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Relative controllability of impulsive multi-delay differential systems 71

1 Introduction

In many motion processes of nature, science, and technology, the state of motion may
be changed or interfered suddenly in a very short time, and then the system state will be
changed. If the state change time of the disturbed system is very short, it can be regarded
as instantaneous, and then this kind of instantaneous sudden change phenomenon is called
pulse phenomenon. Time-delay systems are systems with aftereffect or dead time, genetic
systems, equations with deviating arguments or differential difference equations. They
are used to model various phenomena from population systems, viscoelasticity, biolog-
ical sciences, chemistry, economics, mechanics, physics, physiology, and engineering
sciences. In the real world, impulsive phenomena and time-delay effects are intertwined
and interact with each other. Impulse technology is widely used in the state control of
time-delay systems and has applications in military and civil fields.

The delayed exponential matrix functions approach was presented in [6, 10] for dis-
crete and continuous delay systems with permutable matrices, respectively. This new
approach has been used in the stability of solutions and control problems for linear and
nonlinear delay systems (see [1-5,7-9, 11, 13-20]).

Medved’ and PospiSil extended the idea of deriving the representation of delay differ-
ential equations in [6, 10] to multi-delay differential equations with linear parts defined by
pairwise permutable matrices in [16] and obtained sufficient conditions for the asymptotic
stability of solutions. You and Wang [22, 23] extended the multiple delayed exponential
matrix function in [10] to the impulsive case and used it to discuss the representation
and stability of solutions in [24]. However, there are still very few results for the relative
controllability of impulsive multi-delay differential systems. In this paper, we study the
following impulsive multi-delay differential systems:

V(t) = Av(t) + Zn: Buv(t — ) + f(t,v(t) + Cu(t), telJ t¢ T,

Av(t;) = l/(f;r) — V(t-*) =Div(t;), t, €T, M

2

v(t)=y(t), —9<t<0, 9:=max{¥,...,0,},

where ¥,,, > 0, A, By,,, C, D; are constant N x N matrices, AB,, = B, A, B;B,, =
B, B;j, AD; = D;A, and B,,D; = D;B,, foreachm,j = 1,2,...,n,i=1,2,...,
Y € Ch = CH[—9,0],RN), and v(t) € RY. Now f € C(J x RN, RYN), J := [0, 7],
71 >0,0 <t <tg <- - <t < 7, and the control function wu(-) takes values from
L3(J,RN). Let v(t]") = lim._,o+ v(t; +€) and v(¢; ) = v/(t;) represent respectively the
right and left limits of v(¢) at t = ¢;.

First, we investigate the relative controllability of the linear case of (1), i.e., f =
0 € RY using the impulsive multi-delayed matrix exponential in (2). Next, we construct
a suitable control function for (1), which means that we give a condition (necessary
and sufficient) for u € L%(J,RY) to lead the solution of (1) with f = 0 to v,, at the
time 71. We apply Krasnoselskii’s fixed point theorem to show that (1) is also relatively
controllable under suitable conditions.
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The rest of this paper is organized as follows. In Section 2, we give some notations,
concepts, and important lemmas. In Section 3, we establish relative controllability results
for linear and semilinear systems, respectively. Examples are given to illustrate our main
results in the final section.

2 Preliminaries

Let RY be the N-dimensional Euclid space with the vector norm ||-||, and RV*¥ be
the N x N matrix space with real value elements. For v € RY and A € RV*V, we
introduce the vector infinite-norm ||v|| = maxj;<n |v;| and the matrix infinite-norm
Al = maxi<icn v
vector v and matrix A. Let L(R") be the space of bounded linear operators in R™.
Denote by C(J,RY) the Banach space of vector-value bounded continuous functions
from J — RY endowed with the norm ||v||c = sup,¢, ||v(¢)]|. In addition, |[¢||c =
supye(—y,0) 1¥(t)[|. We introduce a space C'(RT,RY) = {v € C(R",RY): v/ €
C(RT,RM)}. Denote PC(J,RY) := {v : J — RN: v € C((ti,tis1],RY), there
exist v(t; ) and v(t]") with v(t;) = v(t;) forany i = 1,2,...} and PC'(J,RYN) :=
{v:J—=RN: v e PC(J,RV)}. Let X1, X3 be two Banach spaces, and Ly( X1, X2)
denotes the space of all bounded linear operators from X; to X». Next, L?(J, X5) denotes
the Banach space of functions y : J — Xo, which are Bochner integrable normed by
9l v (g, x,) for some 1 < p < oc.
We recall the notation of the multi-delayed matrix exponential given by [16]:

where v; and a;; are the elements of the

0, t< —’lgj,

Xj,1<t + ’l%), _ﬁj <t <O,

gBlA-n,Bjt Xj 1(t+'l9 -I-B fot Xj 1 Sl)Xj 1(81)(3181 + -
91,

by . )
+Bj f(z 19, f(z 19, f(z 1)9; Xj_1(t —s1)

x T2 1X 1(8i — sit1)Xj—1(s. — (z = 1)9;)ds, - - - dsq,
(z—1)9; <t<zv;, z2=1,2,...,

B 9; . .
where X;_1(t) = 51911;_"19711 107951 5 — 2 n,and © is the zero matrix.

From [24] we know Y(+,-) : R x R — RVN>*N and

V(t,s) =e DX (t, s+0), t>s, (3)
where
X(t,s)=EY f e N by Sff o Bult=0=t) (4. s),
s—9<t;<t
Em =e 4B, m=1,...,n.
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Next, the solution of (1) has the form

v(t) = Y(t, =0)ip(=9)

0 —m
+éy<t,s>[w<) Ag(s)] mlem{WS” J¥(s)ds
i;wyts () + Culs) +]y (5)) + Cu(s)] ds
v 7—;>w<—6>
0 n I
+éy<t,s>[w<) ;Bméyt s+ Im)i(s)d
+ /t V(t,5)[f(s,v(s)) + Cu(s)] ds. @)
0

Lemma 1. (See [16, Lemma 13].) If | B;|| < bie®¥:, b; e RT, i =1,--- | n, then

Bi,...;Bn(t—="04)

15:+5VUn

Lottt =y e R,

le

Lemma 2. Suppose that Y Em” < ame®™m q,, € RT,

m=1,...,n. Foranyt > s, we have
el < (T (Dl e, ®
S—'l9<t]'<t
V(. s)| < ( IT D+ 1))e(|A|+a)(t—s), ©
s<t;<t

=1+ + Qp.

Proof. Without loss of generality, we suppose that t; < s — ¥ < t;41 and t;4; < t <
tivi+1, 4,0 =0,1,2 ... . We use mathematical induction.
For ! = 0, by Lemma 1,

HX(t S H Hg ..... B (t—s H <e(°”+ oy ) (t+9,—s) <ea(t+19 )
For [ = 1, using Lemma 1, we have

el < e e K )

..........

<e a(t+9— _|_ ||Di+1||e it +an)(t V+0n—tit1) ga(tit1+9—s)

= X7 [ D ) < ([ Dia | + 1)),
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For | = k, we suppose that

ol ( TL oyl Joeso.

8—19<tj <t

For [ = k + 1, using Lemma 1, we have

|l < e+ S D x|
s§— 79<tj<f
i+k+1 Jj—1
gea(t+19—s)+ Z ||Dj||eot(t—19+79n—tj)< H (||DZ||+1>>eOé(tj+'l9—S)
j=i+1 z=i+1

i+k+1
<1+ > Dyl H IDz||+1)>e°‘(t+”95)

Jj=i+1 z=i+1
i+k+1
=< 11 <Dj||+1)>e““”‘”=( I1 <||Dj||+1)>ea<t+ﬂ—s>.
j=i+1 s—9<t;<t

Thus, we obtain (5).
Finally, using (3) and (5) via ||e”?|| < ell4ll*, one derives (6) immediately. The proof
is finished. O

Lemma 3 [Krasnoselskii’s fixed point theorem]. (See [12].) Let BB be a bounded closed
and convex subset of Banach space X, and let Fy, F» be maps of B into X such that
Fix + Foy € B for every pair x,y € B. If Fy is a contraction and F5 is compact and
continuous, then the equation Fyx + Fox = x has a solution on B.

Theorem 1 [P C-type Ascoli-Arzela theorem]. (See [21, Thm.2.1].) Let 2 C PC(J,X),
where X is a Banach space. Then 2 is a relatively compact subset of PC'(J, X) if:

(i) £ is a uniformly bounded subset of PC(J, X);
(il) 2 is equicontinuous in (t;,t;11),1=0,1,2 ... h (herety = 0and ty+1 = 11);
(i) 2(t) ={v(t): ve 2,t € J\ T}, 20t]) = {v(t]): v € 2} and 2(t]) =
{v(t;): v € 2} are relatively compact subsets of X.

3 Relative controllability
Definition 1. (See [11, Def. 4].) System (1) is called relatively controllable if for an
arbitrary initial vector function 1) € C1([—4, 0], RY), the final state of the vector v,, € RY

and time 7, there exists a control u € L?(.J,RY) such that system (1) has a solution
v € CY([-9,0] U J,RY) that satisfies the boundary conditions v and v(71) = v, .

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

Relative controllability of impulsive multi-delay differential systems 75

3.1 Linear systems

Let f(t,v(t)) = 0, t € J. System (1) reduces to the following linear impulsive multi-
delay controlled system:

—i—ZBmu m)+Cult), teld t¢ T,

AV( 1) = Dzl/( 7,)7 t; € y, (7

v(t) = 9(t), —9<t<0

The solution has a form
0

v(t) = V(t, —0)b(—0) + / V(t, 5)[1'(s) — Agh(s)] ds

-
— I

" t
—ZBm/ Y(t, s+ Vm ds+/ytsC’u
m= -9 0

Similar to the classical Gramian matrix, we consider the impulsive multi-delay Gramian
matrix as follows:

Wy, 9,10,71] = /y(ﬁ,s)CC'TyT(ﬁ,s) ds.

Theorem 2. System (7) is relatively controllable if and only if Wy,
gular:

9., 10, T1] is nonsin-

.....

Proof. First, we verify the sufficiency. Since Wy, . g, [0, 71] is nonsingular, its inverse
Wa,....0,[0,71] is well defined. For any final state v, € R, one can select a control
function as follows:

() CTy (Tlv )Wq;:...,ﬂn[ole}ny

where
0
n = vy — (11, =0)p(=10) - /3)(717 s)[¢'(s) — Ay(s)] ds
-9
+ Z B, / y(Tl, s+ 19m)¢(5) ds.
m=1 ~9
Then
v(r) = (1, O / V(r1, 8) [/ (s) — Au(s)] ds
n —Im T1
- > Bm / V71, 8+ Um)i(s) der/)/(Tl,s)Cu(s) ds
m=1 9 0

Nonlinear Anal. Model. Control, 27(1):70-90, 2022
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- Bn / V(11, 5+ D )¥(s) ds

m=1 s
T1
+ /y(n, s)CCTYT (1, S)Wﬂ_lljmﬁn [0, 71]nds
0
=

1.

Next, by contradiction we prove the necessity. We assume that Wy, 4, [0,71] is
singular matrix, i.e., there exists at least one nonzero state v € RY such that

7TWy, 9,[0,7]7 = 0.
Then one obtains

0="0"Wy,,. 0.07]0
:/aTy(n,s)ccTyT(n,s)ﬂds:/HﬂTJ’(ﬁ’S)CHQdS’
0 0

which implies 7T Y (71, s)C = 0T forall s € J.
Since system (7) is relatively controllable, according to Definition 1, there exists a
control u; () that drives the initial state to zero at 71, i.e.,
0

v(r1) = V1, —9)b(—9) + / Y(r, 5)[0/(s) — Av(s)] ds

-9
" o

_ Z B, / V(71, s+ Im)(s) ds—!—/y(Tl,s)Cul(s) ds
m=1 9 0

=0. ®)
Similarly, there also exists a control uy(¢) that drives the initial state to © (nonzero) at
T1, i.e.,

0

() = Yir = 0)6(-0)+ [ (r1,9)[w/(s) - Auv(s)] ds
2
n _19771 T1
_ Z By / V(r1, s+ 9m)(s)ds + /y(Tl,S)C'LLQ(S) ds
m=1 9 0
=D &)

https://www.journals.vu.lt/nonlinear-analysis
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Then from (8) and (9) we have
T1
V= /y(ﬁ,S)C[uQ(s) — uy(s)] ds. (10)
0
Multiplying both sides of (10) by 7T, we obtain

T1

7Ty = /DTy(n, 5)C uz(s) —ui(s)] ds = 0.

0

Thus, 7 = 0, which conflicts with 7 # 0. Thus, the impulsive multi-delay Gramian
matrix Wy, ., [0, 71] is nonsingular. The proof is complete. O

3.2 Semilinear systems

We assume the following:

(H1) The operator W : L*(J,RY) — RY defined by Wu = [ V(71 s)Cu(s)ds
has an inverse operator W !, which takes values in L?(.J,RY)/ker W. Then
we set M = [W |1, r¥ 12(7rN)/ ker w)- From [20, Remark 3.3] we know
M = ([Wy,. o, 10, 7] )"

(H2) The function f : J X RY — R¥ is continuous, and there exists a constant ¢ > 1
and Ls(-) € L(J,R") such that

[£(v () = FCoO) < Ly Ofp() = v()

Theorem 3. Suppose that (H1) and (H2) are satisfied. Then system (1) is relatively
controllable, provided that

. vuveRN.

al|ClIM  (a
My |1+ —— 2 (elAl+e)m _ 1) | <1, (11)
AT +a )
where a = TI'_y (1D, + 1), and My = al(1/(|A]| + a)p)(e(IAI+owm — 1)1/,
IL¢llpacrr+y, 1/p+1/g=1p,qg>1
Proof. Using hypothesis (H1), for arbitrary v(-) € PC and ¢ € J, we define the control
function u, (t) by

u(t) =W ( =Y =0)(=0) — [ Vi s)[0'(s) ~ Av(s)] ds
—9

m

-9

n
+ Y Bnm /
m=1 9

V(r1, s +9m)0(s)ds — /y(n, s)f(s, V(s)) ds) (t). (12)
0

Nonlinear Anal. Model. Control, 27(1):70-90, 2022
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We show that, using this control, the operator F : PC' — PC, defined by
(Fr)(t) = Y(t, =0)p(=9)

4 / V(t,5)[6/(s) — Av(s)] ds — > By, / V(t, 5+ un)ib(s) ds
9 m=1 )

has a fixed point v, which is a mild solution of (1).

We check that (Fv)(71) = v,,, which means that u,, steers system (1) from (Fv)(0)
to v, in finite time 7. This implies that system (1) is relatively controllable on J.

For each positive number r, let B, = {v € PC: ||v|pc < r} (a bounded, closed,
and convex set of PC). Set Ry = sup,¢; || (¢, 0)].

We divide the proof into three steps.

Step 1. We claim that there exists a positive number r such that F(B,.) C B,..
From (H2) and Holder’s inequality we obtain that

t t ip , t 1/q
/e(|\A|\+a)(t—s)Lf(s) ds < (/ep(|A|+a)(t—s) ds) </L‘J{(s) ds)

0 0 0

1 | Al| Lot 1/p
< [arras @ - 0] s,

and

t ¢
R
(IAll+e) =)l £(5. 0)||ds < R / (lAl+a)(t=s) g = — 4 (oUAl+e)t _ 4
e s, s < e s e .
b/ H ( )H f / 4] a( )

From (12), (H1) and (H2) we have

luw @) < IW M|, @Y, L2(RY) ) Ker W) <||Vn|| + |V (r1, =9)|| || (=) ||

+ [y )v/6s) - Avs) as

-9

n ~Im
# DBl [ ¥, 400 (o) ds
m=1 o

+f ||y<n,s>|||>f<s,u<s>)||ds>
0

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

Relative controllability of impulsive multi-delay differential systems

h
< M| |l + (H (HD]-|| + 1)>e(|A|+a)(n+19)Hw(_ﬁ)H
=1
h ’ 0
+( TT (o1 +1)> /e(nAHm)(TH)Hw,(S) -
Jj=1 s

T1

h
F(TL02 ) [t a0l o

j=1 0
0

<M l“yﬁn + qellAll+a) (1 +9) ”w(_ﬁ)" + /ae(|“4”+“)(“_5)Hw’(s)—A

)
. -
+3 allBal /“e“A“ﬂ“ﬁ‘ﬁm**wanhh
m=1 9
1 (1Al+) e
_|_ «@)pT1 1
GMM”+Mp@ ﬂ |

ally . (lAl+a)r
T 11
||A|| + a( )

< Mlv | + MM, + MMy pe,

where

s)|| ds

|
(

+<ﬁ 1Dl + 1 )Z”B ||/ SIAI+)(1=0m=3) | 5(5) | dis
(

gl acrreyllvllpe

0
My = aellAIH)(T49) 1, _g)|| 4 /ae(||A||+a)(Tl_s)H¢,(s) B
—9

+ZGHB ||/ AT+ 1=0m=9) |l(s)[| ds +

From (H1) and (H2) we have

0
[Fnll < =+ [ 1]l -
—9

n ~Im
+ > 1Bl / |V, s+ 9m)]|||(s)] ds
m=1 9

Nonlinear Anal. Model. Control, 27(1):70-90, 2022
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+ / [Vt sl (s, s+ [ e C s (5)] s

h
(HIDWH>'“W“MW I

j=1
0

h
+ <H D +1 ) /e(“A“JFO‘)(t_S)Hw/(s) — Ay(s)| ds
j=1 9
h n —Om
+ <H 1D;1l +1) ) > 1Bul / ellAIFE=0m=2) 4 (5)[| ds
J=1 m=1 9
e [(TL 0210 Je00 - ] + .0
0 s<t;<t

(
ol

X (M||vs || + MMy + MM;|v| pc) ds

10511+ 1) Je4Ie=)

s<t;<t

h
< My + Ma|lv|pe + (H (D511 + 1)) 1]l

Jj=1

i
% (M|[vr, || + MM, + MMs|v|| pc) /e JAll+a) (t—5) g
0

<M,y

1+ (ﬁ (1D; + 1)) ”Cﬂ”f (eUlAl+a): _ 1)1

Jj=1

h
oM .
(HDM->&&_(M”” 1) o |

h
oM .
+%<H|DWH>”” (414 _ 1) |1y e

Al +
alClIM , (a alClIM , a
< M [1+ AlCIM arsarm _ )] 4 ACUM qarearm _qyp,,
[AT+a )| * TaT+al )
allClIM  (a
M [1 n oI+ _ 1Y),
| Al +Oé( )
=r

)

https://www.journals.vu.lt/nonlinear-analysis
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where

HAIHOL LA+

M1+ aHCHM(e(”A”Jra)T )] + aHCHM(e(HAHJra)n —D)lvn |l

— Ms[1+ a‘ll HHM( (lAl+e)m — 1)]

Hence, we obtain F(B,.) C B, for such an .
Now, we define operators F; and 3 on B, as

0

(Fav)(t) = Y(t, —0)(~0) + / V(t, 5) [ (s) — Av(s)] ds
)

-0
n m

¢

— Z B, / V(t, s+ Om)(s)ds + /J}(t,s)C’u,,(s) ds,
m=1 et 0

and

t
(Forv)(t /y v(s))ds, te.J.
0

Step 2. We claim that F7 is a contraction mapping.
Let v,y € B,.. From (H1) and (H2), for each ¢t € J, we have

[ (£) = uq (1)

<01 [ Il (o) = o)

< f( I
s<t;<T1

h 1
(H 1D;l| +1) )/e("“”“‘)(“s)Lf(S) ds |lv —vlrc
= 0

1
([[A]l + a)p
< MMs||v —vllpc-

1/p
(e(l4l+awms 1)} T T .

gMa[

Thus,

[(Fi)(&) = (Fimn @]
< / [V ) [ICIHw (5) =y (5)] ds
0

Nonlinear Anal. Model. Control, 27(1):70-90, 2022
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h !

< (H (11D + 1)) /e(HAH-i-a)(ﬁ—s) ds ||C|MMs|v =~ pe
j=1 0

o a||C||M M,

([[Al[+a) 71
S TAlta ©

—Dllv —=llpe,

so we obtain

al|C[|M M

(lAl+a)m _ q
Al +a © )

[Fiv — Fiyllpe < Tllv =Allpc, T=

From (11) we have T < 1, so JF; is a contraction.

Step 3. We claim that F5 : B, — PC'is a compact and continuous operator.
Let v, € B, with v, — v in B,. Using (H2), we have f(s,v,(s)) — f(s,v(s)) in
PC, and thus, using the Lebesgue dominated convergence theorem, we have

||(~7:2Vn) .7:21/ ||

& [ 1P in ) ~ ot

h t
<(Hmmwuﬂ/éW“W“W@%@%ﬁ@meh

—0 asn —0,

which implies that F is continuous on B,..
To check the compactness of F5 : B, — PC, we prove that F»(13,) is equicontinuous
and uniformly bounded. In fact, forany v € B,., tp <t <t+d <tx11,k=0,1,... A,

(Fav)(t +d) — (F2v)(t)

t+d ¢
= /y(t+d7s)f(s,u(s)) ds—/y(t, s)f(s,v(s))ds
0 0

t+d

= /y(t+d, s)f(s,l/(s)) ds

t
+ [ A (X (4 d, s+ 9) — X(E, s+ 9)) f(s,v(5)) ds

+ [ (A AT X, s+ 0)f (s, w(5)) ds.

S O~
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Let
t+d

Si0) = [ Va5 (s0() ds
So(t) = [ AT (X (t+d, s +9) — X(t, s +9)) f(s,v(s)) ds,

S3(t) = (eA(ter*S) - eA(t*S))X(t, s+9)f(s,v(s))ds

O O O—

(eAd —1)Y(t,s)f (s, v(s)) ds,

where [ is the identity matrix.
From above we see that

|(Fa)( + d) = (Far) (O] < (|51 + [|S20)] + (|53
Now, we only need to check [|.S;(¢)|| = 0asd — 0,7 = 1,2, 3. Clearly,

t+d
sl < [ I+ 9l (sv)]

t
t+d

< /( H (HDJ” + 1))e(|A|+a)(t+d—s) (Lf(s)Hy(s)H + Hf(s?())H) ds
t S<t]'<t+d
< [qmreapet -] R TAm—
LA+ a)p floarnllvlpe
_ Ry aalsera
T )

—0 asd—0,

I52(2)

< / [ACH=I || Xt + d, 5 +9) — X(t, 5+ 9)||[| £ (5, v())]|| ds

<@Mn/‘

n Z D 1,...;;5’n(t+d—19—tj) B gﬁl,.i.ﬁn(t—ﬁ—tj))x(tj’ s +19)H

-----------
s<t;<t

< (Ly(s)|[v(s)|| + || £(s,0)]|) ds

31 ,,,, B (t+d 9—s) gél ,,,, B, (t—9—s)
91,0..,0

----- n
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77777 n

t
< e”A”Tl{/HSBl ,,,,  (t+d—0—s) —Sfl"“’f"(t*ﬁfs)
Tyeey
0
< [(Ls@ )] +[1£(s,0)]]) ds

+Z”D ”Hgfl ..... Bn(t-'rd V—t;) _5517...,19&@ I—t; )H

Tyeees Lyeers n

t
X </||X(tj, s+19)||||Lf(s)Hu(s)Hds+/||X(tj, 5+19)||||f(3,0)||d5>}
0
B N 1/p
< e”A”ﬁ{llLﬂLq(m ( / A Sﬁiizig;ﬁ““‘“‘s’ll’”ds>
+Rf/HgB17,-:;,Bn n(t+d—0—s) 85117t....;;9B;n(t—19—s)Hds

—i—ZHD ||H51i1”‘::;,3 o (t4d—9—t;) gﬁl’i::;j&én(tfﬁftj)u

n

t

1/p t
. [Lfnw,]m{ [t swwds) ey [0, sw)Hds] }
0

0

By the continuity of & 1"";93 ") we have |S2]| = 0 as d — 0. Also,

,,,,,

I1S5(0)] </HeAd—1’||||3’(f»S)||||f(SvV(S>)||dS

<t -1 / (I
s<t;<t

x (Ly(s)||v(s)]| + [|£(s,0)]|) ds

1 1/p
< ||eAd o IHa<|:(||A||+a)p (e(HAH-i-a)Pn _ 1):| HLf”L(I(J,]R‘*')T
Ry

_ W (eUAlHe)T g d )
|\A||+oz(e ))%O asd — 0

(1011 + 1)>e<|A|+a><t—s>

+

As a result, we immediately obtain that
|(Fov)(t+d) — (Fov)(t)|| =0 asd—0

for all v € B,.. Therefore, F2(B,) is equicontinuous in PC.
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Next, repeating the above computations, we have

[[(Fa)(®)]]
< [1es)l s v as

t

</( 11 (IIDjl+1)>e(|A|+a>(t—s>(Lf(8)Hv(s)H+Hf(s70)H)ds

0 S<t]'<t

1 (lAl+a) v
| 0] s

ally o (Al+an
L —1).
I )

Hence, F3(B,) is uniformly bounded. From Theorem 1, F5 (B, ) is relatively compact
in PC. Thus, F5 : B, — PC'is a compact and continuous operator.

Furthermore, using Theorem 3, F has a fixed point v on B,.. Obviously, v is a solution
of system (1) satisfying v(71) = v,,. The boundary condition v(t) = ¥(t), -9 <t <0
holds from (4). The proof is complete. O

4 Numerical examples

Example 1. Consider the following semilinear impulsive multi-delay differential con-
trolled system:

2
)+ > Buv(t —9n)

—|—f(t,1/(t)_) +Cu(t), teJ t¢ T,

avie) = (5 gy) ). e

v(t) = (3,4, -03<t<0,

13)

and set J = [0,0.6], ; = 0.6. ¢¥; = 0.3, ¥ = 0.2. Then ¢ = max{d;,¥2} = 0.3 and
7 =1{0.35,0.7,1.05,... },

a=(75) m= (V) (V%)
c=(5 5). o) = ( 0%222225?
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Note A, B,,,, D; are mutually permutable form = 1,2,7 =1,2,3,..., and

0.6
Wo.3.02[0,0.6] = /y(O.G,S)CCTyT(O.&s) ds
0
0.6
= /eA(O'G_S)X(O.G, s+ 0.3)CCTXT(0.6,s + 0.3)ed 0-6-9) g5
0
= Wi+ Wa + W3 + Wy + W5 + W,
where
0.05 ~9
W, = / eA(0:6=9) [I + B1(0.2—s) 4+ By(0.3 — s) + %(0.1 —5)?
0

Dy [I + B5(0.05 — 3)]] cct [1 + BT (0.2 —s) 4+ BY (0.3 — s)

(B3)”
2

+ (0.1 —s)% + [T + B3 (0.05 — 3)]D1T} AT(06-5) g

0.1 ~
~ ~ B2
Wy = / eA(0-6=5) [1 + B1(0.2 — 5) + By(0.3 — 5) + 72(0.1 —5)?2+ Dl}
0.05
T nT nT (E;F)Q
x CC [I+Bl(0.25)+B2(0.3s)+ >

(0.1 —s)%+ DlT}

AT(0.6—s) ds,

0.2
o A0.6— s) ]+Bl(02—s)+B2(03—s)+Dl]
0.1
x ccT I+ ElT(O.Q —s)+ §2T(0.3 —5)+ DlT]eAT(o.Gfs) ds,
25

Wy= [ eO6=)[I 4+ B,(0.3 - 5) + D]

(=)

I
N

x COT[I + BF(0.3 — 5) + DT et (00-9) g,
.3

(=)

Ws = [ M6~ 4 By(0.3 — 5)|CCT [I + BI (0.3 — s)]e? (069 gs,

B~

A(OG S)OCT AT (0.6— S)dS

=
I

[=)
w
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Specifically,
W — (00432 0.0427 W, — (00449 0.0446
1= 10.0427 0.1010)° 27 10.0446 0.0955)°
W — (00955 0.0054 w, — (00523 0.0525
3700.0954 0.1769 ) ° 47 10.0525 0.0838)°
W — (00405 0.0405 W — (02272 0.2272
57 10.0405 0.0583)° 67102272 0.2639)°

then

0.5036  0.5029 -
WO,3,0,2[0,0.6]—<O_5029 0_7794), M = /Wy3,.00,0.6]]| = 3.0308.

Further, for any v, 1 € R?,

|| f(t,v) = f(t, )| = max{—0.06t[vy — u1],0.04t|vs — po|}
< 0.06t max{|vy — pu1l, |2 — pol}
= 0.06t||v — pl|-

1/2

Note L(t) = 0.06t and let p = g = 2, || L¢|| 2y = (fy °(0.065)> ds) "~ = 0.0161.

Note

) 3644 0.
Bull =l = (5 03| <@t

choose a; = 0.61384,

R .44 —0.0831
1B = HefAﬁZBgH _ H(O 075 003%%51 )H < aged20z

choose oy = 0.4820,

a=on +ay = 109584, Al + o = 4.09584, a = [T7_, (| D;|| + 1) = 1.2.
As aresult,

1/p
1
My = a| e (eIl Fem —1} Lillpecsmsy = 0.0785,
: [wA|+am( W IL sl e
al|CI[M , (i
M, |:1 + — e(“ [Ha)m _ 1
TAT +a )
1.2 x 3.0308
= 0.0785 14 =2 X900 [ 14.00584%0.6 _ 1) | — (0.8296 < 1.
. [ +~roosed )

Thus all the conditions of Theorem 3 are satisfied, so (13) is relatively controllable on
[0,0.6]; see Fig. 1.

Nonlinear Anal. Model. Control, 27(1):70-90, 2022


https://doi.org/10.15388/namc.2022.27.24623

88 Z. You et al.

0 02 04 06 08 1
t

Figure 1. The state trajectories of »/(¢) in [0, 1] when u = [0.8t,0.9¢]™ in Example 1.

Example 2. In Example 1, let f(t,v(¢t)) = 0, t € [0,0.6]. Note Wy.30.2[0,0.6] is
a nonsingular matrix. From Theorem 2 we know that the linear multi-delay system is
relatively controllable. Furthermore, one can get

n="Vr — y(Tla _19)1:[}(_19)
0 n —m
~ [ Y9 ) - A ds+ Y B [ Vir s vl ds
9 m=1 9
= v, — (0.6, —0.3)2)(—0.3)
0 —0.2
_ / (0.6, 5) [t (s) — Ads(s)] ds + Bo / Y(0.6,5 + 0.2)i(s) ds,
—0.3 —0.3
and then the control function is given by
u(t) = CTyT(Tl, t)Wl;:---,ﬂn [0, T1]’I7
= CTAT(0.6,¢ +0.3)e™ OO-OW L [0,0.6]

CT[L+BT(0.2 1)+ BI(0.3 — ) + B2 (0.1 — 1)?

+[I + BF(0.05 — )] DT JeA” 06wl ,]0,0.6]n, 0 < t<0.05,
CT[+ BY(0.2—t) + BY (0.3 — 1) + L2 (0.1 — )2 + D)

xeA O6=Dpy L [0,0.6]n,  0.05 <t < 0.1,
CT[I + BT(0.2—t) + B (0.3 — t) + Df]eA” ©5=0W 3 ,[0,0.6]n,

01<t<0.2,
CT[I + BF (0.3 —t) + DT]ed” O6=0OWyl 0,06, 0.2 <t<0.25,
CT[1 + BF(0.3 — t)]e 60w 1 ,[0,0.6]n, 0.25 <t < 0.3,
CTeAt 6D 5[0,0.6]n, 0.3 <t<0.5,
6, 05<t<0.6.
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5 Conclusion

In this paper the relative controllability of impulsive multi-delay differential systems in
finite-dimensional space is considered. In [24] the authors construct the index of impulsive
multi delay matrix and give the explicit solution of linear impulsive multi delay differen-
tial equations. Based on the expression of the solution of linear impulsive multi delay
differential equations, necessary and sufficient conditions for the relative controllability
of linear systems and the Gramian criteria are given. In Theorem 3, using Krasnoselskii
fixed point theorem, we give a sufficient condition for the controllability of semilinear
systems.

In Theorem 2 the control function is given, but it is not necessarily optimal, and
we hope in the future to study the optimal control problem of impulsive multi-delay
differential equations. In Theorem 3, we require the operator F» to be compact, and we
hope to study controllability under noncompact conditions in the future.

Acknowledgment. The authors are grateful to the referees for their careful reading of
the manuscript and their valuable comments. We thank the editor also.
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