
Nonlinear Analysis: Modelling and Control, Vol. 27, No. 1, 38–53
https://doi.org/10.15388/namc.2022.27.25187

Press

Rothe–Legendre pseudospectral method
for a semilinear pseudoparabolic equation
with nonclassical boundary condition

Abdeldjalil Chattouh1 , Khaled Saoudi , Maroua Nouar
Department of Mathematics and Informatics,
Khenchela University, Algeria
abdeldjalil_chettouh@hotmail.com; saoudikhaled@hotmail.com;
nouar.maroua@yahoo.com

Received: August 10, 2020 / Revised: April 19, 2021 / Published online: January 1, 2022

Abstract. A semilinear pseudoparabolic equation with nonlocal integral boundary conditions is
studied in the present paper. Using Rothe method, which is based on backward Euler finite-
difference schema, we designed a suitable semidiscretization in time to approximate the original
problem by a sequence of standard elliptic problems. The questions of convergence of the
approximation scheme as well as the existence and uniqueness of the solution are investigated.
Moreover, the Legendre pseudospectral method is employed to discretize the time-discrete
approximation scheme in the space direction. The main advantage of the proposed approach lies
in the fact that the full-discretization schema leads to a symmetric linear algebraic system, which
may be useful for theoretical and practical reasons. Finally, numerical experiments are included to
illustrate the effectiveness and robustness of the presented algorithm.

Keywords: pseudoparabolic equation, nonlocal conditions, Rothe method, solvability, pseudo-
spectral method.

1 Introduction

Numerous scientific and engineering problems can be modelled employing nonlocal par-
tial differential equations. This, in turn, results in a need for examination and investigation
of the behavioural and qualitative properties of these models.

In this paper, we concerned by the solvability of a semilinear pseudoparabolic equa-
tion accompanied by nonclassical boundary conditions. Let Ω be a bounded subdomain
of Rd, (d > 1) with a Lipschitz continues boundary ∂Ω.

The problem under consideration takes the form

∂tu− ∂t∆u−∆u+ u = F (u), x ∈ Ω, t ∈ IT , (1)
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subject to Dirichlet-type nonlocal boundary condition

u(x, t) = Ku(t) :=

∫
Ω

K(z, x)u(z, t) dz, x ∈ ∂Ω, t ∈ IT , (2)

and initial condition

u(x, 0) = u0(x), x ∈ Ω. (3)

Here IT stands for the time interval [0, T ] with T > 0, and F supposed to be a Lipschitz
continuous function.

Historically, the first appearance of the term pseudoparabolic equation was in the
works of Ting and Showalter [21, 26], since then, the pseudoparabolic equation is re-
ferred to a partial differential equation with a first-order derivate in time appearing in the
highest-order term, in particular, such kind of problems forms a subclass of Sobolev-type
equations [25].

This kind of PDEs appears, while studying variety of physical and engineering mod-
els, for example, transport phenomena in porous media [2, 8, 10], the motion of homoge-
neous fluids in fissured rock [1], moisture transfer in soils [19], the diffusion of imprisoned
radiation through a gas [5, 11, 12], and so on.

Due to its applications in several fields of applied sciences, initial value problems
for pseudoparabolic equations subject to classical, as well as nonclassical, boundary
conditions are of important practical and theoretical interest and have been investigated in
theoretical and numerical frames by several authors. Some of those authors have studied
the solvability of a variety of initial boundary value problems for the third-order equations
of pseudoparabolic type. For example, Popov [20] investigated the one-dimensional linear
pseudoparabolic equations with integral conditions for which he used an approach based
on the method of continuation with respect to a parameter and some a priori estimates.
The authors in [7] have established, using some appropriate elliptic estimates, the well-
posedness of a nonlinear pseudoparabolic equation with two types of nonlocal boundary
conditions. Bouziani and Merazga [3] have used backward Euler schema time discretiza-
tion to prove the existence of the solution to a similar nonlocal problem in nonclassical
space. In the same line, Guezane-Lakoud and Belakroum [9] proved the existence and
uniqueness of solution in weak sense to an integrodifferential Sobolev-type equation
with integral conditions. Recently, Maqbul and Raheem [17] studied by means of Rothe
method the questions of the existence and uniqueness of solution for a semilinear pseu-
doparabolic equation with purely integral conditions.

Along a different line, various numerical methods are aroused to solve nonlocal bound-
ary-value problems. Up to now, the work done on the numerical analysis for nonlocal
pseudoparabolic equations is mainly based on the finite-difference methods [6, 13–15].

The primary objective of this work is to perform a computational study on prob-
lem (1)–(3). Applying a similar methodology as in [23, 24], we investigate the existence
and uniqueness as well as the approximate construction of solutions and its convergence.
In short, we will use the semidiscretization in time to approximate the nonlocal problem
by a sequence of elliptic boundary-value problems with Dirichlet boundary condition and
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apply the Legendre pseudospectral method for the spatial discretization. By deriving some
a priori estimates we will able to prove the convergence of the approximations sequence
to a unique solution.

It must be emphasized that most researches concerning the nonlocal third-order pseu-
doparabolic equations have mainly considered purely integral conditions. Meanwhile, the
nonlocal boundary-value problem that is considered in this work is accompanied by the
nonlocal Dirichlet-type boundary condition (2). Moreover, to the authors best knowledge,
there are no works deal with the implement and analysis of spectral and pseudospectral
methods for the problem under consideration, even not in the case of one-dimensional
setting, which is mainly due to nature of the boundary conditions. Therefore, this work is
aimed at extending and improving some existing results on the solvability of nonlocal
boundary-values problems of pseudoparabolic type as well as presenting an efficient
numerical schema based on coupling the Euler finite-difference method for time dis-
cretization with Legendre spectral method for space discretization to obtain approximate
solutions for this kind of problems.

Besides the introduction, this paper includes three sections. First, we turn the problem
under consideration into an appropriate weak formulation, and then backward finite-
difference schema is employed to approximate this last problem by standard elliptic
problems in Section 2. In the same section, some stability results are established, and
finally, prove the convergence of the semidiscrete temporal approximations to the unique
solution of the original problem. In Section 3, we briefly described a proposed way to
implement Legendre pseudospectral for the discretization in the space direction. Numer-
ical tests are presented in the last section to illustrate the effectiveness of the presented
numerical algorithm.

2 Time discretization

The study in this paper will be done in variational framework. For this purpose, we need
to introduce some function spaces and related useful results.

Let us denote by L2(Ω) the space of square-integrable functions on Ω endowed with
the usual L2-scalar product (·, ·) and its corresponding norm ‖·‖. Also, we denote by
Hm(Ω) the standard Sobolev space defined by

Hm(Ω) =
{
v ∈ L2(Ω): ∀α with |α| 6 m, ∂αv ∈ L2(Ω)

}
,

which is a Hilbert space for the usual scalar product

(u, v)m =

∫
Ω

∑
|α|6m

∂αu(x) ∂αv(x) dx,

where the derivative ∂α is taken in weak sense, the norm of the space Hm(Ω) is denoted
by ‖·‖m.

Now, we state a practical result with a crucial role in our proofs later.
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Lemma 1. (See [22].) Assume that K ∈ H1(Ω × Ω), then the following estimates hold
for all u, v ∈ C(IT , H

1(Ω)):∣∣(v(t),Ku(t)

)∣∣ 6 α
∥∥v(t)

∥∥ · ∥∥u(t)
∥∥, (4)∣∣(∇v(t),∇Ku(t)

)∣∣ 6 β
∥∥∇v(t)

∥∥ · ∥∥u(t)
∥∥, (5)

where α = ‖K‖L2(Ω×Ω), and β = ‖∇xK‖L2(Ω×Ω).

Next, we will give the definition of a weak solution of problem (1)–(3) in the following
sense.

Definition 1. We say that the function u is a weak solution to the nonlocal problem (1)–
(3) if

(C1) u ∈ C(IT ;H1(Ω)) ∩ L∞(IT ;H1(Ω));
(C2) ∂tu ∈ L2(IT ;H1(Ω));
(C3) the following identity holds for all φ ∈ H1

0 (Ω) and a.e. t ∈ IT :(
∂tu(t), φ

)
+
(
∂t∇u(t) +∇u(t),∇φ

)
+
(
u(t), φ

)
=
(
F
(
u(t)

)
, φ
)
; (6)

(C4) the nonlocal boundary condition (2) is satisfied.

In what comes next, we will denote by C, Cε, and ε generic constants, which are
independent of any discretization parameters, where Cε = C(1/ε), and ε is arbitrarily
small. These constants may change its values from line to another but the meaning will
be clear from the context.

2.1 Construction of approximate solution and convergence

In order to prove the existence of a weak solution in the sense of Definition (1), we will
use Rothe method. The idea behind this approach is to approximate the time-dependent
problem by a sequence of elliptic problems that have to be solved successively at each
time level. To this end, we first discretize the continuous problem (6) in time. We divide
the interval IT into n ∈ N∗ equidistant subintervals [ti−1, ti], i = 1, . . . , n, where ti = iτ
and τ = T/n. Moreover, we adopt the following notations [18]:

v(ti) = vi, δvi =
vi − vi−1

τ
.

We approximate the variational problem (6) by the sequence of standard elliptic boundary-
values problems. Using the above notations, the recurrent semidiscrete approximation
scheme for i = 1, . . . , n reads as

(δui, φ) + (δ∇ui,∇φ) + (∇ui,∇φ) + (u, φ) =
(
F (ui−1), φ

)
∀φ ∈ H1(Ω), (7)

and the boundary condition (2) can be treated in the following way:

ui(x) = Ki(x) =

∫
Ω

ui−1(y)K(x, y) dy, x ∈ ∂Ω. (8)

The well-posedness of problems (7)i–(8)i is addressed in the following lemma
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Lemma 2. Let F be Lipschitz continuous function, 0 < α, β 6 C, and assume that u0 ∈
H2(Ω). Then, for any i = 1, . . . , n, there exists a unique solution ui to the variational
problem (7)i–(8)i

Proof. First, we set ∂t(u(0) − ∆u(0)) = ∆u0 + u0 + f(u0), therefore, the variational
problem (7)i–(8)i makes sense for i > 1. Now, by setting vi = ui − Ki the variational
problem (7)i–(8)i read as: Find vi ∈ H1

0 (Ω) such that:

A(vi, φ) = F(φ) ∀φ ∈ H1
0 (Ω),

A(vi, φ) = (δvi, φ) + (δ∇vi,∇φ) + (∇vi,∇φ) + (vi, φ),

F(φ) = (f(ui−1), φ) + (δKi, φ) + (δ∇Ki +∇Ki, ∇φ)

+ (Ki, φ).

(9)

Using estimates (4), (5) and Cauchy inequality, we can easily check that A(·, ·) is a co-
ercive continuous bilinear form on H1

0 (Ω) × H1
0 (Ω) and F(·, ·) is a linear bounded

functional on H1
0 (Ω). Thus, by applying Lax–Milgram lemma we obtain the existence

of a unique solution vi for (9), that ensures the well-posedness of recurrent problem (7)i–
(8)i.

Now, we derive some a priori estimates by stating the following lemma.

Lemma 3. Let the assumptions of Lemma 2 be satisfied. Moreover, assume that
α2+β2<1. Then there exists a positive constant C > 0 such that

max
16j6n

‖uj‖2 + max
16j6n

‖∇uj‖2 +

n∑
i=1

‖δui‖2τ +

n∑
i=1

‖δ∇ui‖2τ

+

n∑
i=1

‖∇ui −∇ui−1‖2 +

n∑
i=1

‖ui − ui−1‖2 6 C.

Proof. Testing the identity (7) with φ = (δui − δKi)τ , which belongs to H1
0 (Ω), and

summing up for i = 1, . . . , j, we get

j∑
i=1

‖δui‖2τ +

j∑
i=1

‖δ∇ui‖2τ +

j∑
i=1

(∇ui, ∇ui −∇ui−1) +

j∑
i=1

(ui, ui − ui−1)

=

j∑
i=1

(
f(ui−1), δui − δKi

)
τ +

j∑
i=1

(δui, δKi)τ

+

j∑
i=1

(δ∇ui +∇ui, δ∇Ki) +

j∑
i=1

(ui, δKi). (10)

We recall the following identity:

j∑
i=1

ai(ai − ai−1) =
1

2

(
a2
j − a2

0 +

j∑
i=1

(ai − ai−1)2

)
,
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where (ai) is a sequence of real numbers. We use this formula for the left-hand side of (10)
to obtain

L.H.S. of (10) =
1

2

(
‖uj‖2 + ‖∇uj‖2 − ‖u0‖2 − ‖∇u0‖2 +

j∑
i=1

‖∇ui −∇ui−1‖2

+

j∑
i=1

‖ui − ui−1‖2
)

+

j∑
i=1

‖δui‖2τ +

j∑
i=1

‖δ∇ui‖2τ. (11)

Now we estimate each terms on the right-hand side of equation (10). Following a straight-
forward procedure by applying Cauchy and ε-Young inequalities together with basic
estimates (4), (5), we can obtain

j∑
i=1

(f(ui−1), δui − δKi)τ 6 Cε

j∑
i=1

‖ui−1‖2τ + ε

(
j∑
i=1

‖δui‖2τ +

j∑
i=1

‖δui−1‖2τ

)
j∑
i=1

(δui, δKi)τ 6
1

2

j∑
i=1

‖δui‖2τ +
α2

2

j∑
i=1

‖δui−1‖2τ,

j∑
i=1

(δ∇ui +∇ui, δ∇Ki) 6
1

2

j∑
i=1

‖δ∇ui‖2τ +

(
β2

2
+ ε

) j∑
i=1

‖δui−1‖2τ

+ Cε

j∑
i=1

‖∇ui‖2τ,

j∑
i=1

(ui, δKi) 6 Cε

j∑
i=1

‖ui‖2τ + ε

j∑
i=1

‖δui−1‖2τ.

Summarizing the above estimates,

∣∣R.H.S. of (10)
∣∣ 6 Cε

(
1 +

j∑
i=1

‖ui‖2τ +

j∑
i=1

‖∇ui‖2τ

)

+

(
1

2
+
α2 + β2

2
+ ε

) j∑
i=1

‖δui‖2τ +
1

2

j∑
i=1

‖δ∇ui‖2τ. (12)

Combining (11) and (12) with the choice of suitable ε < 1/2 − (α2 + β2)/2 and using
Gronwall lemma, we get the desired result.

Now, we are in a position to prove the unique solvability of the variational problem (6).
Let us first construct the following family of time-dependant piecewise linear functions
defined, as un : [0, T ]→ H1(Ω),

un(0) = u0, un(t) = ui−1 + (t− ti−1)δui ∀t ∈ (ti−1, ti], 1 6 i 6 n.
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We also define the piecewise constant in time function ūn : [0, T ]→ H1(Ω),

ūn(0) = u0, ūn(t) = ui ∀t ∈ (ti−1, ti], 1 6 i 6 n.

Thus, the weak problem (7)–(8) can be written in terms of the above notation as(
∂tun(t), φ

)
+
(
∂t∇un(t),∇φ

)
+
(
∇ūn(t),∇φ

)
+
(
ūn(t), φ

)
=
(
f
(
ūn(t− τ)

)
, φ
)
∀φ ∈ H1

0 (Ω). (13)

Now, we are about to prove the convergence of the approximate solution un to a weak
solution to the variational problem (6). First, we reformulate the estimate from Lemma 3
as follows:

max
t∈[0,T ]

∥∥ūn(t)
∥∥2

1
+

T∫
0

∥∥∂tun(s)
∥∥2

1
ds

+

n∑
i=1

∥∥∥∥∥
ti∫

ti−1

∂tun(s) ds

∥∥∥∥∥
2

+

∥∥∥∥∥
ti∫

ti−1

∂t∇un(s) ds

∥∥∥∥∥
2

6 C. (14)

The following lemma is a direct consequence of (14).

Lemma 4. Under the assumptions of Lemma 3, we have for all t ∈ IT ,∥∥un(t)− ūn(t)
∥∥

1
→ 0 as n→∞.

Proof. It suffices to see that for all t ∈ IT ,

un(t)− ūn(t) =

{
(ti − t)δui, ti−1 6 t 6 ti,

0, t = 0.

In view of Lemma (2), we obtain

∥∥un(t)− ūn(t)
∥∥2

1
6 τ2 max

16i6n
‖δui‖21 6 τ

(
n∑
i=1

‖δui‖τ +

n∑
i=1

‖δ∇ui‖τ

)

6 τC =
CT

n
=
C

n
,

consequently, ‖un(t)− ūn(t)‖1 → 0 as n→∞, which is the desired result.

Regarding estimate (14), we see that all conditions of [16, Lemma 1.3.13] are met,
which allows us to state directly without proof.

Lemma 5. Under the assumptions of Lemma 3, there exists a function u ∈ C(0, T ;
H1(Ω)) ∩ L∞(0, T ;H1(Ω)) obeying ∂tu ∈ L2(0, T ;H1(Ω)) and a subsequence (unk

)
of (un) such that:

https://www.journals.vu.lt/nonlinear-analysis
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(i) unk
→ u in C(0, T ;H1(Ω));

(ii) unk
(t), ūnk

(t) ⇀ u(t) in H1(Ω) for all t ∈ [0, T ];
(iii) dunk

/dt→ du/dt in L2(0, T ;H1(Ω)).

Now, we are ready to state our main result in this section.

Theorem 1. The limit function u from Lemma 5 is the unique weak solution to problem.

Proof. Integrating (13) over (0, T ) and using the fact that un(0) = u0, we obtain

(
un(t)− u0, φ

)
+
(
∇un(t)−∇u0, ∇φ

)
+

T∫
0

(
∇ūn(t),∇φ

)
dt+

T∫
0

(
ūn(t), φ

)
dt

=

T∫
0

(
∇
(
f
(
ūn(t− τ)

)
, φ
))

dt. (15)

Make use of

T∫
0

(
f
(
ūn(t− τ)

)
, φ
)

dt =

T∫
0

(
f
(
ūn(t− τ)

)
− f

(
ūn(t)

)
, φ
)

dt

+

T∫
0

(
f
(
ūn(t)

)
− f

(
un(t)

)
, φ
)

dt+

T∫
0

(
f
(
un(t)

)
, φ
)

dt.

Taking the limit for n→∞ in (15) and using the results of Lemma 3, we obtain

(
u(t)− u0, φ

)
+
(
∇u(t)−∇u0, ∇φ

)
+

T∫
0

(
∇u(t),∇φ

)
dt+

T∫
0

(
u(t), φ

)
dt

=

T∫
0

(
∇
(
f(u(t)

)
, φ
))

dt. (16)

Differentiating (16) with respect to the time variable implies that u is a weak solution to
variational problem (6). It remains to check the behavior of (un) on the boundary ∂Ω.
Following a similar argument as in [22], we start from the inequality∥∥un(t)−K

(
u(t)

)∥∥2

Γ
6
∥∥un(t)− ūn(t)

∥∥2

Γ
+
∥∥ūn(t)−K

(
u(t)

)∥∥2

Γ
.

Using the trace inequality to get∥∥un(t)− ūn(t)
∥∥2

Γ
6 Cε

∥∥un(t)− ūn(t)
∥∥2

+ ε
∥∥un(t)− ūn(t)

∥∥2

1
. (17)
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Now, let t ∈ [ti−1, ti], we have by definition ūn(t)|Γ = Kū(t−τ), which yields after
performing some arrangement(

ūn(t)−Kū(t−τ), φ
)
Γ

= (Kūn(t−τ)−ūn(t), φ)Γ + (Kūn(t)−un(t), φ)Γ

+ (Kun(t)−u(t), φ)Γ .

Next, we estimate each term on the right-hand side of the above identity separately:∣∣(Kūn(t−τ)−ūn(t), φ
)
Γ

∣∣ 6 C‖φ‖Γ
∥∥ūn(t− τ)− ūn(t)

∥∥
6 C‖φ‖Γ

ti∫
ti−1

∥∥∂tun(s)
∥∥ds 6 C

√
τ‖φ‖Γ .

In similar manner, one can obtain∣∣(Kūn(t)−un(t), φ)Γ
∣∣ 6 C

√
τ‖φ‖Γ ,∣∣(Kun(t)−u(t), φ)Γ

∣∣ 6 C‖φ‖Γ
∥∥un(t)− u(t)

∥∥.
Putting things together,

∥∥ūn(t)−Ku(t)

∥∥ = sup
φ∈L2(Γ )

(ūn(t)−Ku(t), φ)

‖φ‖Γ

6 C
√
τ + C max

t∈[0,T ]

∥∥un(t)− u(t)
∥∥. (18)

Due to relations (17) and (18), we deduce that

max
t∈[0,T ]

∥∥un(t)−Ku(t)

∥∥2

Γ
6 C

(
τ + max

t∈[0,T ]

∥∥un(t)− u(t)
∥∥2
)

+ Cε
∥∥un(t)− ūn(t)

∥∥2
+ ε
∥∥un(t)− ūn(t)

∥∥2

1
.

Then, passing to the limit n→∞, we obtain by Lemmas 4 and 5

lim
n→∞

max
t∈[0,T ]

∥∥un(t)−Ku(t)

∥∥2

Γ
= 0.

This proves that the limit u is a solution to (6).

2.2 Uniqueness

Theorem 2. Using the same notations of Lemma 1, we assume that F is a Lipschitz
continuous function and α + β < 1. Then the variational problem (6) admits a unique
solution u ∈ C(IT , H

1(Ω)) ∩ L∞(IT , H
1(Ω)).

Proof. We suppose, for the sake of contradiction, that there are two solution u and v
satisfying (6), and we put w = u − v. Subtracting the corresponding weak formulation
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for u form the one for v and taking the test function φ = ∂t(w − Kw), we get for all
t ∈ IT , ∥∥∂tw(t)

∥∥2

1
+

1

2

d

dt

∥∥w(t)
∥∥2

1

=
(
∂tw(t) + w(t), ∂tKw(t)

)
+
(
∂t∇w(t) +∇w(t), ∂t∇Kw(t)

)
+
(
F
(
w(t)

)
, ∂t
(
w(t)−Kw(t)

))
. (19)

Using Cauchy and ε-Young inequalities and Lemma 1, we can bound the right-hand side
of the above identity as follows:

|R.H.S.| 6
(
α+ β

2
+ ε

)∥∥∂tw(t)
∥∥2

+
β

2

∥∥∂t∇w(t)
∥∥2

+ Cε
∥∥w(t)

∥∥2

1
.

Using this estimate an fixing ε < 1− (α+ β), identity (19) becomes∥∥∂tw(t)
∥∥2

1
+

1

2

d

dt

∥∥w(t)
∥∥2

1
6 C

∥∥w(t)
∥∥2

1
.

Integrating the previous inequality over the interval IT and applying Gronwall lemma
gives ∥∥w(t)

∥∥2

1
+

t∫
0

∥∥∂tw(s)
∥∥2

1
ds 6 0.

This yields that u(x, t) − v(x, t) = w(x, t) = 0 almost everywhere in Ω × (0, T ), that
achieves the desired result.

3 Full discretization

In this section, we deal with the spatial discretization of (7), which completes the full
discretization of the nonlocal problem (1)–(3). To this end, we apply the Legendre pseu-
dospectral method.

For the numerical resolution, we keep things simple by considering only the one-
dimensional setting. For this purpose, the space domain Ω is chosen to be the finite
interval (−1, 1). Moreover, the boundary conditions become

u(−1, t) =

1∫
−1

K1(x)u(x, t) dx, u(1, t) =

1∫
−1

K2(x)u(x, t) dx. (20)

Now, it is convenient to reduce the recurrent problem with inhomogeneous conditions to
an equivalent problem with homogeneous Dirichlet condition. Let us set

ûi(x) = ui(x)− 1 + x

2

1∫
−1

K2(x)ui−1(x) dx− 1− x
2

1∫
−1

K1(x)ui−1(x) dx.
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Let us denote by Lk(x) the kth degree Legendre polynomial and P0
M the set of all

algebraic polynomials of degree at most M defined on (−1, 1), which vanish at the
boundary. Then the standard Legendre–Chebyshev approximation to (7) is to find for
all i = 1, . . . , n, a function ûMi ∈ P0

M such that(
δûMi , v

)
+
(
δ∂xû

M
i , ∂xv

)
+
(
∂xû

M
i , ∂xv

)
+
(
ûMi , v

)
=
(
ICNF

(
uMi−1

)
, v
)

+
(
G
(
uMi−1

)
, v
)
∀v ∈ P0

M , (21)

starting with ûM0 = ICMu0, and the additional functional G(·) collect the terms resulting
from the reformulation. The following lemma is the key to the efficiency of our algo-
rithms.

Lemma 6. (See [4, 27].) Let us denote

φk(x) = Lk(x)− Lk+2(x),

mkj =

1∫
−1

φk(x)φj(x) dx, pkj =

1∫
−1

∂xφk(x)∂xφj(x) dx.

Then

mj,k = mk,j =

{
2

2k+1 + 2
2k+5 , j = k,

− 2
2k+5 , j = k,±2,

pj,k = pk,j =

{
4k + 6, j = k,

0 otherwise.

According to linear algebra arguments, it is clear that the set {φk}M−2
k=0 spans the space

P0
M , that allows to write ûMi as a linear combination of φk, namely,

ûMi =

M∑
k=0

αkφk(x). (22)

Inserting (22) into identity (21) and taking v = φj , j = 0, . . . ,M − 2, leads to the
following algebraic linear system:

(1 + τ)(M + P)Ui = (M + P)Ui−1 + τFi−1, U0 = U0, (23)

where

Ui =
(
αi0, α

i
1, . . . , α

i
M−2

)t
,

Fi =
(
f i0, f

i
1, . . . , f

i
M−2

)t
, f ik =

(
ICNF (ui), φk

)
,

U0 =
(
α0

0, α
0
1, . . . , α

0
M−2

)t
, α0

k =
(
ICNu0, φk

)
,

M = [mkj ]06j,k6M−2, P = [pkj ]06j,k6M−2.

The linear system (23) can be easily solved since the matrices M and P are banded. We
can use a direct or either iterative method to solve it.
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4 Numerical experiments

The aim of this part of paper is to present some numerical experiments that we carried out
in order to confirm the reliability and viability of the proposed procedure. As mentioned
above, we consider problem (1) with one-dimensional space variable subject to nonlocal
boundary (20).

Example 1. For the first example, we seek for the numerical solution to the problem

∂u

∂t
− ∂3u

∂t∂x2
− ∂2u

∂x2
+ u = 0,

u(−1, t) = −
1∫
−1

sin (πx)u(x, t) dx,

u(1, t) = −
1∫
−1

cos (πx)u(x, t) dx

with the exact solution: u∗(x, t) = (sin (πx) + cos (πx))e−t.
To solve the above problem, we applied the Rothe–Legendre pseudospectral method

described in Sections 2 and 3. In Fig. 1, we plot the absolute error as a function of x
and t with fixed polynomial degree N = 12 and various step time τ . The results shows
that the approximate and exact solutions are in good agreement, that demonstrates the
effectiveness of the proposed algorithm.

To investigate the convergence rates of temporal discretization, we choose the poly-
nomial degreeM big enough, sayM = 16, so that the spatial discretization error is negli-
gible with respect to the temporal discretization error, and make step time varies. Tables 1
and 2 report the computational results at two selected points t = 1 and t = 2, respectively.
We can clearly observe that the order of convergence of temporal discretization is almost
O(τ), which seems reasonable since the employed method in time discretization is of first
order.

(a) τ = 10−2 (b) τ = 10−3 (c) τ = 10−4

Figure 1. Profiles of Absolute Error for various step time τ .
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Table 1. Convergence rates at t = 1 for Example 1 with different step time.

Step time dt L2-error order L∞-error order
10−1 6.1090e− 002 − 6.4435e− 002 −
10−2 6.0247e− 003 1.0060 6.2578e− 003 1.0127
10−3 6.0165e− 004 1.0005 6.2393e− 004 1.0012
10−4 6.0157e− 005 1.0001 6.2375e− 005 1.0001

Table 2. Convergence rates at t = 2 for Example 1 with different step time.

Step time dt L2-error order L∞-error order
10−1 3.1507e− 002 − 2.9281e− 002 −
10−2 3.0805e− 003 1.0098 2.8113e− 003 1.0167
10−3 3.0734e− 004 1.0010 2.7997e− 004 1.0017
10−4 3.0728e− 005 1.0001 2.7986e− 005 1.0001

Example 2. Now, let us consider

∂u

∂t
− ∂3u

∂t∂x2
− ∂2u

∂x2
+ u = F (u),

u(−1, t) =

1∫
−1

15

16

(
x2 + 1

)
u(x, t) dx,

u(1, t) =

1∫
−1

4e2x

e2 − 5e−2
u(x, t) dx,

where
F (u) = u(u− 1) + q,

and

q(x, t) =
(t+ 1)2(2x2 − 2)− 2(t+ 1)(x+ 1)− x4

(t+ 1)4
.

The exact solution to this problem is given as u∗(x, t) = x2/(t+ 1)2. It can be easily
verified that 0 6 u(t, x) 6 C(T ) for all (x, t) ∈ (−1, 1) × (0, T ) with T < ∞,
therefore, the nonlinear source function F is global Lipschitz continuity. As in Example 1,
the effectiveness and accuracy should be tested, so we discretize this problem using
the approach developed in previous sections using a suitable choice of the parameters
discretization M and τ . Figure 2 displays the profiles of the absolute error with different
step time τ . As we can see, the approximate and exact solutions match well, which
demonstrates that our numerical schema approximates the exact solution greatly.

Next, we check the convergence rates of the temporal discretization. As it done in
the previous example, we fix the polynomial degree M = 4, and let step time τ vary as
10−k. Tables 4 and 5 show that error decreases as the time step τ becomes smaller and
as expected convergence order of temporal discretization is O(τ). That is not surprising
since the backward Euler schema used in time discretization is only of first order.
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(a) τ = 10−2 (b) τ = 10−3 (c) τ = 10−4

Figure 2. Profiles of absolute error for various step time τ .

Table 3. Convergence rates at t = 1 for Example 2 with different step time.

Step time dt L2-error order L∞-error order
10−1 5.0361e− 002 − 3.9763e− 002 −
10−2 4.6313e− 003 1.0364 3.6451e− 003 1.0374
10−3 4.5931e− 004 1.0036 3.6139e− 004 1.0037
10−4 4.5893e− 005 1.0004 3.6108e− 005 1.0004

Table 4. Convergence rates at t = 1.8 for Example 2 with different step time.

Step time dt L2-error order L∞-error order
10−1 1.7208e− 002 − 1.3439e− 002 −
10−2 1.5953e− 003 1.0329 1.2387e− 003 1.0354
10−3 1.5832e− 004 1.0033 1.2286e− 004 1.0036
10−4 1.5820e− 005 1.0003 1.2276e− 005 1.0004

Table 5. Convergence rates at t = 3 for Example 2 with different step time.

Step time dt L2-error order L∞-error order
10−1 4.5910e− 003 − 3.2946e− 003 −
10−2 4.2923e− 004 1.0292 3.1368e− 004 1.0213
10−3 4.2632e− 005 1.0029 3.1262e− 005 1.0021
10−4 4.2603e− 006 1.0003 3.1251e− 006 1.0002
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16. J. Kačur, Method of Rothe in Evolution Equations, Teubner-Texte Math., Vol. 80, Teubner,
Leipzig, 1985.

17. Md. Maqbul, A. Raheem, Time-discretization schema for a semilinear pseudo-parabolic
equation with integral conditions, Appl. Numer. Math., 148:18–27, 2020, https://doi.
org/10.1016/j.apnum.2019.09.002.

18. N. Merazga, A. Bouziani, Rothe time-discretization method for a nonlocal problem arising in
thermoelasticity, Int. J. Stoch. Anal., 2005, 2005, https://doi.org/10.1155/JAMSA.
2005.13.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.2478/mjpaa-2020-0023
https://doi.org/10.1364/OE.20.025613
https://doi.org/10.1364/OE.20.025613
https://doi.org/10.3846/13926292.2014.910562
https://doi.org/10.1016/j.na.2005.11.021
https://doi.org/10.1088/1367-2630/13/12/123030
https://doi.org/10.1088/1367-2630/13/12/123030
https://doi.org/10.1016/j.amc.2011.11.077
https://doi.org/10.1029/93WR01495
https://doi.org/10.1029/93WR01495
https://doi.org/10.1103/PhysRev.72.1212
https://doi.org/10.1103/PhysRev.83.1159
https://doi.org/10.1080/01630560903405412
https://doi.org/10.1007/s10986-012-9155-7
https://doi.org/10.1007/s10986-012-9155-7
https://doi.org/10.15388/NA.2014.2.6
https://doi.org/10.1016/j.apnum.2019.09.002
https://doi.org/10.1016/j.apnum.2019.09.002
https://doi.org/10.1155/JAMSA.2005.13
https://doi.org/10.1155/JAMSA.2005.13
https://www.journals.vu.lt/nonlinear-analysis


Rothe–Legendre spectral method for a semilinear pseudoparabolic equation 53

19. A.M. Nakhushev, Equations of Mathematical Biology, Vysshaya Shkola, Moscow, 1995 (in
Russian).

20. N.S. Popov, Solvability of a boundary value problem for a pseudoparabolic equation with
nonlocal integral conditions, Differ. Equ., 51(3):362–375, 2015, https://doi.org/10.
1134/S0012266115030076.

21. R.E. Showalter, T.W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal.,
1:1–26, 1970, https://doi.org/10.1137/0501001.
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