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Abstract. This paper investigates the global dynamics for a class of multigroup SIR epidemic model
with time fractional-order derivatives and reaction—diffusion. The fractional order considered in
this paper is in (0, 1], which the propagation speed of this process is slower than Brownian motion
leading to anomalous subdiffusion. Furthermore, the generalized incidence function is considered
so that the data itself can flexibly determine the functional form of incidence rates in practice.
Firstly, the existence, nonnegativity, and ultimate boundedness of the solution for the proposed
system are studied. Moreover, the basic reproduction number R is calculated and shown as
a threshold: the disease-free equilibrium point of the proposed system is globally asymptotically
stable when Ry < 1, while when Rg > 1, the proposed system is uniformly persistent, and the
endemic equilibrium point is globally asymptotically stable. Finally, the theoretical results are
verified by numerical simulation.

Keywords: SIR epidemic model, multigroup, reaction—diffusion, fractional order, asymptotic
stability.

1 Introduction

As we all know, mathematical models play an important role in researching the dynamical
behavior of infectious diseases. In the classical epidemic model, it is generally considered
that individuals are completely mixed, and everyone has the same possibility of infection.
However, due to the differences in age, geographical distribution, and other factors, it
is more realistic to divide the total population into several different populations, that is,
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to establish a multigroup epidemic model. Lajmanovich et al. first proposed the SIS
multigroup systems and researched the stability of the endemic equilibrium point [11].
Subsequently, there are many research efforts devoted to investigating the importance of
multigroup epidemic models [6, 8, 14]. Guo et al. were the first to successfully establish
the complete global dynamics of the multigroup epidemic model based on the basic
reproduction number [7]. Boosted by the work of Guo et al., many researchers discussed
the stability of various multigroup systems [3,15,20,21,25].

Meanwhile, individual diffusion behavior is widespread in the actual propagation of
infectious diseases. With the development of global transportation, individuals in incu-
bation period can easily travel from one place to another, which is thought to be one of
the main reasons of the global pandemic of infectious diseases. For instance, SARS first
appeared in China’s Guangdong Province in November 2002 and then quickly spread to
other parts of China and even the world [26]. Also, COVID-19 was first detected at the
end of December 2019 with successive cases occurring worldwide. Therefore, in order to
better understand the impact of population mobility on the spread of infectious diseases,
it is necessary to incorporate human movement into epidemic model to provide more
theoretical guidance for epidemic control. Li et al. analyzed the stability and the uniform
persistence of a SIRS epidemic model with diffusion [12]. Xu et al. studied the stability
and the existence of traveling wave solutions of a SIS epidemic model with diffusion [28].
Recently, many diffusive epidemic models have been used to model within-group and
inter-group interactions in spatially environments, for example, Wu et al. investigated
a multigroup epidemic model with nonlocal diffusion and obtained the asymptotic behav-
ior of traveling wave fronts [27].

It is worth noting in real life that the spread of infectious diseases not only depends
on its current state, but also on its past state. Actually, it can be achieved that current state
of fractional-order epidemic models depends on the past information since any fractional
derivative contains a kernel function [30]. Furthermore, Smethurst et al. found that the
patient waits for the doctor’s time to follow a power law model P[J,, > t| = Bt~ [24].
More importantly, Angstmann et al. proposed a infectivity SIR model with fractional-
order derivative, and they showed how fractional-order derivative arise naturally by con-
tinuous time random walk [2]. As generalized of classical integers ones, Hethcote firstly
proposed a fractional-order SIR model with a constant population [8]. Then Almeida et
al. considered the local stability of two equilibrium points of a fractional SEIR epidemic
model [1].

Typically, the reaction term describes a birth-death reaction occurring in a habitat or
reactor. The diffusion term simulates the movement of the individual in the environment
in real-world applications. The diffusion is often described by a power law (x2(t)) —
(x(t))2 ~ Dt®, where D is the diffusion coefficient, and ¢ is the elapsed time. In
normal diffusion, the order « = 1. But if @ > 1, particle undergoes superdiffusion,
which mainly describes the process of active cell transport; if o < 1, this phenomenon
is called subdiffusion, which can be the diffusion of proteins within cells or the diffusion
of viruses between individuals [29]. And it results in a Caputo time-fractional reaction—
diffusion system with fractional order @ < 1. Meanwhile, it is pointed out in [19]
that long waiting times model particle sticking, and the density of this process spreads
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slower than normal diffusion. Also, as shown in [19], Caputo time-fractional reaction—
diffusion curve has a sharper peak and heavier tails, which can be used to describe the
ability to control the transmission of the disease when only a small number of people are
infected, such as COVID-19. The study of subdiffusion system has attracted widespread
interest in recent years. Mahmoud et al. studied the Cauchy problem of the fractional-
order evolution equation and obtained the expression of the solution of the time fractional-
order reaction diffusion system [18]. The subdiffusive predator—prey system is discussed,
and the analytical solution of the system is studied in [29]. However, few works have been
devoted to studying the subdiffusion epidemic model. Motivated by this, in this work, we
focus on time-fractional reaction—diffusion epidemic system, which means the spread of
infectious diseases is slower than a Brown motion.

Based on the above discussion, the dynamics of the multigroup SIR epidemic model
with generally incidence rates is investigated in this paper. Particularly, the susceptible
individuals, infective individuals, and recovered individuals are assumed to follow Fickian
diffusion.

The organization of this paper is as follows. A class of diffusive SIR epidemic model
with time fractional-order derivatives is formulated and some preliminaries are introduced
in Section 2. In Section 3, global dynamics of the proposed model are studied, and
numerical simulations are presented to illustrate theoretical results in Section 4. Finally,
a brief discussion is given in Section 5.

2 Model development

Before presenting a class of multigroup reaction—diffusion SIR epidemic model with time
fractional-order derivatives, some necessary preliminaries are presented.

2.1 Preliminaries

This section begins with some notations, definitions, and results.

Notation. Let Y = C(§2,R™) be a continuous function; Y = C/(£2, R'?") be the positive
cone of Y; X = Y x Y with the norm ||¢||x = max{||¢1]|y, ||¢2|lv}, where ¢ = (¢1, p2)
andp; € Y (i =1,2); X be a open set of X such that X = XO U 8X, where 0X is the
boundary of X; X, = Y, x Y be the positive cone of X.

Definition 1. (See [22].) Caputo fractional derivative of order « (o« ¢ Ny) for a function
f € AC"™(]0, 00}, R) is defined by

For
SR = (D)0 = g [ e o
0
where R(a) > 0 and n = [R(a)] + 1.
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Lemma 1. Let a;(x) € L*(2) and F;(t,z) € L>((0,T]; L*(£2)) be nonnegative and
yi(z,t) (i = 1,2) be the solution to the following system, respectively:

SDYyi(x,t) = dAy; + Fi(t,x), x €2, te(0,T),

% =0, xze€df, te(0,T],

v:(0,2) = a;(z), x€0,i=1,2.
If a1 (x) > as(x) and Fy(z,t) = Fo(x,t), then y1(z,t) = ya(x,t) for £2 x (0,T).
Proof. Lety(x,t) = y1(x,t) — ya(x,t), then y(x, t) satisfies the following system:

ngy(x,t) =dAy+ Fi(t,x) — Fa(t,z), z€ 2, te(0,T],
oy
5 =
y(0,2) = a1(z) — az(x), €.

0, x € dn, te (0,7T],

Based on a1 (v) —az(z) > 0and Fy(x,t)— Fy(z,t) > 0, we have y(z,t) > 0. Therefore,
it can be deduced that y; (z,t) > ya(z, ). O

Lemma 2. (See [29].) Consider the following system:

OCDf‘yi(x,t) =d;Ay; + fi(t,x,y:), z€2,i=1,2,...,n,
Oy _
v
yi(0,2) = a;i(z), z€R,i=1,2,...,n.

0, z€09f,i=1,2,...,n, (D

Suppose f; is mixed quasimonotonous and satisfies the local Lipschitz condition
|fi(u17u27u3) - fi(UI;U27U3)| < L(|U1 — 1| + |ug — va| + |uz — 03\)7

where L is constant, and |u; —v;| < €o, where ¢ is a given constant. If the upper solution
U(z,t) and the lower solutions V (x, t) satisfy V (z,t) < U(x,t), system (1) has a unique
solution in [V (z,t),U(z,t)).

Lemma 3. The system with time fractional-order derivatives

SDYu(x,t) = dAu+b—pu, =€ 2,te (0,7,
ou
5 =
uw(0,z) = a(z), =z €,

0, x€dn, te(0,T), 2

has a unique global asymprotic stability of constant equilibrium u* = b/ p.
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Proof. Define the Lyapunov function

N)M—\

/ U—’LL
2

Calculating the fractional derivative of V'(u) along the trajectories of system (2), one has

EDeV < /(u—u*)ngudx:—(/u(u—u*)2 dx+/Vu|2dx>.
9 2

9]

Let
V= /,u(u —u*)’ dz + / |Vul|?dz >0
0 0
and V; = 0if and only if v = u*. Then according to [4], there exists a unique global
asymptotic stability of constant equilibrium v* = b/ for system (2). O

Lemma 4. Consider the following system:

§Dfw(t) = g(w(t),  w(0) = w, (3)
where g(x) satisfies the local Lipschitz condition, and 0 < o < 1. Then for t; > 0, one
has w(t + t1,wp) = w(t, wr) with w; = w(ty, wy).

Proof. According to the definition of Caputo fractional-order derivative, one has

1 w(T) T
F(a)/(s—T)a d7 = g(w(s)).

0

Let s = ¢ + tq, then
t+t1

1 i)
Fa | @ ot sl )

0

By calculation, §Dg,, w(t + t1) = g(w(t + t1)). Hence, w(t + t1,wp) is a solution
of system (9). Further, w(t + t1,wp)|t=0 = w(t1,wp) = w;. By the uniqueness of the
solution it is deduced that w(t + t1, wg) = w(t, wy). O

2.2 System description

In [10], Korobrinikov et al. studied a multigroup SIR model as follows:

dS n
5 = A =SB
J=1
o —kaZ@ 5T @
%:rkfkf,uRk, kil,Q...,TL

https://www.journals.vu.lt/nonlinear-analysis
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But individual movement is not be considered in system (4) that is unrealistic, then Wu et
al. considered the following SIR epidemic model with diffusion [27]:

dS, -

= dwASk+ by — Sy — ;Bkjskgj(lj)a

Yo _ AT+ By Seas (1) — (i + i) ®
I pa J VAN ’

dR

ditk = dipASy + 1l — pap Ry, k=1,2...,n.

Based on the previous analysis, since fractional order has the long-term memory, which
can describe the spread of infectious diseases more accurate. In addition, it is traditionally
assumed that the incidence of disease transmission is bilinear with respect to the number
of susceptible individuals and the number of infected individuals. But in reality, it is often
difficult to obtain detailed information on the spread of infectious diseases because they
may change with the surrounding environment. Therefore, the general incidence rates will
be chose in this paper. Motivated by the above work, as an extension of system (5), a class
of multigroup SIR epidemic model are investigated as follows:

§Df Sk = diiASy + b, — 1Sk — > Brife(Sk)g; (), x € 02, t>0,

j=1
§DP T, = dorATx + > Brj fr(Sk)g5 (1) — (pak +14) ke, € 2, £ >0,
=1
SD Ry, = dsk ARy + riply, — iR, €02, ¢t>0 (©)
0 t k 3k k klk MBk ks X bl = bl

0S. 0L, OR,

v v ou

(Sk(0,2), It (0, ), R (0, ) = (¢1(2), par (), dsx()),
rxe, k=1,2,...,n,

=0, z€002,t>0,

where §'D¢* implies Caputo fractional-order operator (0 < a < 1); A = 9% /922 denotes
the Laplace operator; d/0v denotes the outward normal derivative on the smooth bound-
ary 042; Si(z,t), I.(x,t), and Ry (x, t) represent the number of the susceptible, infective,
and recovered individuals in kth group at time ¢ and spatial location x, respectively; i
(i = 1,3) imply the nature death rates of S and Ry, in kth, respectively; o denotes
the disease-related death rates of Ij in kth; by represents the recruitment rate of the total
population; 7 implies the recovery rate of the infected individuals in kth group; d;x
(k = 1,2, 3) denotes the diffusion rate of Sy, Ij;, and Ry, in kth group; (), represents the
infection rate of Sy, infected by I;. Furthermore, d;x, b, pir (2 = 1,2,3), Bri and 7y,
are positive constants for k = 1,2,...,n, and 8, (k # j) are nonnegative constants for
k=1,2,...,n.
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Before giving the main results, hypothesis in terms of generalized incidence rates
fx(Sk) and gy (Ix) is made as follows:

(H) (1) fx(Sk) and g (Ix) satisfy the local Lipschitz condition and f(0) = 0,

gr(0) =0fork =1,2,...,n;

(i) fx(Sk) is strictly monotone increasing on Sy, € [0, 00) and gy, (I},) is strictly
monotone increasing on [, € [0,00) forallk = 1,2,...,n;

(iii) gx(Ix) < exly for all I, > 0, where ¢, = g5 (0);

(iv) (Brj)1<k,j<n is nonnegative and irreducible. Furthermore, 55; > 0 if and
only if g;(I;) > 0 for I; > 0, and f3y; = 0 if and only if g;(I;) = 0;

V) pig < pog +rpforallk=1,2,... n.

Remark 1. Note that under hypothesis (H), many existing models can be regarded as
a special form of system (6), such as fi(Sk) = xSk, fu(Sk) = cxSk/(1 + arSk),
9t (Ir) = cili, gx(I) = cx i /(1 + b I}), and other nonlinear incidence rate in [16].

3 Model analysis

Some dynamical behavior of system (6) are investigated in this section. Here it can be
found that the susceptible class S and the infected class I are not effected by the
recovered class Ry of system (6). Hence, we will focus our attention on the following
reduced system:

6D Sk = d1kASy + b, — paxSk — Y Brj fu(Sk)gi(I;), € £2,

j=1
§DPT, = dop ALy + > Brjfie(Sk)gi (1) — (pax + 7x) 1 en
oVs Lk 2k Al ki JE(PK)Gi (L Mok + Tk ), < ) 7
j=1
oS, Ol
— == 0, t
5o 9 0, z€d2,t>0,

(Sk(oax)a—rk(oam)) = (¢1k($)7¢2k($)), reN, 1<k<n.

Then some basic properties of system (7) are discussed in following parts.

3.1 Nonnegative and boundedness

It is significant to demonstrate the existence, uniqueness, and boundedness of a nonnega-
tive solutions for system (7) before implementing its stable process. Thus, this subsection
moves to the discussion of proprieties mentioned above.

Theorem 1. Under hypothesis (H), there exists a unique nonnegative solution (S(x,t),
I(x,t)) of system (7), and it is also ultimately bounded for any given initial function
On(x) = (615(x). O (x)) € Ko (k= 1,2,....m), where S(x,1) = (1 (z. ), Sa(a ).
ooy Sp(, ), and I(z,t) = (I1(x,t), Ia(x, t), . . ., Ln(z,1)).

https://www.journals.vu.lt/nonlinear-analysis
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Proof. Consider these two function: Fiy(Sk, Ix) = bp —p1x Sk — Z?Zl B fr(Sk)gi (L)
and For,(Sk, Ix) = 35— Brj fr.(Sk)g;(Ij) — (pax + i) I According to condition (i) in
hypothesis (H), it is obvious that F;, and F5; are mixed quasimonotonous.

Consider the following auxiliary system:

6D Sy(t) = —paiSy, — Y Brif(Sr)g; (L)),

=1
SDELL(t) = Br f(S)g5(L;) — (naw + i) Iy,
j=1

8;.(0) = 1,,(0) = 0.

It is obvious that (S, ;) = (0,0) is a pair of the lower solution to system (7). Then,
according to Lemma 1, one has S > 0 and I}, > 0.
Furthermore, the following auxiliary system is introduced:

6DfSk(t) = b — pkSk,  Sk(0) = ||Sk(x,0)]],, ®)

then the above system (8) has a solution as follows:
500) = (ISue 00~ 75 ) Bucmat) + 2.
Hik K1k

Therefore, lim sup,_, ., Sk(t) = bx/ 1%, then there exists a constant Ty satisfied S, (z,t) <
by, /1y, for t > Tp. Further, consider the following auxiliary system:

SDI T = [Brkcr fu(Ii) — (pow + 1) | T + Z Brej fr(Sk)g; (Tk), ©)
B =1, jk
Ix(0) = [[In(z, 0)|

then the solution for the above system (9) is

It = Eo[(Breck fi(Sk) — (pak +73))t°]
% HIk(x,O)HQ . Zj—lj;rﬁkﬁkjfk(sk)gj(lk)}
Brrcr [r(Sk) — (H2r +71)
Die, ik B fre(Sk) g5 (I)
By fe(Sk) — (pok + i)

Similarly, Iy (x,t) < Ij(t). Since DSy (x,t) = by, — 11 Sk, then

thagk(%t) — d1xASy — by, + Sk + Zﬁkjfk(gk)gj(lj)

=1

> Buifu(Sk)g (L) = 0. (10)

Jj=1

Nonlinear Anal. Model. Control, 27(1):142-162, 2022
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However, it is easy to see that

§DF Sy (x,t) — dipAS), — bi + peSy + Y B fr(Sy)g;(I)
j=1
= —b, <0. (11)
It can be deduced from Eqgs. (10) and (11) that
6D Si(x,t) — digASy — Fix(Sk, L)
>0 >§ Df'Sy(x,t) — digASy, — Fir(Sy, Ii).-
Similar to the above analysis, it can be obtained the following equation:
OD T (w,t) — dop AT — For(Sk, Ii)
> 0 >§ DL (x,t) — dor AL, — Far(Sy. L)

Based on the above analysis and Lemma 2, system (7) has a unique nonnegative global
solution. Furthermore, the expression for the solution of system (7) is

t
Sk-(l‘,t) = Télk)(t)d)lk + /Mélk)(t — S)Flk(Sk,Ik) ds,
0

Ii(z,t) = TR (£) oy, + / M) (t — 5)Fop, (S, I) ds,
where

TUR () = / Ca(0)Gar,(t76) d0,
0

0t 10 (0)Gi (t70) do, i=1,2, k=1,2,....n

5
S
=
=
!

M

‘H o\g

/ )‘OE(, 1(—=A)d)\, zisan imaginary number,
r

with (,(0) represents a probability density; G1x(f):>0 represent generated strong con-
tinuous operator semigroups by dixA; Gz (t):>0, denoting generated strong continuous
operator semigroups by dog A — pi — 7% (K = 1,2, ..., n), can be rewritten by [23]

Gak(t)por, = /Tzk(h%z)%k(z) dz

9}

https://www.journals.vu.lt/nonlinear-analysis
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where Ty, is the Green function yielded

To(t,z,2) = ZeTvtgaf z), 1<k<n
j=1

with 75 be the eigenvalue of dor A — 113, — r with the eigenfunction @% (x) satisfying
O>7'1k:—ugk—rk>7'2k > ...Tf >
Hence, by the boundedness of the eigenfunction <p§ (z) one has

Toi(t, z,y) < wak Ze it wgke = wope” (H2rtri)t,

j=1

According the upper solution S}, of system (7), one has lim sup,_, . Sk = bi./ 1%, which
implies Sy, is ultimate bounded. Further, the ultimate bounded of I, will be analyzed. Let
N = Sg + I, and P, = f o Nk dz. Adding the first two equations of system (7) and
integrating it on {2, one has

§Dg Py, < by 2| — pu1i P

Therefore, by [13] one has

b|£2 bi|$2 bi|$2
P, < (/ (p1x+¢or) do — ZLJJ)EQ [—p1kt®] + bel2) — bl 2] (t — o00),
o

M1k M1k

then there exist two constants M > 0 and 77 > 0 satisfying P, < M fort > Tj.
According to [17], the operator families {72} is uniformly bounded. Hence, there exist
two constants M7 > 0 and 15 > T; > 0 satisfying Tgk < M for t > T5. Finally, the
uniformly boundedness of the infected group Iy (z, t) can be studied as follows:

In(z,t) = TR ()¢ + /M(zk) (t — 8)For(Sk, I1) ds

M1H¢2H9+a//9 £ (0)Gar (0(t — 5)*) Fyy, df ds

< Millga] , + zﬁ’w“%f’“( LM,

= Hog + Tk

where S 2 = b/ 1k, thus I}, is ultimate bounded. Therefore, there exists a unique positive
global solution (S(z,t), I(z,t)) of system (7), and it is also ultimately bounded. O

Nonlinear Anal. Model. Control, 27(1):142-162, 2022
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3.2 Stability analysis

In this subsection, the global stability analysis of system (7) will be discussed. It is easy to
find that the disease-free equilibrium point £ = (59,0, 59,0,...,59,0) of system (7)
always exists where S = by, /u1x, (k = 1,2,...,n). Define the following function:

Fo = (M (5")),
where M (S%) = (Bi; f(SP)cj/ (k2 + 7)) nxn» and p(M(S?)) is the spectral radiuses
of the matrix M (S?).
Lemma 5. The basic reproduction number Ry = EO.

Proof. Linearizing system (7) at the disease-free equilibrium point £°, one has

n
§Dfurk = digAurg — paguar — Zﬂkjfk (SR)cjuz;

Jj=1

§Dusy, = dog Mgk, — (pak, + 75 )uzk + Zﬁkjfk (S%)cjuz;.

j=1

Let F' = (Bk; f1(S))¢;)nxn and V = diag (p21 + 71, - - ., o + rp). Then it is easy to
find M(S°) = V—'F. Obviously, we have Ry = p(V~1F). By the definition of the
basic reproduction number [5] one has Ry = p(FV ~1). Thus, by the properties of matrix
eigenvalues it can be deduced that Ry = EO. O

Therefore, Ry is considered as a threshold parameter in place of Ry. In the following,
the uniqueness and the global stability of E° = (59,0, 59,0,...,52,0) are studied.

Theorem 2. Under hypothesis (H) and ﬁo < 1, there exists the unique equilibrium point
EY of system (7), and it is globally asymptotically stable in domain I, where

=Ty xTyx---xTn Tp={(SIx) €Ry: S, <SP}

Proof. Let S = (S1,S52,...,8,)%, 80 =(S89,589,....80 T and I = (I}, I, ..., I,)",
where SP = by, /1. Define

M(S) = <5kjfk(5k)cj) '
Mok + Tk 1<k,j<n

It is clear to find from (S,I) € I'that 0 < S, < SY (k = 1,2,...,n). Then one
has 0 < M(S) < M(S®). Since B is irreducible, it can be obtained that M (S)
and M (S) are irreducible. So M(S®) + M(S) is also irreducible. If S # S°, the
inequality p(M(S)) < p(M(S)) holds. Further, it can be deduced that p(M(S)) < 1
if S < S%and S # SY. Thus, M(S)I = I has a only trivial solution I = 0. This
shows that E is the unique equilibrium of system (7) when Ry < 1. Further, M (S°) is

https://www.journals.vu.lt/nonlinear-analysis
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positive, then Ry = p(M(S°)) is an eigenvalue of the matrix M (S°), and M (S°) has
a nonnegative eigenvector corresponding to p(M(S?)). Let @ = (ay, aa, ..., ) be the
positive left eigenvector of M (S°) corresponding to the spectral radius p(M (S?)), that
is, (a1, a2, ..., a,)p(M(S?) = (a1, 2, ..., a,)M(S°). Define Lyapunov function

Ly (t) :Z/ilk dz.
=17 Mok + Tk

Calculating the time fractional derivative of L, along the trajectories of system (7), one
has

n a n
SDeLi() <Y / (57 B Fu(Sk)es L — (o + ) | da
=12 M2k + T =

— /p(M(SO) 1)l ds.

Q
Let Ly(I) = [, (1 — p(M(S°))al dz, which is a positive definition function in I". Then
it is concluded from [4] that E° is globally asymptotically stable in domain I". O

Theorem 3. Under hypothesis (H) and Eo > 1, system (7) is uniform persistence, that
is, for any initial value ¢ (x) = (1 (), Por(z)) € Xy with o, 0 (k=1,2,...,n),
the solution (S(t, ¢),I(t, ¢)) satisfies

liminf Sk(t,¢) =2 0, lminfIx(t,¢) >0, 1<k <n,
t—00 t—o00

where 6 > 0 is a constant.

Proof. Define a set

XO = {¢: (¢1a¢2) € X+: ¢2k $—é07 1 < k < n}7
and

8X0 :X+/X0 = {¢: (¢1,¢2) € X+: ¢2k = 0, 1< k < TL}

Let Y(t,z) = (S, I) be the solution of system (7) under the initial value Yy, = Y(0,z) =
(¢p1(x), Ppa(x)) € X4. For any t > 0, it can be known that all nonnegative solu-
tions (S(t, ¢), I(t,¢)) generate a solution semiflow T'(¢) : X, — X with T'(¢)Yp =
Y (t,x, ¢). Thus, we have T'(0)Yy = Y'(0), and it is obvious that 7'(0) = E, where E is
the identity matrix. It can be deduced from Lemma 4 that

Tt+s)Yo=Y({t+s, z, ¢)=TH)Y(s,z,¢) =T(t)T(s)Yp.

Then T'(t + s) = T'(t)T'(s). Based on the above analysis, one has T'(t) is C°-semigroup
on X, . Obviously, T'(t) is compact for ¢ > 0 and point dissipative in X ;. The following
system is considered:

SDXSy, = dikASy, + by — 1k Sk
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It can be found from Lemma 3 that S} is globally asymptotically stable. Thus, sys-
tem (7) is globally asymptotically stable at the disease-free equilibrium point £ =
(89,0,...,5%2,0). It can be deduced that the disease-free equilibrium E? in X, is
a global attractor of T'(t), which implies 2(0Xq) = {E"}. Let M = {M;}, where
M, = {EO}. Considering }~20 > 1, there exists a sufficiently small constant €y > 0 such
that p(M(S°,&9)) > 1, where p(M(S°,£0)) = (BrjfuSp — €0¢;/ (pak + 7%))nxn. If
W3(E%) N Xq # 0, there exists a solution (Sy, I},) of system (7) with the initial value
such that (Sk, I) — (S},0) (k = 1,2,...,n) as t — oo, then there exists a constant
7 > 0 such that S, > S — ep and I, > ¢ for t > 7. Since B is irreducible, M (S°, &)
is irreducible. Let (aq, s, ..., a,) be the positive left eigenvector of M (S, &q) corre-
sponding to the spectral radius p(M (S°, g¢)), that is,

(a1, ag,... 7Oln)P(M(SO,€0)) = (a1, ag,... 704n)M(SO7€0)~

Define the following arbitrary function:

=Y [ nad
K2k + Tk

k:l

Calculating the time fractional derivative of L1 along the trajectories of system (7), one
has
SDXL,(t) > /p(M(SO,eo) —1)al dz > 0,
Q
which leads to a contradiction with lim;_, ., I (t) = 0. Therefore, W*(E") N Xy = 0.

Thus, it can be deduced from [25] that T'(¢) is uniformly persistent. It is concluded that
system (7) is uniformly persistent. O

The ultimate boundedness and the uniform persistence imply the existence of a pos-
itive equilibrium point of system (7). Therefore, the existence and global stability of the
positive endemic equilibrium point of system (7) can be further discussed.

Theorem 4. Under hypothesis (H) and ﬁo > 1, system (7) has at least one endemic
equilibrium E* = (ST, I}, ..., Sk, I¥) satisfying

b = mkSE + Y Briful(Si)g; (17), (12)
j=1

> Bri Fr(Si)gi (L) = (nar + ) I (13)

j=1

Furthermore, if

(fk(Sk)gj(Ij) 3 fk(S,j)gj(I;‘)> (fk(Sk)gj(Ij) 3 fk(sfé)gj(ff)>
Sk Sy Sil; SiIt

<0, (14

system (7) is globally asymptotically stable at the endemic equilibrium point E*.
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Proof. According to Theorem 1, for any given initial condition ¢y (z) = (d1x(x),
¢p2r( x)) € Xy (k = 1,2,...,n), the corresponding solution (S (z,t), Ix(z,t)) (k =
1,2,...,n) is ultimately bounded, and system (7) is uniformly persistent when EO > 1.
Therefore, there exists a positive equilibrium point £* of system (7) that satisfies Egs. (12),
(13).

Next, the global stability of E* = (S7,I5,..., Sk, I) will be analyzed. Define the
Lyapunov function

= aVi(t)
k=1

where

wior= [ [(se-si-sin) s (nor-gn )| an 1<ren
0

and the coefficients c; will be determined in Eq. (20). Calculating the time fractional-
order derivative of V}, along the trajectories of system (7), it can be conclude that

OCD?Vk(t)é/ ]-_i dlkASkd1'+/ 1—]’*]c koAIkd:E
Sk 1
2 2
Sk .
1—§ pk(Sk — Sp) da
2

Sk = S
/Zﬁk;fk Sk QJ(I*)<1 - SZ) +;5kjfk(5k)gj(fj)§z da

*

- I
/ > s u(Su)gs () - = (as + ) (i = ) (1s)
J=1

For each 1 < k£ < n, it can be deduced from the divergence theorem that

/dlkASk dx = 0, /koAIk dz = 0,
2 02

A 2 AT T4 ||?
/ dii ASy, dx:/dlk”VQSk” dz, /d2k k dx:/d%”z k|l .
Q k Si; Iy, I

Thus, Eq. (15) can be deduced that
ED2VL(t)

S| I ||? - 5p)°
/Skdl v k:ll —/I;d%HVfH dx—/,ulk(Sk 50 4s
I? Sk
2 2
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L s SInUS I
+/Zﬂk~gfk(5k)gy(1j)(2 +fk( Si)g; (I )S],cC I;

=1
Ju(Sk)g; (L)1 .
GG m)d (10

Let h(z) = 2 — 1 — Inx, then

2_ S + Se(Sk)gi(L)SE I fr(Sk)g; (i) 1g
fe(SP)a;(L)Sk I fe(S8)gi (L) Ik

() apmnm) st

() ()

Substituting Eq. (17) into Eq. (16), the following inequality holds:

2 I 2 _oQ*)\2
CDaVk /Skdl ||VS/€|| /I;koHVIQkH dI—/Mlk(Sk S‘Sk) dz
Q k Q k

S ((5) oS

_ h(fk(slz)gj(jj: IZ)) du

/Zﬂkjfk S)9; I*)( (f) —h(ﬁ))dx.

Calculating the fractional-order derivative of Lo (t) along any solution of system (7), one
has

¥D2Ly < ZC;( /Skdl HVSk||2 !IZd%HVI%H? da _!Mlk(sk;;g;ydm)
L Z<Z<<> (A
fk( ) ( )Ik

+/ 1ck<jzlﬁkyfk Sk gﬂ]*)(h(f*) h(?}%))) de. (18)

2
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Since £ is the endemic equilibrium point of system (7), one has

ch<zﬁm S1)9; f*>( G) h(l)))

n
I
j{j ( k) }{jcatbkfj Dar(Ti) = cr(par + i) I, (19)
where ¢ denotes the cofactor of the kth diagonal entry of B, where
Ymby  —Pn o —Bm
E — _612 Z];ﬁ? ﬁQ] s _5772 (20)
_ﬁln _5271 R Z]?gn Bngy
with Ekj = Br;j fe(Si)g;(I7). It can be deduced from [7] that Bz = 0 exists a unique
positive solution ¢ = (¢, ¢a, . . ., ¢,,). Therefore,
S ciBik=cr Y B @1)
j=1 j=1

Thus, substituting Eq. (19) into Eq. (21), it can be obtained that
chﬁgkfy k(1) = CkZﬁkgfk Se)gi(L]) = cr(por + 1)l (22)

Further, it is concluded from Egs. (18) and (22) that
6D Ly < —Ls,

- o IVS? o IVE? (Sk = Sp)°
L3 = ch(/skdlk 2 dz + [ Lidoy~——dz+ [ T}“d:p
(9]

k
2 2

ey s Sk Skl fr(Sk)gi (17)
k(;ﬁ’”’“(s’“)gﬂ”ﬂ<h(sk> (S AEe)

+h(M)))dx-

Based on [4], the endemic equilibrium point E* = (S§,I5, ..., Sk, L) of system (7) is

n' n

globally asymptotically stable. O

+
D
bl
)

Corollary 1. When fi(Sx) = Sk, the endemic equilibrium point E* = (ST, 15, ...,
S, I¥) is globally asymptotically stable if hypothesis (H) and Ry > 1 satisfied.

n’n

Remark 2. It can be seen that Corollary 1 is similar with Theorem 6 of [17] when o = 1.
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Remark 3. Not considering infection between populations, that is, when Si; =0 (k # 7),
the reproduction number R§ of group k is R§ = Brxck fx(SY)/(uak + ri). Furthermore,
the disease-free equilibrium point EY = (by/p1x,0) is globally asymptotically stable
when R < 1, and the endemic equilibrium point E; = (S}, I}}) is globally asymptoti-
cally stable when RE > 1.

4 Numerical simulations

In order to verify theoretical results numerically, numerical simulations are presented in
this section. We consider system (7) with two-group case, which is suitable for infectious
diseases transmitted between two cities or communities. Furthermore, system (7) with
two groups (n = 2) can be calculated by the central difference method in L;-type space
and Alikhanov-type discretization in time [9]. Furthermore, we consider the following
incidence rate as an example: fi(Si) = Sk, gx(I) = I /(1 +7I}), which 7 is a positive
parameter measuring the psychological or inhibitory effect. Obviously, fx(Sk) and gx (1))
satisfy hypothesis (H). The corresponding system can be expressed as

I
1471’

DSy = di1 ASy + by — 11151 — B11Sh r — B12Si——

I
CD&Il =do Al + 51151 + B1251 —— 2 — (p21 +7m1) 11,
TI 1+71
I (23)
g‘DtaSQ = d12AS3 + by — (11251 — 52152 — BaaSo ——— 1470,
I I
SDX Ty = doy Al + 52152 + P28y —— 170 — (22 +12) 1.

Let assign the following values to the parameters of system (23):

bl = 001, H11 = 0.12, ﬁll = 055, 512 = 057 Ho1 = 0.2, T = 0.147
b2 = 0.01, H12 = 0.7, ﬁgl = 0.5, /822 = 0.2, H22 = 0.17 o = 0.2.

It is easy to calculate that Ry = 0.1549 < 1. Based on by Theorem 2, the disease-free
equilibrium point EY of system (23) is global stable which is verified by Figs. 1 and 2.
Further, the following parameters is chose:

b1 = 01332, H11 = 015, ﬂll = 055, ﬂlg = 05, Ho1 = 0247 T = 01,
b2 = 0.057, H12 = 0.1, 621 = 0.57 522 = 0.2, H22 = 0.157 o = 0.15.

System (23) has a unique equilibrium point E* = (S}, I}, S5, I5). It can be calculated
that Rp = 1.0101 > 1, and Eq. (14) is satisfied. Based on the above analysis, the endemic
equilibrium point E* of system (23) is global stable, which is verified by Figs. 3 and 4.
Further, with regard to the disease-free equilibrium point of the first group, the influ-
ence of different fractional order « on the stability of the infected are discussed. The error
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Figure 3. The first group stability of the endemic equilibrium E*.

images of the infected of « = 0.4 and o = 0.75, « = 0.75 and o = 0.98 are described in
Fig. 5, respectively. It is easy to seen from Fig. 5 that although the infected will disappear,
different order o will have a sensitive effect on the change of solution. Further, when «
tends to 1, the numerical solutions of system (7) are also convergent to the solutions of the
classical ones [17]. But the relationship between the change of the solution for system (7),
and fractional order « is not discussed.
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Figure 5. The error about different fractional order of the disease-free equilibrium point.

5 Discussion

In this article, incorporating the population diffusion and time fractional-order derivatives,
theory analysis of a class of multigroup SIR epidemic model are investigated. Firstly,
the existence and uniqueness of the nonnegative solution for system (7) are established.
By using Lyapunov functions the global stability of the disease-free equilibrium point
E° is obtained when the basic reproduction number Ry < 1. Besides, when Ry > 1,
the uniform persistence and the global stability of the endemic equilibrium point E*
are discussed. The proposed model, a more accurate epidemic model, can help us to
understand some dynamical behaviors of infectious diseases. Moreover, theoretical results
may provide some useful guidance for making effective countermeasures on infectious
diseases. However, the relationship between system (7) and fractional order « is still an
open question, which will be our future work.

Acknowledgment. The plots in this paper were plotted using the plot code adapted
from [9].
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