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Abstract. In this paper, we consider the sum Sξn = ξ1 + · · · + ξn of possibly dependent
and nonidentically distributed real-valued random variables ξ1, . . . , ξn with consistently varying
distributions. By assuming that collection {ξ1, . . . , ξn} follows the dependence structure, similar
to the asymptotic independence, we obtain the asymptotic relations for E((Sξn)α1{Sξn>x}

) and
E((Sξn − x)+)α, where α is an arbitrary nonnegative real number. The obtained results have
applications in various fields of applied probability, including risk theory and random walks.

Keywords: sum of random variables, asymptotic independence, tail moment, truncated moment,
heavy tail, consistently varying distribution.

1 Introduction

Let n ∈ N := {1, 2, . . . } and let {ξ1, . . . , ξn} be a collection of possibly dependent
real-valued random variables (r.v.s) with heavy-tailed distributions. Denote

Sξn := ξ1 + · · ·+ ξn. (1)

Throughout the paper, we assume that random summands have consistently varying
distributions. This is a subclass of heavy-tailed distributions. We recall some definitions.
We say that a distribution function (d.f.) is supported on R if its tail F = 1− F satisfies
F (x) > 0 for all x ∈ R.

• A d.f. F supported on R is said to be heavy-tailed, written as F ∈ H, if for every
h > 0, it holds that

∞∫
−∞

ehx dF (x) =∞.
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Asymptotic formulas for the left truncated moments 1201

• A d.f. F on R is said to be dominatedly varying, written as F ∈ D, if for any fixed
y ∈ (0, 1), it holds that

lim sup
x→∞

F (xy)

F (x)
<∞.

• A d.f. F on R is said to be consistently varying, written as F ∈ C, if

lim
y↑1

lim sup
x→∞

F (xy)

F (x)
= 1.

• A d.f. F on R is said to be regularly varying with index γ > 0, written as F ∈ Rγ ,
if for any y > 0, it holds that

lim
x→∞

F (xy)

F (x)
= y−γ .

It is well known (see, for instance, [5]) that

R :=
⋃
γ>0

Rγ ⊂ C ⊂ D ⊂ H.

The following two indices are important to the determination whether d.f. F belongs
to the aforementioned heavy-tailed distribution classes. The first index is the so-called
upper Matuszewska index (see, e.g., [2, Sect. 2], [9, 23]), defined as

J+
F = inf

y>1

{
− 1

log y
log lim inf

x→∞

F (xy)

F (x)

}
.

Another index, so-called L-index, is defined as

LF = lim
y↓1

lim inf
x→∞

F (xy)

F (x)
.

This index was used by [16, 19, 33], among others.
The definitions of the aforementioned heavy-tailed distribution classes imply that

F ∈ D ⇐⇒ J+
F <∞ ⇐⇒ LF > 0,

F ∈ C ⇐⇒ LF = 1,

F ∈ Rγ =⇒ LF = 1, J+
F = γ.

The classes R and D have been extensively used in real analysis and various areas
of probability (see, e.g., [2, 12, 25, 27]). The class C of consistently varying distributions
was introduced as a generalization of the class R in [8], and was named there as a class
of distributions with “intermediate regular variation”. The concept of consistent variation
has been used in various papers in the context of applied probability, such as queueing
systems, graph theory and ruin theory (see, e.g., [1, 3–7, 9, 13, 17, 22, 32]).
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We explain some notations which will be used throughout the paper. For two positive
functions f , g, we write:

f(x) .
x→∞

g(x) if lim sup
x→∞

f(x)

g(x)
6 1;

f(x) = O
(
g(x)

)
if lim sup

x→∞

f(x)

g(x)
<∞;

f(x) � g(x) if f(x) = O
(
g(x)

)
and

g(x) = O
(
f(x)

)
;

f(x) ∼
x→∞

g(x) if lim
x→∞

f(x)

g(x)
= 1.

In this paper, we suppose that the random variables ξ1, . . . , ξn are pairwise quasi-
asymptotically independent. This dependence structure was introduced in [7] and consid-
ered in [14,20,21,30,31] and other papers. In the definition below and elsewhere, we use
the standard notations: x+ := max{0, x}, x− := max{0,−x}.

Definition 1. Real-valued random variables ξ1, . . . , ξn with distributions supported on R
are called pairwise quasi-asymptotically independent (pQAI) if for all pairs of indices
k, l ∈ {1, 2, . . . , n}, k 6= l, it holds that

lim
x→∞

P(ξ+
k > x, ξ+

l > x)

P(ξ+
k > x) +P(ξ+

l > x)
= lim
x→∞

P(ξ+
k > x, ξ−l > x)

P(ξ+
k > x) +P(ξ+

l > x)
= 0.

The following statement is Theorem 3.1 in [7]. The statement provides the asymptotic
results for tail probability of sums of pQAI r.v.s having distributions from class C.

Theorem 1. Let {ξ1, . . . , ξn} be a collection of real-valued pQAI r.v.s such that Fξk ∈ C
for k ∈ {1, . . . , n}. Then

P
(
Sξn > x

)
∼

x→∞

n∑
k=1

F ξk(x).

The following assertion with slightly narrower dependence structure and r.v.s from
a wider class D is derived in Theorem 2.1 of [18].

Theorem 2. Let {ξ1, . . . , ξn} be a collection of real-valued r.v.s such that

lim
x→∞

sup
u>x

P
(
ξ+
k > x

∣∣ ξ+
l > u

)
= lim
x→∞

sup
u>x

P
(
ξ−k > x

∣∣ ξ+
l > u

)
= lim
x→∞

sup
u>x

P
(
ξ+
k > x

∣∣ ξ−l > u
)

= 0

for all pairs of indices k, l ∈ {1, 2, . . . , n}. In addition, suppose that Fξ1 ∈ D, F ξk(x) �
F ξ1(x), F ξ−

k
(x) = O(F ξ1(x)) for k ∈ {1, . . . , n}, and E |ξ1|m < ∞ for some
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m ∈ N0 := {0, 1, . . . , }. Then

n∑
k=1

LFξkE
(
ξmk 1{ξk>x}

)
.

x→∞
E
((
Sξn
)m

1{Sξn>x}
)

.
x→∞

n∑
k=1

1

LFξk
E
(
ξmk 1{ξk>x}

)
.

In this paper, we obtain asymptotic relationships for

E
((
Sξn
)α

1{Sξn>x}
)

(2)
and

E
((
Sξn − x

)+)α
(3)

for arbitrary power α ∈ [0,∞) and for r.v.s ξ1, . . . , ξn following wider, pQAI, depen-
dence structure. Asymptotic behavior of the left truncated moments of random sums was
considered in various fields of applied probability, including risk theory and random walks
[10,11,24]. In addition, quantity in (3) is closely related with the Haezendonck–Goovaerts
risk measure (see, for instance, [15, 18, 28] and [29]). To get the precise asymptotic
equivalence relationship, we consider r.v.s with d.f.s from class C. The main results on
the asymptotics of (2) and (3) are presented in Theorems 3 and 4 below.

The rest of the paper is organized as follows. In Section 2, we provide formulations
of the main results. In Section 3, we present the proofs of the asymptotic formulas for the
left truncated moments of Sξn. The last Section 4 deals with the examples illustrating the
obtained results.

2 Main results

The first assertion generalizes results of Theorem 1 which can be derived from theorem
below by supposing α = 0. In addition, for class C, theorem below gives an analogous
result to Theorem 2 for r.v.s ξ1, . . . , ξn following a wider dependence structure and for
a real-valued nonnegative moment order α.

Theorem 3. Let {ξ1, . . . , ξn} be a collection of real-valued pQAI r.v.s such that Fξk ∈ C
and E(ξ+k )

α <∞ for all k ∈ {1, . . . , n} and for some α > 0. Then

E
((
Sξn
)α

1{Sξn>x}
)
∼

x→∞

n∑
k=1

E
(
ξ αk 1{ξk>x}

)
. (4)

The second theorem shows that the asymptotic behaviour of the left truncated mo-
ments of sums depends on consistently varying distributed increments but does not depend
on asymptotically lighter increments.

Theorem 4. Let {ξ1, . . . , ξn} be a collection of real-valued r.v.s such that, for each k ∈
{1, . . . , n}, it holds that Fξk ∈ C or P(|ξk| > x) = o(F ξ1(x)). Suppose that Fξ1 ∈ C and
E(ξ+k )

α <∞ for all k ∈ {1, . . . , n} and some α > 0. Let I ⊆ {1, . . . , n} be a subset of
indices k such that Fξk ∈ C. If the subcollection {ξk, k ∈ I} consists of pQAI r.v.s, then,
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for each β ∈ [0, α],

E
((
Sξn
) β

1{Sξn>x}
)
∼

x→∞

∑
k∈I

E
(
ξ βk 1{ξk>x}

)
, (5)

and, for β ∈ (0, α], it holds that

E
((
Sξn − x

)+) β ∼
x→∞

∑
k∈I

E
((
ξk − x

)+) β
. (6)

We notice that the basic index in the formulation of Theorem 4, which is equal to one,
can be replaced by any index l ∈ {1, . . . , n}. In addition, it should be noted that depen-
dence of r.v.s ξk, k ∈ Ic, as well as mutual dependence between the sets {ξk, k ∈ I}
and {ξk, k ∈ Ic}, can be arbitrary.

3 Proofs of main results

We present two auxiliary lemmas before providing proofs of the main results.

Lemma 1. Let ξ be a real-valued r.v. such that E(ξ+)p < ∞ for some p > 0. Then, for
any x > 0, we have

E
(
ξp1{ξ>x}

)
= xpP(ξ > x) + p

∞∫
x

up−1P(ξ > u) du (7)

and

E
(
(ξ − x)+

)p
= p

∞∫
x

(u− x)p−1P(ξ > u) du. (8)

Proof. Both equalities of the lemma follow directly from the following well-known
formula

Eηp = p

∞∫
0

up−1P(η > u) du, (9)

provided that p > 0 and η is a nonnegative r.v. (see, for instance, [26, p. 208, Cor. 2]).
Namely, by supposing η = ξ 1{ξ>x}, from (9) we obtain

E
(
ξp 1{ξ>x}

)
= p

∞∫
0

up−1P(ξ 1{ξ>x} > u) du

= pP(ξ > x)

x∫
0

up−1 du+ p

∞∫
x

up−1P(ξ > u) du,

and equality (7) follows.

https://www.journals.vu.lt/nonlinear-analysis
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Similarly, by supposing η = (ξ − x)+, from (9) equality (8) holds because

E
(
(ξ − x)+

)p
= p

∞∫
0

up−1P
(
(ξ − x)+ > u

)
du

= p

∞∫
0

up−1
(
P
(
(ξ − x)+ > u, ξ > x

)
+P

(
(ξ − x)+ > u, ξ 6 x

))
du

= p

∞∫
0

up−1P(ξ > x+ u) du.

Lemma 2. Let ξ and η be two arbitrarily dependent r.v.s. If Fξ ∈ C and P(|η| > x) =
o(F ξ(x)), then

P
(
ξ + η > x

)
∼

x→∞
F ξ(x). (10)

Proof. Proof of the lemma is presented in [34] (see part (i) of Lemma 3.3).

Proof of Theorem 3. In the case α = 0, the assertion of Theorem 3 follows from Theo-
rem 1 immediately. Hence, further, we can suppose that α is positive. By Lemma 1, for
all x > 0, we have

E((Sξn)
α1{Sξn>x})∑n

k=1 E(ξ αk 1{ξk>x})

=
xαP(Sξn > x) + α

∫∞
x
uα−1P(Sξn > u) du∑n

k=1 x
αP(ξk > x) + α

∫∞
x
uα−1

∑n
k=1 P(ξk > u) du

6 max

{
P(Sξn > x)∑n
k=1 P(ξk > x)

,

∫∞
x
uα−1

P(Sξn>u)∑n
k=1 P(ξk>u)

∑n
k=1 P(ξk > u) du∫∞

x
uα−1

∑n
k=1 P(ξk > u) du

}
6 max

{
P(Sξn > x)∑n
k=1 F ξk(x)

, sup
u>x

P(Sξn > u)∑n
k=1 F ξk(u)

}
due to right inequality in min-max inequality

min

{
a1
b1
, . . . ,

ar
br

}
6
a1 + · · ·+ ar
b1 + · · ·+ br

6 max

{
a1
b1
, . . . ,

ar
br

}
, (11)

provided that ai > 0 and bi > 0 for i ∈ {1, . . . , r}.
By Theorem 1 we get

lim sup
x→∞

E((Sξn)
α1{Sξn>x})∑n

k=1 E(ξ αk 1{ξk>x})
6 lim sup

x→∞
sup
u>x

P(Sξn > u)∑n
k=1 F ξk(u)

= 1. (12)
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Similarly, using the left inequality in (11), we obtain

lim inf
x→∞

E((Sξn)
α1{Sξn>x})∑n

k=1 E(ξ αk 1{ξk>x})
> lim inf

x→∞
inf
u>x

P(Sξn > u)∑n
k=1 F ξk(u)

= 1. (13)

The derived estimates (12) and (13) complete the proof of Theorem 3.

Proof of Theorem 4. If I = {1, . . . , n}, then relation (5) follows immediately from The-
orem 3. Hence, let us suppose that Ic 6= ∅ and denote

S(1)
n =

∑
k∈I

ξk, S(2)
n =

∑
k∈Ic

ξk.

Summands in S(1)
n are pQAI r.v.s with consistently varying d.f.s. Hence, Theorem 1

implies that
P
(
S(1)
n > x

)
∼

x→∞

∑
k∈I

F ξk(x). (14)

This asymptotic relation and inequality (11) imply that d.f. F
S

(1)
n

(x) = P(S
(1)
n 6 x)

belongs to the class C due to the following estimate

lim sup
x→∞

P(S
(1)
n > yx)

P(S
(1)
n > x)

= lim sup
x→∞

∑
k∈I F ξk(yx)∑
k∈I F ξk(x)

6 max
k∈I

{
lim sup
x→∞

F ξk(yx)

F ξk(x)

}
,

provided that y ∈ (0, 1).
In addition, each r.v. ξk with index k∈Ic satisfies condition P(|ξk|>x)=o(F ξ1(x))

according to requirements of the theorem. The fact that Fξ1 ∈ C ⊂ D and asymptotic
equality (14) imply that

P
(∣∣S(2)

n

∣∣ > x
)
= o
(
P
(
S(1)
n > x

))
(15)

because

P(|S(2)
n | > x)

P(S
(1)
n > x)

6
P(
⋃
k∈Ic{|ξk| >

x
r })∑

k∈I F ξk(x)

∑
k∈I F ξk(x)

P(S
(1)
n > x)

6

∑
k∈Ic P(|ξk| > x

r )

F ξ1(
x
r )

F ξ1(
x
r )

F ξ1(x)

∑
k∈I F ξk(x)

P(S
(1)
n > x)

,

where r = |Ic| 6 n− 1.
Consequently, Lemma 2 and asymptotic relations (14), (15) imply that

P
(
Sξn > x

)
∼

x→∞
P
(
S(1)
n > x

)
∼

x→∞

∑
k∈I

F ξk(x). (16)

Hence, the first relation (5) of Theorem 4 holds in the case β = 0. If β ∈ (0, α],
then using the first equality of Lemma 1 and estimates of (11), similarly as in the proof of

https://www.journals.vu.lt/nonlinear-analysis
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Theorem 3, we derive that

lim sup
x→∞

E((Sξn)
β1{Sξn>x})∑

k∈I E(ξ βk 1{ξk>x})
6 lim sup

x→∞
sup
u>x

P(Sξn > u)∑
k∈I F ξk(u)

,

lim inf
x→∞

E((Sξn)
β1{Sξn>x})∑

k∈I E(ξ βk 1{ξk>x})
> lim inf

x→∞
inf
u>x

P(Sξn > u)∑
k∈I F ξk(u)

.

Relation (5) of Theorem 4 for β ∈ (0, α] follows now from (16).
The second asymptotic relation (6) can be obtained in a similar way by using the

second equality of Lemma 1, relation (16) and estimate (11). Theorem 4 is proved.

4 Examples

In this section, we provide two examples illustrating our main results.

Example 1. Let r.v.s ξ1, . . . , ξn satisfy the assumptions of Theorem 3. Suppose that for
each k, r.v. ξk is a copy of r.v. ξ := (1+U)2G , where U , G are independent, U is uniformly
distributed on interval [0, 1], and G is geometrically distributed with parameter q ∈ (0, 1),
i.e., P(G = l) = (1− q)ql, l ∈ N0. We derive the asymptotic formulas for

E
((
Sξn
)α

1{Sξn>x}
)

and E
((
Sξn − x

)+)α
in the case of 0 6 α < log2(1/q), where Sξn = ξ1 + · · ·+ ξn as usual.

Due to considerations on pages 122–123 of [5], Fξ ∈ C \ R. In addition, for x > 1,
we have

F ξ(x) =

∞∑
l=0

P

(
U > x

2l
− 1

)
P(G = l)

=
∑

log2 x−1<l6log2 x

(
2− x

2l

)
(1− q)ql +

∑
l>log2 x

(1− q)ql

=

(
2− x

2blog2 xc

)
(1− q)qblog2 xc + qblog2 xc+1

= qlog2 x
((
2− 2〈log2 x〉

)
(1− q)q−〈log2 x〉 + q1−〈log2 x〉

)
= xlog2 q

(
q−〈log2 x〉 + (1− q)q−〈log2 x〉

(
1− 2〈log2 x〉

))
= xlog2 qf

(
〈log2 x〉

)
,

where symbol bac denotes the integer part of a real number a, symbol 〈a〉 denotes the
fractional part of a, and function f is defined by the following equality

f(u) = q−u + (1− q)q−u
(
1− 2u

)
, 0 6 u < 1.

For the function f , we have

f(0) = f(1− 0) = 1; f(u) > 1, u ∈ [0, 1);

Nonlinear Anal. Model. Control, 26(6):1200–1212, 2021
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f(u) 6 f(umax) =
2− q

1− log2 q
qlog2((1−q)(1−1/ log2 q)/(2−q)) := Cq;

umax = log2
(2− q) log 1

q

(1− q) log 2
q

∈ (0, 1).

Consequently, for x > 1,

x− log2(1/q) 6 F ξ(x) 6 Cq x
− log2(1/q),

E
(
ξα1{ξ>x}

)
>

log2
1
q

log2
1
q − α

xα−log2(1/q), α ∈
[
0, log2

1

q

)
,

E
(
ξα1{ξ>x}

)
6

Cq log2
1
q

log2
1
q − α

xα−log2(1/q), α ∈
[
0, log2

1

q

)
,

E
(
(ξ − x)+

)α
6 αCq

∞∫
x

(u− x)α−1ulog2 q du

= αCqB

(
α, log2

1

q
− α

)
xα−log2(1/q), α ∈

(
0, log2

1

q

)
,

E
(
(ξ − x)+

)α
> αB

(
α, log2

1

q
− α

)
xα−log2(1/q), α ∈

(
0, log2

1

q

)
,

where B denotes the Beta function

B(a, b) =

1∫
0

ta−1(1− t)b−1 dt, a > 0, b > 0.

These relations and theorems 3, 4 imply that

n log2
1
q

log2
1
q − α

xα−log2(1/q) .
x→∞

E
((
Sξn
)α

1{Sξn>x}
)

.
x→∞

nCq log2
1
q

log2
1
q − α

xα−log2(1/q)

for n ∈ N, q ∈ (0, 1) and α ∈ [0, log2(1/q)) and

E
((
Sξn − x

)+)α
.

x→∞
nαCqB

(
α, log2

1

q
− α

)
xα−log2(1/q),

E
((
Sξn − x

)+)α
&

x→∞
nαB

(
α, log2

1

q
− α

)
xα−log2(1/q)

for all n ∈ N, q ∈ (0, 1) and α ∈ (0, log2(1/q)).
The derived asymptotic formulas imply the following particular cases:

n

log2
1
q − 1

x1−log2(1/q) .
x→∞

E
((
Sξn − x

)+)
.

x→∞

nCq

log2
1
q − 1

x1−log2(1/q)

if q ∈ (0, 1/2);

https://www.journals.vu.lt/nonlinear-analysis
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E
((
Sξn − x

)+)2
&

x→∞

2n

(log2
1
q − 1)(log2

1
q − 2)

x2−log2(1/q),

E
((
Sξn − x

)+)2
.

x→∞

2nCq

(log2
1
q − 1)(log2

1
q − 2)

x2−log2(1/q)

if q ∈ (0, 1/4).

Example 2. Let r.v.s ξ1, ξ2, . . . , ξn, n > 2, be pQAI. Suppose that ξ1 is distributed
according to the following tail function

F ξ1(x) = exp
{
−
⌊
log(1 + x)

⌋
+
(
log(1 + x)−

⌊
log(1 + x)

⌋)1/2}
, x > 0.

For other indices k ∈ {2, . . . , n}, let us suppose that

F ξk(x) = 1{x<0} + e−x/k1{x>0}.

Like in Example 1, we write asymptotic formulas for the left truncated moments

E
((
Sξn
)α

1{Sξn>x}
)

and E
((
Sξn − x

)+)α
in the case of suitable α.

It is obvious that P(|ξk| > x) = o(F ξ1(x)) for k ∈ {2, . . . , n}, and, further, Fξ1 ∈
C \ R due to results of [9] (see page 87).

Therefore, Theorem 4 implies that

E
((
Sξn
)α
1{Sξn>x}

)
∼

x→∞
E
(
ξα1 1{ξ1>x}

)
, α ∈ [0, 1),

and
E
((
Sξn − x

)+)α ∼
x→∞

E
((
ξ1 − x

)+)α
, α ∈ (0, 1)

Consequently,

P
(
Sξn > x

)
∼

x→∞
exp
{
−
⌊
log(1 + x)

⌋
+
(
log(1 + x)−

⌊
log(1 + x)

⌋)1/2}
,

P
(
Sξn > en − 1

)
∼

n→∞

1

en
,

and, for α ∈ (0, 1),

1

1− α
xα−1 .

x→∞
E
((
Sξn
)α
1{Sξn>x}

)
.

x→∞

e2

1− α
xα−1,

απ

sin(απ)
xα−1 .

x→∞
E
((
Sξn − x

)+)α
.

x→∞

απe2

sin(απ)
xα−1.
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