M? + 1+ FgM? + FgM* + F§ + F + Ff),
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and if )\ satisfies

2 1 2

< _A*a
2e5 (M* + M2+ 1+ FZM?2 + F3M* + F3 + F¢ + F9)

we obtain the estimate

Thus, by (44), the operator K maps the ball By, = {U € Wg’z(ﬁ): ||v||W;‘2(Q) <M}

into itself.
Let us show that K is a contraction in the space H ({2). Multiplying equations (39) by
arbitrary € H({2) and integrating by parts, we get

%/V(ICU) - Vndz
22

~

=3 [ V(U + V) DU+ V) - Tnds

(9]
+ A [ v(H(V))D(Vy) - Vnde + | (g+f) -pda. (45)
/ /

From (45) it follows that for any Uy, Uy € By, the following equality holds:
Vo
Q

= /\/V(W(Ul +V,))(D(Uy) = D(Uy)) - Vnda
2

- )\/ (v(3(Ur + V) = v(5(Us + V,)))D(Us + V) - Vpdz
(9]
=J1 + Js. 46)

Applying Young’s inequality, we have

14

2c\2 A?
|J1] < %/\vn|2dx+ < /|VU1—VU2|2dx.
0
2 2

Since, by (12),

p(4(U1 + V) = v(3(Uz + V)
< sup |V, v(y)|*|D(UL) — D(U2)|* < cA?|VU; — VU, 2,
Y
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we get
2e\2A
| /2| < go/v ?da + = /|VU1 VU2 |V(Us + V)" de
2
Yo 2 cA?A? S\ 2 2
<=2 [ |y de + sup |V(Uz + Vy)|” [ [VU; — VU, [* da
8 A Vo e 5
2eA2 A2
< go/ [Vn|* dz + (|\U2H$,Vg,2(m+F§)/|VU1fVU2|2d:1:
(9] o 0
Vo 2 2A2 2 2 2
<3 |Vn|* dz + (M? + F§) | [VU; — VU, da.
2

Taking in (46) n = KU; — KUjy, we derive the inequality

%HV(’CUI - ’CU2)||i2(n)
ceA2[1+ M? + F7|

< % V(/CU1—’CU2)H;(Q)+)\2 " ‘V(Ul—Uz)H%?(n)'
Therefore,
deg A%[1 + M2 + F?
VU~ KU,y < 22T 0, w2,
0
Let

A2 = min{ A2 i
0 mln{ *9 4 A2[1+M2+F2}

Then for any A € (0, Ap), the operator K is a contraction with the contraction factor

degA%[1 + M2 + F?
,[1,:)\2 6 [ iy 0]<1,
0

and, by Theorem 2, there exists a unique fixed point U of the operator K, which is a solu-
tion (together with the corresponding pressure function ¢) of problem (36). Estimate (37)
for the fixed point u and the pressure g follows from the fact that u € 5, (see inequality
(44)).

The existence of the constants q1,...,q; and estimate (38) follows from Lemma 3
and Remark 1. O

6.2 Continuity of the solution with respect to data of the problem

Assume that we have two sets of fluxes (Fl(l), ce (1)2 and (F(z) F(zl satis-
fying condition (14) and two functions f(1) f(?) ¢ W (£2). Let V( ) and Vv be
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flux carriers corresponding to fluxes (F(l), cee F}l)) and (F1(2), e 7F‘SZ)), respectively
(see formula (34)). Denote by (u(l) ¢M) and (u?, ¢(?) the solutions of problem (36)
corresponding to flux carriers VX1 , ng) and right-hand sides £f(1)| (). Assume that

FO <R, ||£C i=1,2. 47)

HW;"2(Q) < f()a
Denote

J
Q=2 IR~ P O~ 69

Theorem 6. There exists A = Alg_Fo, fo) such that for all X € (0, Ay] and sufficiently
small Q, for arbitrary £ and (Flz)7 ..7F§Z)), i = 1,2, satisfying (47), the following
estimate holds:

[ =@ + V(@ = a®) 2 ) < Q@) (“48)

Moreover, if ¢V () and ¢'? () are normallzed b{ the condition [ q W (z)dx =
Jow ¢ (x) dz, then the limit constants q1 yes 7qJ at infinity of ¢V (x) and the cor-
responding constants ¢, ), el q J of q(Q)( ) satisfy the estimate

2
Z ¢tV — 4P < cQin Q).
Jj=1

Proof. Due to condition (47) and inequality (37), u® € By C V\/3 2(02), V¢ €

by, C Wzla 2( ), q](l) € [— Mz, Ms), where By and by, are balls of the radius M and

M, respectively, M, M, M, are positive numbers defined by Fy, fy of condition (47).
The difference u = u —u® ¢ W;2(Q) satisfies the equations

—VoAu+Vq
=g+ f+Adiv(r(5(u® + V) Du® + V)

—v(H(VI))DVY) = v (3(u® + V) D(® +VE)  (49)
v(1(VE)DVE)),

diva = O, u|aQ = 07

where ¢ = ¢V — ¢@, g@ = LAV + Adiv(r(F(VO)DVY)) —vPP, i =1,2,
g =g _g@ f— 0 _f@)

From (28), (33) and (40) it follows that supp(g()) — g@) c ¥

and
g™ — &|[}2 e, < cZ|F -F2f (50)

Since u € WE’Q(Q), Vg € L3(12), there exists an integer k¢ such that

||LIH 22(9\9(’%}) +||Vq||l:2 Q\Q(kQ) \Q (51)

https://www.journals.vu.lt/nonlinear-analysis
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Obviously, for every sufficiently large K,

||u||3vg,/24(mm,()) +IValzg  2v00) < cre—3KB/2

with the constant c; defined by Fy and fy. In particular, condition (51) holds if
cre=3k@B/2 = () je.,

2In(Q/cr)| _
36

We assume without loss of generality that kg > 1.
Let us estimate the norm ||Vul|?

kg = (\ In Q|) (52)

L2(2n2CKQ)y" Consider the function

P(r) = Crg (z)u(z) + (),

where C,, (2) = (i, (@ 29 for z € 125,

1, t e [0, kQ],
CkQ (t) = COS2(% t;ZQ )a te [kQa 2kQ]7
0, t € [2kg, +00),

and
leQ = _VCKQ (J,‘) . u(x) in Q(QkQ),

(53)
&=0 ondNZe =0

Let us construct @.
Notice that

J
supp(VCkQ U xe() 0<J; <2kQ}

and

/u~nd5’:0 g=1...,J

93

Therefore, for any wjz, k =0,...,2kg — 1,5 =1,...,J, we have

/ Vo (z) - u(z) dz?’ =0,

and there exist functions @;;, € W12 (w;y) satisfying the equation
div®,p(r) = =V i, () -u(z) inwjg,

and the estimate

HVQJICHLZ(WM) C”kaQ uHL?(wjk) Ckg)lHuHLQ(wjk)
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with the constant ¢ independent of k and j. Extend @;;, by zero to (2. Putting &(x) =
Z}]:1 Ziiofl &;;.(x), we obtain the function belonging to WI’Q(LJ;.]:1 12} 21, ), Which
satisfies equation (53) and obeys the estimate

9850l 2100 < 4 2007 2, 54)
with the constant ¢ independent of k.

Since, by construction, ¢ is solenoidal and supp C 2(28¢) multiplying (49) by ¢
and integrating by parts, we obtain

Yo / [Vul* dz = —vg CkQ\VuPdm
*Q) QN (ke

Y / VuV(y, -udz + 1o / Vu-Vodz
n(EkQ) 0kQ)

+ o / (g+f) -pdz+ A / M(u(l),u@)) pda
0CkQ) k)

- A / NV, V®) . pda
0CkQ)

6
- ZKI’ (55)
=1
where

M(u®M, u®) = div(v(y(u® + \Af;l)))D(u(l) + \A/';l))
U+ V) D + VD)),
N(VE, V) = div(v(3 (V) D(VE) = (5 (VE)) DIVE)).

X

Let us estimate the right-hand side of (55). First of all, we notice that

VoPdo<e [ VPP ds

0kQ) 02kQ)
+e / Ceo |2 VU2 do + / VB[ dz
0EkEQ) 0CkQ)
<c / |Vul|? dz,
02kQ)

https://www.journals.vu.lt/nonlinear-analysis
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where, in order to estimate the last term, we applied inequality (54). Moreover, by (50),
(51) and (54),

K1 < e / |Vul?dz < cQ, (56)

Q\Q(kQ)

| 5| < ‘ / VuV(, -udz

0kQ)
Si / |Vu\|u|dw<i / |Vul?dz + ¢ / |Vul|? dz
ko kq
02kQ) 0kQ) Q\Q(kQ)
< < |Vul?dz + cQ, (57)
kq
0*kQ)
1/2 1/2
|K3|<VO( / |Vu|2dx> (/ |V45|2dx>
02kQ) 0kQ)
<= / Vul?de + cQ, (58)
ke
nFQ)
i < 6) (el + [ I6Pae) +e [ 19pPa
02kQ) n2kQ)
<ce(e)Q +¢ / |Vul?dz + ¢ / |Vul? dz
0*kQ) Q\Q(kQ)
<eQ +e / |Vul? dz. (59)
0kQ)

Substituting estimates (56)—(59) into (55), for sufficiently small £ and sufficiently large
kg, we obtain

% / [Vul?dz < cQ + A / M(u®,u@) . pda
0*kQ) 02kQ)
+A / N(VD, V) . pda. (60)
Q(sz)

Consider the term K containing N(\7§})7 V&Z)). We have
N(VE, V) = div(v(3 (V) D(VE) = (5(VE)) D(V))
= div(v(4(VI)) (D(V) = D(V))
+ ((1(VE) = v (5(VE)) D (V).
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Therefore,

NV V) < | VVP[[ (VD = V) + [V (VD - V)
+[VHV = V) [TV + [V (V) = V) [V

+|[VV =V IV vV, (61)

Arguing as in the proof of Theorems 3 and 5 and using (17), (1), (47), we get

[VVOF|v (V- V) da

Q(QkQ)
<ec / VWO v (VD - V)| de
03)
J 2kq
LY [IVERTEY - V) e
J=11=0,
<cw® ”?/[/3,2(9(3)) IV = V&2 o)

o [ [TV - V@) o
2@3)
J 2ko +1

e3> [ [IVEPT O -V s s
i=11=0 5

J

< CZ |Fj(1) - Fj(2)|2
j=1
J 2kq I+1

12590 Dl I B Al PN (SRRl A

J=11=0 7 5
I+1
()
/dac1
!

Q

J
<e Y |FY - B Y B - FPPY

J J 2k
j=1 Jj=1 Jj=1

l

I
=)

J
<e((1+27ke)) S |FY -~ FPPP < QI Q).

j=1

Estimating analogously the other terms in (61) and using (52), we derive

IN(VD, V?)|?de < Q| In Q). (62)

0CkQ)

https://www.journals.vu.lt/nonlinear-analysis
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Thus, similarly to (59), we get

~

Kol <ce) [ IN(VOVE)Pdore [ loPds

0CkQ) 0(CkQ)
<eQInQl+e¢ / |Vul|? dz
[Z(sz)
<eQnQ|+¢ / |Vul?dz + / |Vul|? dz
nke) Q\Q(kQ)
<eQ|InQ|+¢ / |Vu|? dz. (63)
0kQ)

Similarly, we have
IM(u®,u®)|
<C(|V2( @+ VO)[|9((@® + V) — (@ + VY|
+ V(@™ + VD) = (u® 4 V)|
+[V2((u™ +V(1) (u(2)+V§<2))HV( (2)+V(2))|
+|V(u 1)+V§<1))—V(u(2)+v§< )Hvz(u(z +V(2))]
+\V(u(1)+\7§<1))fv(u(z)Jr{,g(z))Hv( (2)+V2))||V2( 1)+V(1>)|)

5
S
=1
Arguing as in the proof of Theorem 5, we obtain

Mfda:<c< [ v Pwapass [ eOpivata

0kQ) 0kQ) 0CkQ)
+ / V2P|V (VO — V@) de
02kQ)

o[ PP EO - V) a)

0@kQ)

< C(Hu(l) H?/V&Z(Q(%Q)) ||u||12/v2,2(9(2kq))

J
+ (HW(l)H?}V&Q(Q(g)) + Z HVE(l)H?/Vg,z(U )H Hw2 2 Q(2kQ))

j=1
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J
(W0 =Wy + S IV =V g )
j=1

* [u® sz ey

J
e QI (W gy + D IV o

j=1
! 2
vl v(2
IV -V e )
j=1

C(”u”?;[/zg(g(?kQ)) + Q‘ IDQD

Estimating the integral containing |V2\A/§<1) |2 |V({\/'§(1) - Vg)) 2, we have used the same
argument as in the proof of (62) (see Lemma 2).

The other terms M;, ¢ = 2,...,5, can be estimated similarly (for M5, we estimate
|Vu®| in L>-norm via W32(02 ) -norm of u® and |VV( )| via W3?2(o;)-norm of

‘A/XQ)), and we derive the following estimate for the norm of M(u @, u(2)).

2
M@ u®) [ dz < el[ul?,. . g, + QI Q). (64)

0CkQ)

This gives the estimate for K:

|K5| < c(e) / |M(u(1),u(2))|2dx+5 / lo|? da

0CkQ) 0kQ)

<cQIn@Q|+¢ / |Vul? dz + c|lul|?

W2,2(Q(kQ))' (65)

nFQ)

Substituting (63), (65) into (60) and choosing ¢ sufficiently small, we obtain the
estimate

|vu|2 d.’E C)\||u||W2,2(Q(kQ)) +CQ|IHQ| (66)

0kQ)

Now we apply the local ADN estimate (6) to the solution (u, ¢) of problem (49),

2 2
Hu||W2,2(_Q(kQ)) + HVqHLQ(_Q(kQ))
c(||g\|%2(9(3)) + ||f\|izm(2k(g> + >\||NH2L2(Q<%Q>)

+ M7, kg, + IVl (67)

L2 _Q(QkQ)))
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Applying estimates (50), (66), (64) and (62) to the right-hand side of (67), we derive

ulf} Vall?

w2, 2(Q(kQ) + | Lz(Q(kQ))

(Q| 1HQ| + )‘”unwz Q(Q(k(g) + ||vu||L2 _Q\_Q(kQ)))
(Q|IHQ| +)\||ll||W2 Q(Q(kQ))) (68)

Thus, if cA < 1/2, from (68) follows estimate (48).

Let us estimate the differences g0 = qj(l) (2) ,J= 1 ,J. Let the pressure g(x) =
¢ (z) — ¢ () be normalized by the condltlon f 0® 4 ) da: = 0. Then g satisfies the
inequality anwm)) < ¢|Val2a (e Denote g;(xi’) = [ q(ai”, o)) da?’,
Since fQ lg(x) — qJ0| dr < 400 (see Lemma 3), we can assume, Wlthout loss of
generahty, that kQ is chosen such that || 2\ 00 lq(z) — gjo|* dz < Q. Then

k‘Q-‘rl
| @) - gomesay) s
kq

= ‘ / (¢(z) = gjo) dw

(kq, kq+1)xo;

< y/meso;Q.

< vmesaj]|q(x) = gjol| 2\ o0

So,
kQ+1 kQJrl
mes 0|gjo| < / (q’j(xgj)) — gjo mes oj) dacgj) + / d; (xgj)) dxgj)
kq kq
ko+1 «{)

< ymesa;/Q + /(qj(x@—kQ)Jr / q;(t)dt>dx§j>

2 —kq
k‘QJrl

[ 1) e
0

< TG + a5 + [Vl 2y 57 g 71
< \/M\/@—’_ ClIVall 2oy + C”VQHL?(Q)\/W
<CVQImQ),

and thus, |g;0|? < CQ(In Q)% O

kq

1
g,/mesaj\/é—i— / q; (j)

0
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