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Abstract. This paper is explored with the stability procedure for linear nonautonomous multiterm
fractional damped systems involving time delay. Finite-time stability (FTS) criteria have been
developed based on the extended form of Gronwall inequality. Also, the result is deduced to a linear
autonomous case. Two examples of applications of stability analysis in numerical formulation are
described showing the expertise of theoretical prediction.
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1 Introduction

Fractional differential equations provide the outstanding device for account of remem-
brance and heritable characteristics of numerous complex systems. Fractional derivatives
like Caputo derivative, Riemann–Liouville derivative have their individual advantages and
disadvantages. The Riemann–Liouville derivative cannot be used in the situation when
the particular function is differentiable. In that case, the Caputo derivative can be used to
solve the differential equation. The research related to fractional-order derivatives is well
established and absolutely adequate in many different applications [1, 11, 15, 16, 26, 28].
Time delay occurs in the system subject to different causes such as communication delay,
energy conversation, etc. The appearance of time delay in system state, measurement
or control input is an unavoidable one in several practical systems [6, 7, 35, 36]. It is
the main cause for instability of the system. Time delay is one of the most analysed
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phenomena of control systems and in control process, which may cause the degradation
of the controller performance. Consequently, much attention has been paid on stability
research of dynamical systems involving time delay [13, 14, 19, 30].

Stability criteria are classified into several types such as asymptotic stability, expo-
nential stability, globally exponential stability, FTS and so on. In FTS, the considered
system’s state tends to zero in a finite time. But in other types of stability, the convergence
time is sufficiently large. In the literature, numerous reports have been established on
the asymptotic stability, which concerns the behaviours of state variable over an infinite
time interval [25]. The main disadvantage of the asymptotic stability behaviour is that the
large value of state variable may exist for the duration of transient period. The occurrence
of large values should not go beyond its limit in several practical systems. Therefore,
FTS concept has been introduced and concentrating on the behaviour of state variables
for the duration of momentary time, which must not beyond the definite value, while
the initial condition’s upper bound is specified [2]. So, the researchers developed the
FTS criteria [3, 10, 22, 33] and established several results by using Gronwall inequalities,
Holder inequalities and inequality scaling skills [17, 32, 34].

Gronwall-type inequalities play an essential role in the analysis of behaviour of solu-
tion of differential equations as well as integral equations. Also, these types of inequalities
used to model the engineering and applied science problems. The Gronwall inequal-
ity is also known as Gronwall–Bellman inequality, which bounds the solution of given
fractional system. Due to this application, many researchers followed this inequality to
analyze the existence of solution, stability related problems, oscillation and also to check
boundedness property of the given system. So, recently this inequality gets much attention
of many researchers [23, 27].

Sufficient condition of FTS analysis for a class of fractional system with time delay
has been derived by utilizing the Bellman–Gronwall’s approach in [17]. FTS of fractional
delay systems has been investigated in [8, 9, 20]. The FTS concept for the fractional-
order delay system with two parameter Mittag-Leffler matrix function is presented in [21].
In [31], the authors examined FTS of considered fractional system involving discrete
time delay. FTS of discrete fractional delay system examined by utilizing Gronwall’s
inequality approach in [32]. In [29], existence results for fractional-order damped systems
are studied by using Holder and Gronwall inequalities.

Many authors have investigated the controllability of damped system [4] and the
controllability of fractional-order damped system [5, 12], but not yet studied the stability
analysis for multiterm fractional-order damped system. FTS of multiterm fractional-order
damped dynamical system involving time delay has been studied. The key notions can be
highlighted below:

• Analyzing FTS concept, some difficulties have been occurred to bound the solution
of the considered system. To overcome this difficulty, we use the extended form of
generalized Gronwall inequality.

• Many of the previous results on fractional systems are reported without damping
effect. It is more essential to study the FTS of fractional system with damping
behaviour.
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• So, it is crucial to pay attention to check the FTS of linear nonautonomous mul-
titerm fractional damped time delay system with order 0 < α2 6 1 < α1 6 2,
which is examined by using extended form of generalized Gronwall’s inequality.

• Further, we deduce the results to linear autonomous systems.
• The formulated stability conditions can be easily validated through two numerical

examples.

The structure of the paper is outlined as follows. Problem description with necessary
facts and lemmas are given in the following section. Section 3 provides the stability cri-
teria for considered linear nonautonomous system and also some deduction from derived
results. Section 4 contains two numerical examples, which shows the validity of obtained
results. Conclusion is drawn in Section 5.

2 Problem formulation

Consider the linear nonautonomous multiterm fractional damped dynamical system

C
0 D

α1
t y(t)−AC0 D

α2
t y(t) = By(t) + Cy(t− ρ) +Du(t),

t ∈ L = [t0, t0 + T ],

y(t) = φ(t), y′(t) = φ′(t), −ρ 6 t 6 0,

(1)

with 0 < α2 6 1 < α1 6 2. Here state vector y(t) is in Rn. C0 D
α1
t and C

0 D
α2
t denote

the Caputo fractional derivative with orders α1 and α2, respectively. The matrices A, B,
C are in Rn×n, and matrix D in Rn×m. u(t) ∈ Rm denoted as control vector. ρ denotes
the pure time delay. Also, ρ is a constant, and it should be greater than zero. T is either
positive or +∞. ‖·‖ denotes the maximum norm. The following results are well known,
and this provides some hints to reach our main result.

Definition 1. (See [1].) Mittag-Leffler function (MLF) for one parameter:

Eα1,1(z) =

∞∑
k=0

zk

Γ(α1k + 1)
≡ Eα1

(z);

MLF for two parameters:

Eα1,α2
(z) =

∞∑
k=0

zk

Γ(α1k + α2)
, α1 > 0, α2 > 0.

Definition 2. (See [1].) Fractional derivative for y(t) in terms of Caputo with α1 ∈ R+

is given by

C
0 D

α1
t0,ty(t) =

1

Γ(n− α1)

t∫
t0

(t− θ)n−α1−1y(n)(θ) dθ

with n− 1 < α1 < n ∈ Z+.
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Definition 3. (See [18, Def. 2.2], [24, Def. 2.4].) System (1) is finite-time stable w.r.t
{t0, L, δ, ε, α1u, ρ} iff κ < δ and for all t ∈ L, ‖u(t)‖ < α1u implies ‖y(t)‖ < ε for all
t ∈ L, where κ = max{‖φ‖, ‖φ′‖} represents the initial time of observation of system,
and δ, α1u, ε are positive constants.

Definition 4. (See [18, 24].) System (1) is finite-time stable w.r.t {t0, L, δ, ε, ρ} at
(u(t) ≡ 0 ∀t) iff κ < δ for all t ∈ L implies ‖y(t)‖ < ε for all t ∈ L, where
κ = max{‖φ‖, ‖φ′‖} represents the initial time of observation of system, and δ, ε are
positive constants.

Lemma 1 [Generalized Gronwall inequality (GGI)]. (See [34].) Assume y(t) > 0,
v(t) > 0 be locally integrable and the continuous function r(t) > 0 is nondecreasing on
t ∈ [0, T ). Now r(t) 6M , α1 > 0 with

y(t) 6 v(t) + r(t)

t∫
0

(t− θ)α1−1y(θ) dθ, 0 6 t < T.

Then

y(t) 6 v(t) +

t∫
0

[ ∞∑
n=1

(r(t)Γ(α1))n

Γ(nα1)
(t− θ)nα1−1v(θ)

]
dθ, 0 6 t < T.

Corollary 1. (See [34].) From the assumption of above Lemma 1 and on [0, T ), v(t) is
a nondecreasing function. Then y(t) 6 v(t)Eα1

(r(t)Γ(α1)tα1).

Lemma 2 [Extended form of Gronwall inequality]. (See [29].) If both fractional orders
α1 and α2 are nonzero and positive, v(t) > 0 is locally integrable, the continuous
functions r1(t) > 0 and r2(t) > 0 are nondecreasing on [0, T ), r1(t) 6M1, r2(t) 6M2.
Assume y(t) > 0 is locally integrable on [0, T ) and

y(t) 6 v(t) + r1(t)

t∫
0

(t− θ)α1−1y(θ) dθ + r2(t)

t∫
0

(t− θ)α2−1y(θ) dθ.

Then for t ∈ [0, T ),

y(t) 6 v(t)+

t∫
0

∞∑
n=1

[
r(t)

]n n∑
k=0

ckn[Γ(α1)]n−k[Γ(α2)]k

Γ((n−k)α1+kα2)
(t− θ)(n−k)α1+kα2−1v(θ) dθ,

where r(t) = r1(t) + r2(t) and ckn = n(n− 1)(n− 2) · · · (n− k + 1)/k!.

Corollary 2. (See [29].) From the assumption of above Lemma 2 and on the interval
[0, T ), v(t) is a nondecreasing function. Then

y(t) 6 v(t)Eγ
[
r(t)

(
Γ(α1)tα1 + Γ(α2)tα2

)]
,

where γ = min{α1, α2}.
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3 Main results

Theorem 1. Assume that t0 = 0. The linear nonautonomous fractional damped sys-
tem (1) is finite-time stable w.r.t {δ, ε, L0, α1u}, δ < ε if it satisfies the following:{

1 + |t|+ ‖A‖|t|α1−α2

Γ(α1 − α2 + 1)

}
Eγ
(
r(t)

(
Γ(α1 − α2)tα1−α2 + Γ(α1)tα1

))
+

ηu0
Γ(α1 + 1)

tα1 6
ε

δ
, t ∈ L0 = [0, T ], (2)

where ηu0 = α1ud0/δ, and σmax(·) is largest singular value of matrix (·). Here σmax(Λ) =
σmax(B) + σmax(C).

Proof. One can obtain the solution of the damped system with delay given by (1) in terms
of equivalent form of Volterra integral equation:

y(t) = y(0) + ty′(0)

− Atα1−α2

Γ(α1 − α2 + 1)
y(0) +

A
Γ(α1 − α2)

t∫
0

(t− θ)α1−α2−1y(θ) dθ

+
1

Γ(α1)

t∫
0

(t− θ)α1−1
[
By(θ) + Cy(θ − ρ) +Du(θ)

]
dθ.

Now by taking norm on both sides we get the following:∥∥y(t)
∥∥ 6 ‖φ‖+ |t|‖φ′‖

+
‖A‖|t|α1−α2

Γ(α1 − α2 + 1)
‖φ‖+

‖A‖
Γ(α1 − α2)

t∫
0

|t− θ|α1−α2−1
∥∥y(θ)

∥∥ dθ

+
1

Γ(α1)

t∫
0

|t− θ|α1−1
∥∥By(θ) + Cy(θ − ρ) +Du(θ)

∥∥ dθ. (3)

Also, we can write∥∥By(t) + Cy(t−ρ) +Du(t)
∥∥ 6 ‖B‖

∥∥y(t)
∥∥+ ‖C‖

∥∥y(t−ρ)
∥∥+ ‖D‖

∥∥u(t)
∥∥. (4)

Here ‖B‖ indicates induced norm of B. Substituting (4) into (3), we get∥∥y(t)
∥∥ 6 ‖φ‖+ t‖φ′‖

+
‖A‖tα1−α2

Γ(α1 − α2 + 1)
‖φ‖+

‖A‖
Γ(α1 − α2)

t∫
0

(t− θ)α1−α2−1
∥∥y(θ)

∥∥ dθ

+
1

Γ(α1)

t∫
0

(t−θ)α1−1
[
‖B‖

∥∥y(θ)
∥∥+ ‖C‖

∥∥y(θ−ρ)
∥∥+ ‖D‖

∥∥u(θ)
∥∥] dθ.
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Now let

z(t) = sup
η∈[−ρ,t]

∥∥y(η)
∥∥, t ∈ L,∥∥y(θ)

∥∥ 6 z(θ),
∥∥y(θ − ρ)

∥∥ 6 z(θ), θ ∈ [0, t].

∥∥y(t)
∥∥ 6 ‖φ‖+ t‖φ′‖

+
‖A‖tα1−α2

Γ(α1 − α2 + 1)
‖φ‖+

‖A‖
Γ(α1 − α2)

t∫
0

(t− θ)α1−α2−1z(θ) dθ

+
1

Γ(α1)

t∫
0

(t−θ)α1−1
[
σmax(B)z(θ)+σmax(C)z(θ)+‖D‖

∥∥u(θ)
∥∥] dθ,

∥∥y(t)
∥∥ 6 ‖φ‖+ t‖φ′‖

+
‖A‖tα1−α2

Γ(α1 − α2 + 1)
‖φ‖+

‖A‖
Γ(α1 − α2)

t∫
0

(t− θ)α1−α2−1z(θ) dθ

+
σmax(Λ)

Γ(α1)

t∫
0

(t− θ)α1−1z(θ) dθ +
α1ud0

Γ(α1 + 1)
tα1

= ‖φ‖+ t‖φ′‖

+
‖A‖tα1−α2

Γ(α1 − α2 + 1)
‖φ‖+

‖A‖
Γ(α1 − α2)

t∫
0

θα1−α2−1z(t− θ) dθ

+
σmax(Λ)

Γ(α1)

t∫
0

θα1−1z(t− θ) dθ +
α1ud0

Γ(α1 + 1)
tα1 .

Here ‖u(θ)‖ 6 α1u, and σmax(B) + σmax(C) is notated as σmax(Λ).
Note that for all η ∈ [0, t], we have∥∥y(η)

∥∥ 6 ‖φ‖+ t‖φ′‖

+
‖A‖tα1−α2

Γ(α1 − α2 + 1)
‖φ‖+

‖A‖
Γ(α1 − α2)

η∫
0

θα1−α2−1z(η − θ) dθ

+
σmax(Λ)

Γ(α1)

η∫
0

θα1−1z(η − θ) dθ +
α1ud0

Γ(α1 + 1)
tα1 .
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Since the functions
∫ t
0
(θ)α1−α2−1z(t − θ) dθ and

∫ t
0
(θ)α1−1z(t − θ) dθ are increasing

w.r.t t > 0, because of increasing of the nonnegative function z(t), we get
η∫

0

(θ)α1−α2−1z(η − θ) dθ 6

t∫
0

(θ)α1−α2−1z(t− θ) dθ,

η∫
0

(θ)α1−1z(η − θ) dθ 6

t∫
0

(θ)α1−1z(t− θ) dθ.

Hence,∥∥y(η)
∥∥ 6 ‖φ‖+ t‖φ′‖

+
‖A‖tα1−α2

Γ(α1 − α2 + 1)
‖φ‖+

‖A‖
Γ(α1 − α2)

t∫
0

θα1−α2−1z(t− θ) dθ

+
σmax(Λ)

Γ(α1)

t∫
0

θα1−1z(t− θ) dθ +
α1ud0

Γ(α1 + 1)
tα1 .

Now we have

z(t) = sup
η∈[−ρ,t]

∥∥y(η)
∥∥ 6 max

{
sup

η∈[−ρ,0]

∥∥y(η)
∥∥, sup
η∈[0,t]

∥∥y(η)
∥∥}

6 max

{
‖φ‖, ‖φ‖+ t‖φ′‖+

‖A‖tα1−α2

Γ(α1 − α2 + 1)
‖φ‖

+
‖A‖

Γ(α1 − α2)

t∫
0

θα1−α2−1z(t− θ) dθ

+
σmax(Λ)

Γ(α1)

t∫
0

θα1−1z(t− θ) dθ +
α1ud0

Γ(α1 + 1)
tα1

}
,

= ‖φ‖+ t‖φ′‖

+
‖A‖tα1−α2

Γ(α1 − α2 + 1)
‖φ‖+

‖A‖
Γ(α1 − α2)

t∫
0

(t− θ)α1−α2−1z(θ) dθ

+
σmax(Λ)

Γ(α1)

t∫
0

(t− θ)α1−1z(θ) dθ +
α1ud0

Γ(α1 + 1)
tα1 .

Now we present the nondecreasing function

v(t) = ‖φ‖+ t‖φ′‖+
‖A‖tα1−α2

Γ(α1 − α2 + 1)
‖φ‖,
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and we let r1(t) = ‖A‖/Γ(α1 − α2) and r2(t) = σmax(Λ)/Γ(α1). Therefore, from the
above equation we get

z(t) 6 v(t) + r1(t)

t∫
0

(t− θ)α1−α2−1z(θ) dθ + r2(t)

t∫
0

(t− θ)α1−1z(θ) dθ

+
d0α1u

Γ(α1 + 1)
tα1 .

Now, to apply the GGI, we obtain∥∥y(t)
∥∥ 6 z(t) 6 v(t)Eγ

(
r(t)

(
Γ(α1 − α2)tα1−α2 + Γ(α1)tα1

))
,

where r(t) = r1(t) + r2(t), r1(t) = ‖A‖/Γ(α1 − α2), r2(t) = σmax(Λ)/Γ(α1), γ =
min{α1, α1 − α2} and

∥∥y(t)
∥∥ 6 δ

{
1 + t+

‖A‖tα1−α2

Γ(α1 − α2 + 1)

}
Eγ
(
r(t)

(
Γ(α1 − α2)tα1−α2 + Γ(α1)tα1

))
+

α1ud0
Γ(α1 + 1)

tα1 .

Now using condition (2), we can attain the required finite-time stability condition∥∥y(t)
∥∥ 6 ε, t ∈ L0.

This is our required result.

Corollary 3. Suppose α1 and α2 are integers, i.e., take α1 = 2 and α2 = 1. The nonau-
tonomous system with integer order defined by

d2y(t)

dt2
−Ady(t)

dt
= By(t) + Cy(t− ρ) +Du(t), t ∈ L,

y(t) = φ(t), y′(t) = φ′(t), −ρ 6 t 6 0,

(5)

where A, B, C and D are as in (1). Then the FTS condition of (5) is{
1 + |t|+ σmax(A)|t|1

1

}
er(t)(t+t

2) + ηu0

t2

2
6
ε

δ
,

where

ηu0 =
α1ud0
δ

, r(t) =
σmax(A)

1
+
σmax(Λ)

1

and Γ(2) = 1, Eγ=1(z) = ez .

Proof. Using the method of converting the differential equation with initial condition
to Volterra integral equation, we can get the solution of system (5) following in the
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equivalent form of integral equation

y(t) = y(0) + ty′(0)−Aty(0)

+A
t∫

0

y(θ) dθ +

t∫
0

(t− θ)
[
By(θ) + Cy(θ − ρ) +Du(θ)

]
dθ.

Now proceeding the same technique as in Theorem 1, we get the required proof of this
corollary.

Theorem 2. Consider the linear autonomous fractional-order damped dynamical system
involving time delay

C
0 D

α1
t y(t)−AC0 D

α2
t y(t) = By(t) + Cy(t− ρ), t ∈ L,

y(t) = φ(t), y′(t) = φ′(t), −ρ 6 t 6 0,
(6)

where A, B, C are defined as in (1). System (6) is finite-time stable w.r.t {δ, ε, L0}, δ < ε,
if {

1 + |t|+ ‖A‖|t|α1−α2

Γ(α1 − α2 + 1)

}
Eγ
(
r(t)

(
Γ(α1 − α2)tα1−α2 + Γ(α1)tα1

))
6
ε

δ
, t ∈ L0 = [0, T ], (7)

where r(t) = r1(t) + r2(t), r1(t) = ‖A‖/Γ(α1 − α2) and r2(t) = σmax(Λ)/Γ(α1).

Proof. The following y(t) is the solution of (6):

y(t) = y(0) + ty′(0)− Atα1−α2

Γ(α1 − α2 + 1)
y(0)

+
A

Γ(α1 − α2)

t∫
0

(t− θ)α1−α2−1y(θ) dθ

+
1

Γ(α1)

t∫
0

(t− θ)α1−1
[
By(θ) + Cy(θ − ρ)

]
dθ. (8)

Following similar procedure of proof of Theorem 1, we get immediate proof of this theo-
rem by using (7) and (8).

Corollary 4. Suppose that α1 and α2 are integers, i.e., take α1 = 2 and α2 = 1. Define
the autonomous system with integer order

d2y(t)

dt2
−Ady(t)

dt
= By(t) + Cy(t− ρ), t ∈ L,

y(t) = φ(t), y′(t) = φ′(t), −ρ 6 t 6 0,

(9)
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where A, B, C are as in (1). Then FTS condition of system (9) is{
1 + |t|+ σmax(A)|t|1

1

}
er(t)(t+t

2) 6
ε

δ
,

where

r(t) =
σmax(A)

1
+
σmax(Λ)

1

and Γ(2) = 1, Eγ=1(z) = ez .

Proof. The following y(t) is the solution of (9):

y(t) = y(0) + ty′(0)−Aty(0)

+A
t∫

0

y(θ) dθ +

t∫
0

(t− θ)
[
By(θ) + Cy(θ − ρ)

]
dθ.

Now proceeding the same steps as in Theorem 1, we get the required result.

4 Numerical examples

Example 1. Consider the multiterm fractional damped system
C
0 D

α1
t y(t)−AC0 D

α2
t y(t) = By(t) + Cy(t− ρ) +Du(t),

y(t) = 0, y′(t) = 0, −ρ 6 t 6 0.

The parameters are taken explicitly as α2 = 0.75, α1 = 1.25, y(t) = (y1, y2)T and

A =

[
1 0
0 −1

]
, B =

[
1 0
0 0.5

]
, C =

[
0.2 0
0 0.5

]
, D =

[
0
1

]
.

Now, to check the FTS condition w.r.t δ = 0.05, ε = 2, t0 = 0, α1u = 1,

γ = min{α1, α1 − α2} = 0.5 and ρ = 0.1.

Then ‖A‖ = 1, σmax(B) = 1 and σmax(C) = 0.5 implies σmax(Λ) = 1.5. Hence, from
this we can calculate r(t) = 2.2191 and ηu0 = 20. Applying these values to the condition
given in Theorem 1, we can get the estimated time T ≈ 0.13 of finite-time stability.

Example 2. Consider the multiterm fractional-order damped system
C
0 D

α1
t y(t)−AC0 D

α2
t y(t) = By(t) + Cy(t− ρ),

y(t) = 0, y′(t) = 0, −ρ 6 t 6 0.

The parameters are taken explicitly as α2 = 0.75, α1 = 1.25, y(t) = (y1, y2, y3)T. Also,

A =

 0 0 0
0 0 0

0.04 0.04 0

 , B =

0 0 1
0 −2 0
3 0 0

 , C =

1 0 0
0 1 0
0 0 1

 .
https://www.journals.vu.lt/nonlinear-analysis
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Now, to check the FTS condition w.r.t δ = 0.01, ε = 1, t0 = 0,

γ = min{α1, α1 − α2} = 0.5 and ρ = 0.1.

Then ‖A‖ = 0, σmax(B) = 3 and σmax(C) = 1 implies σmax(Λ) = 4. From this we can
calculate r(t) = 4.4131. Applying these values to the condition given in Theorem 2, we
can get the estimated time T ≈ 1.19 of finite-time stability.

5 Conclusion

The analysis related to stability is studied for many fractional systems using the Lyapunov
method and Gronwall inequality over the finite and infinite interval of time. So, it is
important to discuss the FTS for fractional systems with damping behaviour. This work
concerned with the FTS of multiterm time-delayed fractional-order system with 0 <
α2 6 1 < α1 6 2. For this, we obtained some inequalities with the help of Gronwall’s
inequality and its extended form, which proved our FTS results. At last, the obtained
results are verified through examples. Moreover, the results derived in this work can be
also extended to stochastic cases with various behaviours like impulses, delay in multi
states and so on.
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