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Abstract. Middle East respiratory syndrome coronavirus (MERS-CoV) remains an emerging
disease threat with regular human cases on the Arabian Peninsula driven by recurring camels to
human transmission events. In this paper, we present a new deterministic model for the transmission
dynamics of (MERS-CoV). In order to do this, we develop a model formulation and analyze
the stability of the proposed model. The stability conditions are obtained in term of R0, we find
those conditions for which the model become stable. We discuss basic reproductive number R0

along with sensitivity analysis to show the impact of every epidemic parameter. We show that the
proposed model exhibits the phenomena of backward bifurcation. Finally, we show the numerical
simulation of our proposed model for supporting our analytical work. The aim of this work is to
show via mathematical model the transmission of MERS-CoV between humans and camels, which
are suspected to be the primary source of infection.

Keywords: epidemic model, reproductive number, stability analysis, backward bifurcation,
numerical simulation.

1 Introduction

A new coronavirus was identified in Saudi Arabia in September 2012 known as Middle
Eastern respiratory syndrome coronavirus (MERS-CoV) [5, 11]. MERS-CoV is associ-
ated with an animal source in the Middle East. Besides human, MERS-CoV has been
found in camel in several countries [1]. Since its emergence in 2012, the Middle East
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respiratory coronavirus (MERS-CoV) has caused spill over from the dromedary camel
population into the human population. This virus also spread from an infected person’s
respiratory secretion such as through coughing. MERS-CoV has spread from ill people
to others through closed contacts such as caring for or living with an infected person [3].
Since April 2012 till date, there have been a total of 536 cases with 145 deaths, a case fa-
tality rate of 27 percent with the majority being reported in the Middle East (Saudi Arabia,
Jordan, and Qatar) [2]. For the forecast of dynamics of infectious diseases, see [8,10,18].

One of the largest outbreaks of MERS-CoV has been described by Assire et al. [4]
with the description that the virus is transmissible from human to human. Zumla et al. [19]
pointed out in a review article that the reason for the camel to human transmission could
be the indirect exposure, e.g., it was possible that the patient’s exposure to MERS-CoV
was consumption of unpasteurized camel milk, which is very common practice in Saudi
Arabia.

Poletto et al. [15] believed that peoples movement and maxing during Hajj and Umrah
were mainly responsible for MERS-CoV transmission. Besides, camel racing, closing and
the opening again of camel market along with climatic factors could have an impact on
the transmission of MERS-CoV from camels to humans and then among humans.

In this paper, we take the human and camel population. We construct a compartmental
model for the transmission dynamics of MERS-CoV. The model is consisting of human
population, that is: susceptible human Sh, exposed or latent human Eh, symptomatic and
infectious human Ih, infectious but asymptomatic class human Ah, hospitalized class
Hh, and recovery class human Rh. Camel population, which consists of susceptible
camel Sc, asymptomatic infected camel Xc, and symptomatic infected camel Yc. We
analyze the stability of the proposed model. The stability conditions are obtained in
terms of basic reproductive number. To find the transmission potential of diseases, we
investigate a formula for the basic reproduction number of camel to human population
and from human to human population by using next-generation matrix method. For local
stability of the proposed model (1), we use Routh–Hurwitz criteria. When the basic
reproductive number is less than one, the disease-free equilibrium of the model is locally
asymptotically stable, therefore, the disease dies out after some period of time. While
when the basic reproduction number is greater than one, the disease will prevail and
persist in the population. We also investigate the model for global stability by using
Lyapunov function theory. Sensitivity analysis was carried out on the model parameters to
analyze their impact on disease transmission. The backward bifurcation in a disease model
has an important qualitative implications. We find backward bifurcation and endemic
equilibria. Numerical simulation of the proposed model (1) was carried out, and the results
are displayed.

This article is arranged as follows. Section 2 represents the mathematical construction
of epidemic model. In Section 3, we show the positivity and boundedness of the proposed
model. In Section 4, we analyzed the stability of the proposed model. Equilibria and basic
reproductive number of model (1) are presented in Sections of 4.1 and 4.2. Section 5
deal with backward bifurcation and endemic equilibria. In Section 6, we present the
global asymptotic stability of endemic equilibrium by using Lyapunov function theory.
Numerical simulation results of the proposed model are presented in Section 7.
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2 Model formulation

In this section, we develop a compartmental epidemic model of Middle Eastern respira-
tory syndrome coronavirus (MERS-CoV). According to biological characteristics of the
MERS-CoV, we divide the total population into human and camel populations. Sh(t) is
susceptible human, Eh(t) is the exposed human, Ih(t) is symptomatic and infectious hu-
man, infectious but asymptotic class human Ah(t), hospitalized human Hh(t), recovery
class Rh(t), Sc(t) is susceptible camel, Xc(t) is asymptomatic infected camel, and Yc(t)
is symptomatic infected camel. Keeping the characteristic of Middle Eastern respiratory
syndrome coronavirus (MERS-CoV) along with the above characterization leads to the
following system of ordinary differential equations:

dSh
dt

= bh −
β1Xc + β2Yc + β3Ih + β4qHh

Nh
Sh − µ0Sh,

dEh
dt

=
β1Xc + β2Yc + β3Ih + β4qHh

Nh
Sh − (γ + µ0)Eh,

dIh
dt

= ργEh − (φa + φ1)Ih − (µ0 + µ1)Ih,

dAh
dt

= γ(1− ρ)Eh − (µ0 + µ2)Ah,

dHh

dt
= φaIh − φφHh − µ0Hh,

dRh
dt

= φ1Ih + φφHh − µ0Rh,

dSc

dt
= bc −

β5Xc + β6Yc
Nc

Sc − k1Sc,

dXc

dt
=
β5Xc + β6Yc

Nc
Sc − (k2 + γc)Xc,

dYc
dt

= γcXc − (k3 + αc)Yc

(1)

with initial size of population

Sh(0) > 0, Eh(0) > 0, Ih(0) > 0, Ah(0) > 0, Hh(0) > 0,

Rh(0) > 0, Sc(0) > 0, Xc(0) > 0, Yc(0) > 0.

Here bh is the birth rate of human population, β1, β2, β3, β4, β5, β6 show the transmission
rate per unit time, q show the approximate transmission rate of hospitalized patient.
The rate at which individuals leave the exposed class by becoming infectious is γ. ρ is
the proportion of progression from exposed class Eh(t) to symptomatic infectious class
Ih(t), 1 − ρ is that of progression to asymptotic class Ah(t), φa is the average rate at
which symptomatic individuals hospitalize, and φ1 is the recovery rate without being
hospitalized. φφ is the recovery rate of the hospitalized patient. µ0 is the natural death
rate, µ1, µ2 are death rate due to MERS-CoV.
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Figure 1. Flow chart for the transmission of MERS-CoV between camel and human population.

The camel population is represented as SI model, where bc is the birth rate of camel
population, Sc represents susceptible camels,Xc represents asymptomatic infected camels,
and Yc represents symptomatic camels. γc is the moving rate from asymptomatic camel
to symptomatic camel population. k1, k2, k3 are the natural death rate of susceptible,
asymptomatic camel, and symptomatic infected camels. αc is the death rate due to MERS-
CoV. Nh and Nc are human and camel populations, respectively.

3 Positivity and boundedness

Lemma 1. All the variables given in model (1) are positive and bounded.

Proof. The positivity follow from the standard argument [16] with which we can show
that if R10 = (s1, s2, . . . , sn) ∈ R10

+ , si > 0, for all i ∈ 1, . . . , n, then R10
+ is positively

invariant under the flow induced by model (1).
For boundedness, we call total human population in model (1) by Nh(t) and camel

population by Nc(t). Let Nh(t) represents the total human population at time t, i.e.,

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Ah(t) +Hh(t) +Rh(t).

The time differentiation of Nh(t) and the use of equations in model (1) give

dNh
dt

= bh − µ0Sh − µ0Eh − (µ0 + µ1)Ih − (µ0 + µ2)Ah − µ0Hh − µ0Rh

6 bh − µ0Nh.

This means that there exists lim supt→∞ bh/µ0. Let Nc(t) represents the total camels
population at time t,

Nc(t) = Sc(t) +Xc(t) + Yc(t),

dNc
dt

= bc − k1Sc − k2Xc − k3Yc − αcYc. 6 bc − k1Nc.

This means that there exists lim supt→∞ bc/k1.

Nonlinear Anal. Model. Control, 27(1):54–69, 2022

https://doi.org/10.15388/namc.2022.27.25256


58 B. Fatima et al.

From the above results it follows that Sh(t),Eh(t), Ih(t),Ah(t),Hh(t),Rh(t), Sc(t),
Xc(t), Yc(t) are bounded on their maximal domain. Therefore, for biological feasibility,
we study (1) in the closed set

Ω =

{
(Sh, Eh, Ih, Ah, Hh, Rh, Sc, Xc, Yc) ∈ R9

+:

0 < Sh + Eh + Ih +Ah +Hh +Rh + Sc +Xc + Yc 6
bh
µ0

+
bc
k1

}
.

The Jacobian of model (1) is given by

J0 =



−A2 0 −A3 0 −A4 0 0 −A5 −A6

B2 −B3 B4 0 B5 0 0 B6 B7

0 C1 −C2 0 0 0 0 0 0
0 C3 0 −C4 0 0 0 0 0
0 0 φa 0 −D1 0 0 0 0
0 0 φ1 0 φφ −µ0 0 0 0
0 0 0 0 0 0 −D2 D3 −D4

0 0 0 0 0 0 D5 E2

0 0 0 0 0 0 0 γc −E3


. (2)

Here

A2 = −β1Xc + β2Yc + β3Ih + β4qHh

Nh
− µ0, A3 =

β3Sh
Nh

, A4 = −β4qSh
Nh

,

A5 =
β1Sh
Nh

, A6 =
β2Sh
Nh

, B2 =
β1Xc + β2Yc + β3Ih + β4qHh

Nh
,

B3 = γ + µ0, B4 =
β3Sh
Nh

, B5 =
β4qSh
Nh

, B6 =
β1Sh
Nh

,

B7 =
β2Sh
Nh

, C1 = ργ, C2 = −(φa + φ1 + µ0 + µ1), C3 = γ(1− ρ),

C4 = µ0 + µ2, D1 = φφ + µ0, D2 = −β5Xc + β6Yc + β7Ih − k3
Nc

,

D3 = −β5Sc
Nc

, D4 =
β6Sc
Nc

, D5 =
β5Xc + β6Yc + β7Ih − k3

Nc
,

E2 =
β5Sc
Nc
− (k3 + αc)−

β6Sc
Nc

, E3 = k3 + αc. �

4 Stability analysis

We investigate the positivity and boundedness of the proposed model. We then study the
qualitative behaviour of the proposed model (1). For this, first, we find equilibria and the
threshold quantity R0.
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4.1 Equilibrium analysis and threshold quantity

For disease-free equilibria, we set all the variables and rate of change equal to zero except
Sh = Sh0, Sc = Sc0, the disease-free equilibrium of the proposed model (1) become
d0 = (bh/µ0, 0, 0, 0, 0, 0, bc/k1, 0, 0). The dynamic of this equilibrium will be discuss
with the help of linear stability analysis theory. On the basis of stability theory, we find
those condition for which the model become stable and disease spreading will be under
control. We state the dynamic of the proposed model around disease-free equilibrium with
the help of the following result.

Theorem 1. The disease-free equilibrium point (bh/µ0, 0, 0, 0, 0, 0, bc/k1, 0, 0), is lo-
cally stable if R0 < 1, otherwise, the disease-free equilibrium is unstable when R0 > 1.

In epidemiology the basic reproduction ratio of an infection can be thought of as the
expected number of cases directly generated by one case in a population when all the
population are susceptible to infection. We use next-generation matrix method to find the
basic reproductive number [6]. In Eq. (3) the matrices F̄ and V̄ contain the nonlinear and
linear terms, respectively, that is,

F̄ =


(β1Xc+β2Yc+β3Ih+β4qHh)Sh

Nh

0
0

(β5Xc+β6Yc)
Nc

Sc
0

 ,

V̄ =


(γ + µ0)Eh

ργEh − (φa + φ1)Ih − (µ0 + µ1)Ih
φaIh − φφHh − µ0Hh

(k2 + γc)Xc

γcXc − (k3 + αc)Yc

 .

(3)

The Jacobian matrices of F̄ and V̄ at disease-free equilibrium d0 are the following:

F =


0 β3Sh

Nh

β4qSh

Nh

β1Sh

Nh

β2Sh

Nh

0 0 0 0 0
0 0 0 0 0

0 0 0 β5Sc

Nc

β6Sc

Nc

0 0 0 0 0

 ,

V =


M1 0 0 0 0
−M2 M3 0 0 0

0 −φa M4 0 0
0 0 0 M5 0
0 0 0 −γc M6

 ,

where M1 = γ + µ0, M2 = ργ, M3 = (φa + φ1) + (µ0 + µ1), M4 = φφ + µ0,
and M5 = k2 + γc, M6 = k3 + αc.
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The basic reproduction number R0 is therefore the spectral radius of next-generation
matrix H̄ = FV −1. R0 = Rh +Rc, where

Rh =
γβ2ρSh

Nh(γ+µ0)(φa+φ1+µ0+µ1)
+

γφaβ3qρSh
Nh(φ1+µ0)(φa+µ0)(φ1+φφ+µ0 + µ1)

Rc =
β6Sc

Nc(k3+αc)
.

4.2 Sensitivity analysis

We present analysis of the sensitivity of a few parameters using in the proposed model.
This make it easier for us to know the parameters that have a significant effect on repro-
ductive number. We apply the technic given in [9]. Sensitivity index of basic reproductive
number R0 is given by ∆R0

h = ∂R0/∂h(h/R0), where h is parameter.
Both Figs. 2 and 3 show the sensitivity of R0. They show the importance of different

parameters in the transmission of disease and also allow to measure the change in the
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Figure 2. The graphs show the variation of different parameters and its effect on the basic reproductive number.
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Figure 3. The graphs show the variation of different parameters and its effect on the basic reproductive number.

Table 1. Values of parameters obtained in the sensitivity analysis.

Parameter Sensitivity indices Parameter Sensitivity indices
αc −0.8091519 β2 0.002044
γ 0.0014879 ρ 0.00204588
µ0 −0.0025667 µ1 −0.0001346
bh 0.0820448 bc 0.9979541
φ1 −0.000124034 φa 0.0023932
Nh −1.1975449 Nc −0.00204588
φφ −0.0095502 β3 0.00010744
Nh −1.1975449 Nc −0.00204588
κ3 −0.1888021 β6 0.4975411

reproduction number with the change in a parameter. Using these indices, we find the
parameters that highly affect the reproduction number (see Table 1).

5 Endemic equilibria and backward bifurcation

We will find the endemic equilibria of system (1), where at least one of the infected
component is non zero. Let D1 = (S∗h, E

∗
h, I
∗
h, A

∗
h, H

∗
h, R

∗
h, X

∗
c , Y

∗
c , S

∗
c ) represent any

endemic equilibrium point. Solving equations of (1) at steady state gives

S∗h =
γcβ5(Q1 + bβ6γc +Q2

2Q1β5)I∗h
β1Q1Q3 + β2Q3(1−R0)

, I∗h =
Q1Q3(β4γcβ6γc)(1−R0h)

γcbβ5 +Q1β6γc
,

E∗h =
γcβ5(Q3 + β6γc +Q2

2Q1β5 +Q2Q1β6γc)I
∗
h

(γ + µ0)(β1Q1Q3 + β2Q3 + β4Q2φa)(Q1 + β6γcQ2
2Q3β5 −Q2Q3β6γc)

,

A∗h =
γ(1− ρ)(γcβ5)(Q1 + β6γc)I

∗
h

(µ0 + µ2)(γ + µ0)(β1Q1Q3 + β2Q3 + β4Q3φa)(1−R0h)
,

H∗h =
φaI

∗
h

φφ + µ0
, R∗h =

φ1(φφ + µ0) + φaφφ)I∗h
µ0(φφ + µ0)

,

Nonlinear Anal. Model. Control, 27(1):54–69, 2022
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X∗c =
Q1Q2(β5γcbβ6γc)I

∗
h

γcbβ5 + (1−R0c)
, Y ∗c =

γcQ1Q2(β5γcβ4γc)I
∗
h

Q1(γcβ5Q1 + bβ6γc +Q2Q1β5Q2)
,

S∗c =
bNc(β1Q3Q3 + β2Q3 + β4Q2φa)(1−R0c)

bγcβ5(Q3 + bβ)
,

where Q1 = k3 + αc, Q2 = k2 + αc, Q3 = (Q2Q3β6γc − β6γc)I∗h. The significance
of backward bifurcation in the epidemiological model is that the classical requirement of
the basic reproduction number R0 should be less than one [13], while it is necessary for
the elimination of the MERS-CoV virus from the population. The presence of backward
bifurcation in the proposed model suggests that the feasibility of MERS virus elimination
when the basic reproduction number is less than one depends on the initial size of the
subpopulation of the model.

Now if Ih 6= 0, then putting S∗h, X∗c , Y ∗c , H∗h in the first equation of model (1) at
steady state and using of simple algebraic manipulation, we obtain the equation

f(Ih) = aI2h + bIh + c = 0. (4)

In Eq. (4), a, b, and c are defined as

a = bγcβ5QQ2Q3 +Q2
3β2 + bβ6γcQ

2
3,

b = bβ1Q2Q
2
3(1−R0)β6

c = bβ6γcQ
2
3 + β3qQ1Q3.

(5)

In Eq. (5), Q = Nh(γ + µ0)(φa + φ1 + µ0 + µ1) + Nc(k3 + αc). Clearly, the
coefficient a is always positive, while b is positive or negative depend on the value of R0.
As a > 0, the existence of positive solution of Eq. (4) depend on the sign of b, c, which
shows that the equilibrium depend continuously on the basic reproductive number. For
b2 < 4ac, Eq. (4) has no positive solutions, and there is no endemic equilibrium.

For R0 = 1, the following result holds.

Lemma 2. If R0 = 1, model (1) posses the phenomena of backward bifurcation when
c < 0; (see Fig. 4).
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Figure 4. Bifurcation diagram of model (1) showing backward bifurcation.
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6 Stability of endemic equilibrium

We prove the local stability of model (1) at endemic equilibria (EE). For this, we have the
following result.

Theorem 2. The endemic equilibrium pointE2 = (S∗h, E
∗
h, I
∗
h, A

∗
h, H

∗
h, R

∗
h, X

∗
c , Y

∗
c , S

∗
c )

is locally asymptotically stable if R0 > 1, and it is unstable for R0 < 1.

Proof. By applying the row operation and some simplification to the matrix (2) we have
the following Jacobian matrix:

J0 =



−A2 0 −β3Sh

Nh
0 −β4qSh

Nh
0 0 −β1Sh

Nh
−β2Sh

Nh

0 −A2 T1 0 T2 0 0 T3 T4
0 0 −T5 T6 0 0 0 0 0
0 0 0 −C2T5 T3 0 0 0 0
0 0 0 0 −T7 0 0 0 0
0 0 0 0 0 −T8 0 0 0

0 0 0 0 0 0 −D2 T7 −β6Sc

Nc

0 0 0 0 0 0 0 −E2
β6Sc

Nc

0 0 0 0 0 0 0 γc −T9


. (6)

In Eq. (6), the values of Ti for i = 1, 2, . . . , 8 are given as

T1 =
β3Sh
Nh

A2 −
β3Sh
Nh

B2, T2 =
β4qShA2

Nh
− β4qShB2

Nh
,

T3 =
β1ShA2

Nh
− β1ShB2

Nh
, T4 =

β2ShA2

Nh
− β2ShB2

Nh
,

T5 = γ(1− ρ), T6 = (µ0 + µ2)γρ,

T6 = (φφ + µ0)− φφφa, T7 = (µ0 + µ2)γρφa,

T8 = φφ(φφ + µ+ µ0) + (φφ + µ0)φa, T9 = k3 + αc.

Thus the eigenvalues of the Jacobian matrix (6) become

λ1 = −G < 0, λ2 = −(γ + µ0)A2 < 0,

λ3 = −C2γ(1− ρ) = −T5 < 0, λ4 = −C2γ(1− ρ) < 0,

λ5 = −(µ0 + µ2)γρφa < 0, λ6 = −φφ(φφ + µ+ µ0) + (φφ + µ0)φa < 0,

λ7 < 0, λ8 < 0, λ9 < 0.

Here
G =

γβ2ρ

(γ + µ0)(φa + φ1 + µ0 + µ1)
− γφaβ3qρ

(φ1 + µ0)(R0 − 1)
.

If R0 > 1, all the eigenvalues have negative real parts. λ1 < 0 if R0 > 1, which prove
the result.
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6.1 Global stability of endemic equilibrium

Theorem 3. For R0 > 1, the endemic equilibrium point D1 of model (1) is stable
globally, and it is unstable for R0 < 1.

Proof. We define the Lyapunov function as [7, 17]

U(t) =
1

2

[
(Sh − S∗h) + (Eh − E∗h) + (Ih − I∗h) + (Ah −A∗h)

+ (Hh −H∗h) + (Sc − S∗c ) + (Xc −X∗c ) + (Yc − Y ∗c )
]2
. (7)

Differentiating (7) with respect to time, we obtain

U ′(t) =
[
(Sh − S∗h) + (Eh − E∗h) + (Ih − I∗h) + (Ah −A∗h)

+ (Hh −H∗h) + (Sc − S∗c ) + (Xc −X∗c ) + (Yc − Y ∗c )
]

×
[

dSh
dt

+
dEh
dt

+
dIh
dt

+
dAh
dt

+
dHh

dt
+

dSc
dt

+
dXc

dt
+

dYc
dt

]
.

After some rearrangement and using the values of system (1), we have

U ′(t) = −
[
(Sh − S∗h) + (Eh − E∗h) + (Ih − I∗h) + (Ah −A∗h)

+ (Hh −H∗h) + (Sc − S∗c ) + (Xc −X∗c ) + (Yc − Y ∗c )
]

×
[
µ0(Sh − S∗h) + µ0(Eh − E∗h) + (µ0 + µ1)(Ih − I∗h)

+ µ0(Hh −H∗h) + (µ0 + µ2)(Ah −A∗h)− µ0Rh + µ0(Sc − S∗c )

+ µ0
(φa + φ1)(µ0 + µ1)

γρ
+

γβ2ρSh
Nc(γ + µ0)

+ k1Sc

+ (k2 + αc)X
∗
c (R0 − 1) +

γβ2ρSh
Nh(γ + µ0)(φa + φ1 + µ0 + µ1)

]
.

The last equation implies that U ′(t) < 0 for all t, while U ′(t) = 0 if Sh = S∗h,
Sc = S∗c , and R0 > 1, which prove the global stability of model (1) around the endemic
equilibrium [14].

7 Numerical simulation

To study the dynamical behavior of the MERS-CoV model, a numerical algorithm was
developed and implemented in an extensive numerical simulations by using Runge–Kutta
fourth-order method using the parameter values listed in Table 2. For the simulation
purpose, some parameters are chosen, and some are taken from the published data. The
choice of parameters are taken in such a away that would be more biological feasible.

This numerical results are given in Figs. 5–6.
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Figure 5. The plots demonstrate the time dynamics of different compartmental population susceptible, exposed,
symptomatic and infected, infected but asymptomatic, hospitalized when R0 < 1.
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Figure 6. The plots demonstrate the time dynamics of different compartmental population recover, susceptible
camels, undetected infected camels, detected infected camels when R0 < 1.

Table 2. Parameters and its values.

Notation Value Source Parameter Value Source
bh 0.09 estimated bc 0.022 estimated
β1 0.09 estimated β2 0.022 estimated
β3 0.09 estimated β4 0.022 estimated
µ0 0.09 estimated k1 0.022 estimated
φa 0.09 estimated γc 0.022 estimated
φa 0.09 estimated µ0 0.022 estimated
γ 0.026 estimated k2 0.0002 [15]
k3 0.05 estimated ρ 0.065 estimated
µc 0.023 estimated αc 0.04 [11]
q 0.004 estimated φφ 0.014 estimated
µ1 0.01 estimated µ2 0.008 estimated
β6 0.0001 estimated β7 0.008 estimated
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8 Conclusion

In this work, we showed using a deterministic model the transmission of MERS-CoV
between human population and camel population. We developed a model formulation
and discussed the stability of the proposed model. The stability conditions are obtained
in terms of R0. We found those condition under which the model become stable. The
threshold quantity R0 measures transmission potential of disease. We found R0 by using
next-generation matrix method. We performed sensitivity analysis of the basic reproduc-
tive number in order to find the most sensitive parameter. We shown that the proposed
model exhibits the phenomena of backward bifurcation. Finally, to support our analytical
work, we have shown the numerical simulation for our proposed model.

Acknowledgment. We would like to thank our institutions for all the support provided
while preparing this article.

Appendix: Proof of Theorem 1

The Jacobian matrix of the system at (F0, 0, 0, 0, 0, 0, E0, 0, 0) is given by

J0 =



−µ0 0 −β3Sh
Nh

0 −β4qSh
Nh

0 0 −β1Sh
Nh

−β2Sh
Nh

0 −(γ + µ0)
β3Sh
Nh

0 β4qSh
Nh

0 0 β1Sh
Nh

β2Sh
Nh

0 ργ −C3 0 0 0 0 0 0
0 L1 0 −L2 0 0 0 0 0
0 0 φa 0 −L3 0 0 0 0
0 0 φ1 0 φφ −µ0 0 0 0

0 0 0 0 0 0 − k3
Nc

−β5Sc
Nc

−β6Sc
Nc

0 0 0 0 0 0 D4 − k3
Nc

β6Sc
Nc

0 0 0 0 0 0 0 γc −T9


,

where L1γ(1− ρ), L2 = µ0 + µ2, and L3 = φφ + µ0.
After elementary row operation, we get the characteristic equation of the Jacobian

matrix (3):

(ζ + µ0)(ζ + γ + µ0)
(
ζ + C3(γ + µ0)

)(
ζ + C3γ(1− ρ)

)
× (ζ + C4)(ζ + µ0φa)

(
ζ3 + a1ζ

2 + a2ζ + a3
)

= 0,

where

a1 = k3 + 2
k3
Nc

+ k3 + αc, a2 = 2
k23
Nc

+ 2
k3
Nc

αc +
β5Sc
Nc

D4,

a3 =
k33
N2
c

αc +
γcβ6Sc
NcD4

+
β5ScD4

Nc
αc,

a1a2 =
k3
Nc

[
2k23 + 2k3αc + β5ScD4 + 2

k23
Nc

+ 4
k3
Nc

αc + 2k5ScD4

+ 2
k3
Nc

αc + 2α2
c +

β5D4αc
k3

]
.
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The application of Routh–Hurwitz criteria [12]

(H1) ai > 0 for i = 1, 2, 3 and a1a2 > a3

implies that the eigenvalues have negative real parts, thus model (1) is locally asymptoti-
cally stable at DFE.
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