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Abstract. This paper examines the two-dimensional laminar steady magnetohydrodynamic double-
diffusive mixed convection in a curved enclosure filled with different types of nanofluids. The
enclosure is differentially heated and concentrated, and the heat and mass source are embedded
in a part of the left wall having temperature Th (>Tc) and concentration ch (>cc). The right
vertical wall is allowed to move with constant velocity in a vertically upward direction to cause
a shear-driven flow. The governing equations along with the boundary conditions are transformed
into a nondimensional form and are written in stream function-velocity formulation, which is
then solved numerically using the Bi-CGStab method. Based on the numerical results, the effects
of the dominant parameters such as Richardson number (1 6 Ri 6 50), Hartmann number
(0 6 Ha 6 60), solid volume fraction of nanoparticles (0.0 6 φ 6 0.02), location and length of the
heat and mass source are examined. Results indicate that the augmentation of Richardson number,
heat and mass source length and location cause heat and mass transfer to increase, while it decreases
when Hartmann number and volume fraction of the nanoparticles increase. The total entropy
generation rises by 1.32 times with the growing Richardson number, decreases by 1.21 times and
1.02 times with the rise in Hartmann number and nanoparticles volume fraction, respectively.

Keywords: magneto-hydrodynamics, complex enclosure flow, mixed convection, discrete heat
source, entropy generation, double-diffusive, nanofluid.

1 Introduction

In the engineering and industrial context, a wide range of investigations has been per-
formed for natural convection using nanofluid media with various techniques to improve
the thermal conductivity and enhance the heat transfer performance of the fluid within
the enclosure. To improve thermal behavior, numerous approaches have been proposed
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involving enclosure geometry, boundary conditions, filled media, etc. Nanofluid is defined
as nanoscale particles (diameter less than 100 nm) or fibers diluted in a base fluid. In the
literature, numerous studies have been conducted on the heat transfer and flow inside
an enclosure filled with nanofluid medium [3, 34]. Heat transfer and Ag-water nanofluid
flow inside a square enclosure with a center heater is analyzed by Mahalakshmi et al.
[16]. Their outcomes indicate that an increase in heater length leads to an increase in
heat transfer rate. Conjugate natural convection flow in a square cavity in presence of
hybrid nanofluid is investigated by Ghalambaz et al. [9]. They stated that the heat transfer
rate rises due to the rise in hybrid nanoparticles and thermal conductivity ratio. Natural
convection of Ag-MgO hybrid/water nanofluid inside a porous enclosure by applying
Darcy model is studied by Mehryan et al. [23]. They concluded that the heat transport
decreases due to the dispersion of hybrid nanoparticles in the base fluid. Balushi et al. [2]
considered a nonhomogeneous dynamic model to investigate natural convection by using
magnetic nanoparticles in a square enclosure. They found that the average Nusselt number
augments as the nanoparticles volume fraction increase.

There are several cases of heat transfer under the impact of the magnetic field because
of their various variety of application in engineering areas such as chemical industry,
power and cooling industry for drying, chemical vapor deposition on surfaces, cool-
ing of nuclear reactors, crystal growth in liquids, cooling of nuclear reactors, electronic
packages, and petroleum industries. From the works of literature, the influence of the
magnetic field on the natural convection inside the enclosure decreases the convection
effect and reduces the heat transfer rate. Therefore, the interaction of nanoparticles and
the addition of nanoparticles to the fluid can improve its thermal performance (since the
thermal conductivity of solid is typically higher than that of liquids) and heat transfer
mechanism in the enclosure. Ghasemi et al. [10] was the first to use nanofluid (Al2O3-
water) as the working fluid in the presence of a magnetic field in a differentially heated
square enclosure. Their result showed that the presence of a magnetic field adversely
affects the fluid flow, and heat transfer rate increases and decreases with the increase of
the Rayleigh number and Hartmann number, respectively. Extensive research has been
performed considering the effect of magnetic fields on fluid flow inside a cavity [15, 30].

There are several studies in the literature based on the phenomena of mixed convec-
tion inside enclosures [4, 12, 17, 19]. Öztop and Salem [26] carried a review on entropy
generation in natural and mixed convection heat transfer. Mahapatra et al. [18] analyzed
the effect of buoyancy ratio on double-diffusive mixed convection with uniform and
nonuniform heating of walls in a lid-driven square enclosure. Double-diffusive mixed
convection under the influence of the magnetic field has been investigated by Uddin et
al. [33] for both uniformly and nonuniformly heated and concentrated walls. Double-
diffusive mixed convection in a shallow inclined cavities with different inclination angles,
Lewis numbers, and buoyancy ratios is numerically performed by Teamah et al. [32].
They observed that the mass transfer rate increases by increasing Lewis number, but there
is no change in heat transfer rate. Also, the average Nusselt number and Sherwood number
enhance with the rise in the buoyancy ratio.

Natural convection heat transfer in corrugated or wavy enclosures is gaining the at-
tention of most researchers for enhancing the efficiency of heat and mass transfer. Over
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the last few years, natural convection in complex enclosures has been carried out by
various researchers [20,25,31]. Rahimpour and Moraveji [28] examined the heat transfer
of MHD free convection in a C-shaped chamber filled with Fe3O4/water nanofluids. They
examined the impact of Hartmann, Rayleigh numbers, chamber tilted angle, nanoparticles
concentration, and chamber geometrical parameter on thermal performance and fluid flow
structures. Rashed et al. [29] carried out the buoyancy-driven flow of hybrid nanofluids
within an inclined two-sided wavy enclosure considering magneto-convection flow. Bezi
et al. [5] studied the entropy generation and heat transfer flow in a semiannular enclo-
sure filled with nanofluid. Their results show that the entropy generation strengthened
by increasing the Rayleigh number. Ahmed [1] performed natural convection of dusty
hybrid nanofluids in diverging-converging cavities including volumetric heat sources. The
heat transfer of MHD flow of Newtonian nanoliquid in a baffled U-shaped enclosure is
investigated by Zaim et al. [35]. The Fe3O4-H2O nanofluid flow inside a Novel shape
porous cavity is examined by Molana et al. [24] subjected to magnetic-field-dependent
viscosity. They deduced that the Nusselt number has a direct relationship with the aspect
ratio. Chamkha et al. [7] investigated the entropy generation of nanofluid flow inside
a gamma-shaped porous cavity considering the magnetic field. They found that by raising
the nanoparticle volume fraction the heat transfer rate and entropy generation enhance.

From our investigations there are limited attempts focused on mixed convection flow
inside a complex enclosure filled with nanofluid. Thus, the aim of the present work is
to investigate the steady MHD double-diffusive mixed convection in a curved enclosure
filled with nanofluid. The reasons for selecting this model are:

• Importance of this curved fluid flow geometry (or curved duct) [8, 13, 21] in many
engineering and technological systems such as compact heat exchangers, steam
boilers, thermal power generation, aircraft engines, etc.

• Its originality since limited work has been done in such geometry considering
double-diffusive mixed convection as the mode of heat transfer and nanofluid as
the medium.

The influence of Richardson number, the solid volume fraction of nanoparticles, the
type of nanofluids, and heat and mass source length and location on the average Nusselt
number, Sherwood number, and total entropy generation have been studied. This paper is
organized as follows. Section 2 presents the physical model. Section 3 includes mathemat-
ical formulation. Section 4 discusses the numerical implementation and code validation.
Section 5 presents the results and discussion. Finally, a conclusion is given in Section 6.

2 Physical model

The schematic diagram of the system considered in this paper is depicted in Fig. 1. The
enclosure is of length L, and a discrete heat and concentration source of dimensionless
length H are located at the left wall of the enclosure having constant hot temperature Th
and concentration ch. The remaining part of the left wall and the right wall are considered
to be at constant temperature and concentration of Tc (<Th) and cc (<ch), respectively.
The top and bottom walls are assumed to be adiabatic and impermeable. Furthermore,
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Figure 1. Schematic representation of geometry and boundary conditions in dimensional form.

the right wall of the enclosure is allowed to move in upward direction with a constant
velocity of V0, while all the remaining walls are at rest. An external magnetic field with
uniform strength B0 and the gravitational force g are applied in the vertically downward
direction. The fluid inside the enclosure is a water-based nanofluid containing different
types of nanoparticles such as Cu, Ag, Al2O3, and TiO2. There is no slip between the
particles of the base fluid and the nanoparticles, and they are assumed to be in thermal
equilibrium. In dimensional form, the lower and upper wall of the enclosure is defined by
the functions

f1(x) = a sin

(
π
x

L

)
, f2(x) = L+ a sin

(
π
x

L

)
,

where a is the amplitude of the sinusoidal walls. The nanofluid is considered to be New-
tonian, and the flow is steady, incompressible, and viscous.The viscous dissipation and
magnetic dissipation are expected to be negligible.The flow is directed by a combined
buoyancy effect due to both temperature and concentration variations. The density varia-
tion is described by the following formula:

ρ = ρ0
[
1− βT (T − Tc)− βs(c− cc)

]
,

where T and c are the dimensional temperature and solute concentration, respectively, and
ρ, βT , βs are the fluid density, volumetric coefficient of thermal expansion, and volumetric
coefficient of solutal expansion, respectively.

3 Mathematical formulations

3.1 Thermo-physical properties of nanofluid

The thermo-physical properties of the base fluid and nano-sized particles are tabulated
in Table 1, where Cp, k, σ, µ, and α indicate the specific heat, thermal conductivity,
electrical conductivity, dynamic viscosity, and thermal diffusivity, respectively.
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Table 1. Thermophysical properties of the base fluid (pure water) and nanoparticle.

Properties Pure water Al2O3 Cu Ag TiO2

Cp (J kg−1K−1) 4179 765 385 235 686.2
k (W m−1K−1) 0.623 40 400 429 8.9538
ρ (kg m−3) 997.1 3970 8933 10500 4250
βT (K−1) 21 · 10−5 0.8 · 10−5 1.67 · 10−5 1.8 · 10−5 0.9 · 10−5

σ (kg−1m−3s3A2) 0.05 3.69 · 107 5.69 · 107 6.30 · 107 2.38 · 106
µ (kg m−1s−1) 0.001003 – – – –
α (m2s−1) 0.143 · 10−6 – – – –

The effective density ρnf , specific heat (ρCp)nf , thermal expansion coefficient (ρβ)nf
of the nanofluid, according to [3], are:

(ρnf ) = (1− φ)ρf + φρs, (ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)s

and

(ρβT )nf = (1− φ)(ρβT )f + φ(ρβT )s.

Effective dynamic viscosity µnf and the effective thermal conductivity knf of the nano-
fluid, which are obtained from Brinkman model [6] and Maxwell’s model [22], respec-
tively, are introduced as

µnf = µf (1− φ)−2.5 and knf = kf

(
ks + 2kf − 2φ(kf − ks)

ks + 2kf + φ(kf − ks)

)
.

Finally, the thermal diffusivity and electrical conductivity of the nanofluid are defined,
respectively, as

αnf =
knf

(ρCp)nf
and σnf = σf

(
1 +

3(ζ − 1)φ

(ζ + 2)− (ζ − 1)φ

)
.

Here φ represents the volume fraction of the nanoparticle, and ζ = σs/σf . The subscripts
f , s, and nf are used to refer base fluid, solid particle, and nanofluid, respectively.

3.2 Governing equations

The equations, which govern the double-diffusive flow, are given in dimensional form [4].
Continuity equation:

∂u

∂x
+
∂v

∂y
= 0. (1)

Momentum conservation equations:

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρnf

∂p

∂x
+ νnf

[
∂2u

∂x2
+
∂2u

∂y2

]
− σnf B

2
0 u

ρnf
, (2)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρnf

∂p

∂y
+ νnf

[
∂2v

∂x2
+
∂2v

∂y2

]
+
g(ρβT )nf
ρnf

(T − Tc).

+
g(ρβS)nf
ρnf

(c− cc). (3)
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Energy equation:

u
∂T

∂x
+ v

∂T

∂y
= αnf

[
∂2T

∂x2
+
∂2T

∂y2

]
. (4)

Concentration equation:

u
∂c

∂x
+ v

∂c

∂y
= D

[
∂2c

∂x2
+
∂2c

∂y2

]
. (5)

Here u and v are the dimensional velocities along the x and y directions, p represents the
dimensional fluid pressure, and D is the mass diffusivity.

Following transformation of variables are used to convert system (1)–(5) into nondi-
mensional form:

X =
x

L
, Y =

y

L
, U =

u

V0
, V =

v

V0
,

P =
p

ρnf V 2
0

, θ =
T − Tc
Th − Tc

, C =
c− cc
ch − cc

.
(6)

The resulting nondimensional continuity, momentum, energy, and concentration equa-
tions can be written as

∂U

∂X
+
∂V

∂Y
= 0,

U
∂U

∂X
+ V

∂U

∂Y
= − ∂P

∂X
+

µnf

ρnf νf

1

Re

[
∂2U

∂X2
+
∂2U

∂Y 2

]
− σnf ρf
σfρnf

Ha2

Re
U, (7)

U
∂V

∂X
+ V

∂V

∂Y
= −∂P

∂Y
+

µnf

ρnf νf

1

Re

[
∂2V

∂X2
+
∂2V

∂Y 2

]
+

(ρβT )nf
ρnf βf

Ri(θ +NC), (8)

U
∂θ

∂X
+ V

∂θ

∂Y
=
αnf

αf

1

RePr

[
∂2θ

∂X2
+
∂2θ

∂Y 2

]
, (9)

U
∂C

∂X
+ V

∂C

∂Y
=

1

LeRePr

[
∂2C

∂X2
+
∂2C

∂Y 2

]
,

where U and V are the dimensionless velocities along the X and Y directions, P , θ, and
C represent the dimensionless pressure, temperature, and concentration, respectively.

The nondimensional parameters are given by

Pr =
νf
αf
, Le =

αf
D
, Gr =

g βf (Th − Tc)L
3

ν2f
, Re =

V0L

νf
,

Ha =

√
σf
µf
B0L, Ri =

Gr

Re2
, N =

(ρβs)nf (ch − cc)

(ρβT )nf (Th − Tc)
,
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where Pr , Le , Gr , Re , Ha , Ri, and N are Prandtl number, Lewis number, Grashof
number, Reynolds number, Hartmann number, Richardson number, and buoyancy ratio,
respectively.

The lower and upper sinusoidal wall in nondimensional form can be written as

F1(X) = A sin(πX), F2(X) = 1 +A sin(πX),

where A = a/L(= 0.2) is the dimensionless amplitude of the sinusoidal walls.
The imposed boundary conditions on the enclosure in nondimensional form on top

and bottom wall:

U = V = 0,
∂θ

∂Y
=
∂C

∂Y
= 0;

on right wall:

U = 0, V = 1, θ = 0 = C, X = 1;

on left wall:

U = 0, V = 0;

having heat and mass source:

θ = 1 = C for R− H

2
6 Y 6 R+

H

2
, X = 0;

without heat and mass source:

θ = 0 = C for 0 6 Y < R− H

2
, R+

H

2
< Y 6 1, X = 0.

Here R = r/L and H = h/L.

3.3 Nusselt number and Sherwood number

The local Nusselt number Nu and local Sherwood number Sh at the left wall is defined
as

Nu = −knf
kf

∂θ

∂X
and Sh = − ∂C

∂X
.

The average Nusselt number Nuavg and average Sherwood number Shavg are obtained
by integrating local Nusselt number Nu and local Sherwood number Sh , respectively:

Nuavg =

R+H/2∫
R−H/2

Nu dY and Shavg =

R+H/2∫
R−H/2

Sh dY.

To evaluate the integrals, a Simpson’s (1/3)rd rule of integration is implemented.
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3.4 Governing equations for entropy generation

The boundary conditions imposes nonequilibrium flow in the flow field that causes en-
tropy generation. The local entropy generation equations in dimensional form are

sθ =
knf
T 2
0

[(
∂T

∂x

)2
+

(
∂T

∂y

)2 ]
,

sψ =
µnf

T0

[
2

((
∂u

∂x

)2
+

(
∂v

∂y

)2)
+

(
∂u

∂y
+
∂v

∂x

)2 ]
,

sm =
σnf
T0

B2
oU

2,

sd =
RcD

c0

[(
∂c

∂x

)2
+

(
∂c

∂y

)2 ]
+
RcD

c0

[(
∂c

∂x

)(
∂T

∂x

)
+

(
∂c

∂y

)(
∂T

∂y

)]
,

where sθ, sψ , sm, and sd are entropy generation due to heat transfer, fluid friction,
magnetic field, and solutal concentration, respectively. The dimensionless forms of the
local entropy generation expression using the dimensionless quantities in (6) are given by

Sθ =
knf
kf

[(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2 ]
,

Sψ = λ1
µnf

µf

[
2

((
∂U

∂X

)2
+

(
∂V

∂Y

)2)
+

(
∂U

∂Y
+
∂V

∂X

)2 ]
,

Sm = λ1
σnf
σf

Ha2U2,

Sd = λ2

[(
∂C

∂X

)2
+

(
∂C

∂Y

)2 ]
+ λ3

[(
∂C

∂X

)(
∂θ

∂X

)
+

(
∂C

∂Y

)(
∂θ

∂Y

)]
,

where

λ1 =
µfT0
kf

(
V0

(Th − Tc)

)2

, λ2 =
RcDT0
kfC0

(
ch − cc
Th − Tc

)2
,

λ3 =
RcD

kf

(
ch − cc
Th − Tc

)
are called irreversibility distribution ratios and taken as λ1 = 0.0001, λ2 = 0.5, and λ3 =
0.01. HereRc is the gas constant, T0 and C0 are bulk temperature and bulk concentration,
respectively, and could be calculated as T0 = (Th + Tc)/2 and C0 = (ch + cc)/2,
respectively.

The average entropy generation due to heat transfer Sθ,avg, fluid friction Sψ,avg,
magnetic field Sm,avg, and diffusion Sd,avg are obtained by integrating the local entropy
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generation by the system volume:

Sθ,avg =

∫
V

Sθ dV, Sψ,avg =

∫
V

Sψ dV,

Sm,avg =

∫
V

Sm dV, Sd,avg =

∫
V

Sd dV.

The total entropy generation is given by Stotal = Sθ,avg + Sψ,avg + Sm,avg + Sd,avg.

4 Numerical technique

4.1 Methodology

The stream function ψ and vorticity ω in nondimensional form are given by

U =
∂ψ

∂Y
, V = − ∂ψ

∂X
, and ω =

∂V

∂X
− ∂U

∂Y
, (10)

which gives a single equation

∂2ψ

∂X2
+
∂2ψ

∂Y 2
= −ω. (11)

Using Eq. (10) and eliminating pressure term from Eqs. (7) and (8), we get

µnf

ρnf νf

1

Re

(
∂2ω

∂X2
+
∂2ω

∂Y 2

)
−
(
U
∂ω

∂X
+ V

∂ω

∂Y

)
+

(ρβT )nf
ρnf βf

Ri

(
∂θ

∂X
+N

∂C

∂X

)
+
σnf ρf
σfρnf

Ha2

Re

∂U

∂Y
= 0. (12)

The presence of the curved walls make it difficult to impose the curve boundary
on rectangular grids. Thus, transformation is required to convert the irregular physical
domain (X,Y ) into a regular (square) computational domain (ξ, η); see Fig. 2. In this
study, we have considered the following coordinate transformation:

ξ = X, η =
Y − F1(X)

F2(X)− F1(X)
.

Using the above transformation, the sinusoidal boundaries are transformed into the straight
lines.

The equations can be evaluated in ξ − η domain using the following relationship:(
∂ξ
∂X

∂ξ
∂Y

∂η
∂X

∂η
∂Y

)
=

1

J

(
∂Y
∂η −∂X

∂η

−∂Y
∂ξ

∂X
∂ξ

)
, J =

∂(X,Y )

∂(ξ, η)
=

∣∣∣∣∣∂X∂ξ ∂X
∂η

∂Y
∂ξ

∂Y
∂η

∣∣∣∣∣ .
Here J is the Jacobian of the transformation.
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Figure 2. Mapping of physical domain (a) to computational domain (b).

Using the above relations, the governing equations (8), (9), (11), and (12) can be
written in new transformed coordinates as

a3
∂2θ

∂ξ2
+ e3

∂2θ

∂ξ∂η
+ b3

∂2θ

∂η2
+ c3

∂θ

∂ξ
+ d3

∂θ

∂η
= 0,

a4
∂2C

∂ξ2
+ e4

∂2C

∂ξ∂η
+ b4

∂2C

∂η2
+ c4

∂C

∂ξ
+ d4

∂C

∂η
= 0,

a1
∂2ψ

∂ξ2
+ e1

∂2ψ

∂ξ∂η
+ b1

∂2ψ

∂η2
+ c1

∂ψ

∂ξ
+ d1

∂ψ

∂η
= −ω, (13)

a2
∂2ω

∂ξ2
+ e2

∂2ω

∂ξ∂η
+ b2

∂2ω

∂η2
+ c2

∂ω

∂ξ
+ d2

∂ω

∂η
+
σnf ρf
σfρnf

Ha2

Re

(
1

J

∂U

∂η

)
+

(ρβT )nf
ρnf βf

Ri

[(
∂θ

∂ξ
+
e1
2

∂θ

∂η

)
−N

(
∂C

∂ξ
+
e1
2

∂C

∂η

)]
= 0, (14)

where
U =

1

J

∂ψ

∂η
and V = −∂ψ

∂ξ
− e1

2

∂ψ

∂η
.

We get the following biharmonic equation in stream function-velocity formulation by
substituting ω from Eq. (13) and writing in (14):

a2
∂4ψ

∂ξ4
+ 2e2

∂4ψ

∂ξ3∂η
+ T1

∂4ψ

∂ξ2∂η2
+ 2e2b1

∂4ψ

∂ξ∂η3

+ b1b2
∂4ψ

∂η4
+ c2

∂3ψ

∂ξ3
+ T2

∂3ψ

∂ξ2∂η
+ T3

∂3ψ

∂ξ∂η2
+ T4

∂3ψ

∂η3

+ T5
∂2ψ

∂ξ∂η
+ T6

∂2ψ

∂η2
+ T7

∂ψ

∂η
− σnf ρf
σfρnf

Ha2

Re

(
1

J

∂U

∂η

)
− (ρβT )nf

ρnf βf
Ri

[(
∂θ

∂ξ
+
e1
2

∂θ

∂η

)
−N

(
∂C

∂ξ
+
e1
2

∂C

∂η

)]
= 0.

The calculations are performed in computational domain, and the results are then
transformed back to the physical domain. The transformed equations are discretized using
a second-order central difference scheme. The set of discretized equations for each vari-
able are solved by using an outer-inner iteration procedure, biconjugate gradientstabilized
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method (BiCGStab) [14, 27]. The tridiagonal system(
∂ψ

∂ξ

)
i+1,j

+ 4

(
∂ψ

∂ξ

)
i,j

+

(
∂ψ

∂ξ

)
i−1,j

=
3

d
(ψi+1,j − ψi−1,j),(

∂ψ

∂η

)
i,j+1

+ 4

(
∂ψ

∂η

)
i,j

+

(
∂ψ

∂η

)
i,j−1

=
3

d
(ψi,j+1 − ψi,j−1)

is solved by using Thomas algorithm to get ∂ψ/∂ξ and ∂ψ/∂η. After obtaining ∂ψ/∂ξ
and ∂ψ/∂η, we compute U and V .

The numerical method was implemented in FORTRAN software. The convergence
criterion is that the difference of values of all the variables between two consecutive
iterations is less than 0.5 · 10−6.

4.2 Code validation and grid independence study

Accuracy tests were made for ψmin in Table 2 for grid independence using the four sets
of grids: 21×21, 41×41, 81×81, and 161×161. A good agreement was found between
81×81 and 161×161 grids, so the numerical computations were carried out using 81×81
grid nodal points.

The present results have been authenticated successfully in three steps:

• With the work of Ghasemi et al. [10], for Nuavg, using various Hartmann numbers
in a differentially heated square cavity at Pr = 6.2, φ = 0.02, and Ra = 105;
shown in Table 3.

• With the result of Mahapatra et al. [18], in a square enclosure maintained at different
temperatures and concentrations as represented in Figs. 3(a) and 3(b). The average
Nusselt number and average Sherwood number at the lower wall were compared
when Pr = 0.7, Le = 2.0, and N = 1.0 for various values of Rayleigh number.

• With the work of Gupta and Kalita [11], for ψmin, using various Reynolds numbers
in a lid-driven square cavity; shown in Fig. 3(c).

It is clear from Table 3 and Fig. 3 that the obtained results of the present work illustrate
good agreement with those from the earlier investigations, and therefore, we get the
confidence of the present numerical code.

Table 2. Grid independence test for ψmin at Ha = 30, φ = 0.01, Le = 2,
H = 0.4, R = 0.5, and Ri = 10.

Grid size 21× 21 41× 41 81× 81 161× 161

ψmin −0.0201 −0.0211 −0.0267 −0.0235

Table 3. Comparison of the average Nusselt number Nuavg with
results of Ghasemi et al. [10].

Ha = 0 Ha = 15 Ha = 30 Ha = 45 Ha = 60

Ghasemi et al. [10] 4.82 4.14 3.15 2.36 1.85
Present 4.78 4.07 3.11 2.32 1.83
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Figure 3. Comparison of present results: (a), (b) with Mahapatra et al. [18]; with (c) Gupta and Kalita [11].

5 Results and discussion

The present work investigated numerically MHD double-diffusive mixed convective heat
and mass transfer and entropy generation in a curved enclosure filled with different types
of nanofluids and subjected to discrete heating. The right wall is moving in an upward
direction. The influence of various physical parameters such as Richardson number, Hart-
mann number, heat and mass source location and length, the volume fraction of nanopar-
ticles are examined in terms of streamlines, isotherms, isoconcentrations, entropy gen-
eration, average Nusselt number, and average Sherwood number. We have carried out
the simulation for fixed Prandtl number (Pr = 6.2), Reynolds number (Re = 100), and
Buoyancy ratio (N = 2).

5.1 Effects of Richardson number

In the mixed convection problem, the Richardson number is used to show the importance
of natural convection relative to the forced convection. It might be noticed that free
convection phenomena are studied for Ri > 10, and mixed convection effects can be
visualized for Ri = 1. Figure 4 describes the contour of streamlines, isotherms, and
isoconcentrations for various values of Richardson number (1 6 Ri 6 50) inside the
enclosure filled with Cu-water nanofluid (φ = 0.01) at Ha = 30, Le = 2, R = 0.5,
H = 0.4. At low Richardson number (Ri = 1), the thermal buoyancy forces and inertia
forces are in balance. The distribution of streamlines shows the mixed convection effect
with two counter-rotating vortices, and the isotherm and isoconcentration patterns are ap-
peared to be linear. As the Richardson number increases (Ri > 10), the buoyancy forces
predominate the inertia forces, and hence, the natural convection becomes more effective
than mixed convection. From the figure it is observed that the secondary anticlockwise
vortices adjacent to the right cold wall begin to vanish, and the enclosure is filled with
primary clockwise vortices. The strength of fluid flow increases from ψmin = −0.016 for
Ri = 1 to ψmin = −0.283 for Ri = 50. The isotherm and isoconcentration lines show
a similar pattern due to similarity in energy and mass equation. They become irregular
and spread in an upward direction signifying convection mode. The isoconcentration
lines are found to be more compressed than isothermal lines resulting in a high mass
transfer rate compared to heat transfer. From the observations we can conclude that the
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Figure 4. Streamlines, isotherms and isoconcentrations for different Ri at Ha = 30, Le = 2, R = 0.5,
H = 0.4 and φ = 0.01.
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Figure 5. Variation of total entropy generation Stotal, Nusselt number Nuavg and Sherwood number Shavg

for different values of Ri at R = 0.5, H = 0.4,Ha = 30 and Le = 2.

natural convection effect is dominating over the mixed convection. Figure 5(a) depicts
the variation of total entropy generation with Ri. It is observed that Stotal increases
with Ri and is found to be high for pure fluid (φ = 0.0) than nanofluid. The heat and
mass transfer rate are determined using the average Nusselt Nuavg and Sherwood Shavg

numbers, respectively. From Figs. 5(b) and 5(c) it can be seen that irrespective of other
parameters, the increase in Ri escalates Nuavg and Shavg due to enhanced convection,
and consequently, heat and mass transfer is increasing function of Richardson number.
Also, the Nuavg and Shavg decrease with the addition of nanoparticles.

5.2 Effects of Hartmann number

Figure 6 illustrates the effect of the magnetic field parameter Ha (0 6 Ha 6 60) in terms
of streamlines, isotherms, and isoconcentrations. As seen from the figure, the flow field,
temperature, and concentration distribution have an inverse relation with the magnetic
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Figure 6. Streamlines, isotherms, and isoconcentrations for different Ha at Ri = 10, Le = 2, R = 0.5,
H = 0.4, and φ = 0.01.
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Figure 7. Variation of total entropy generation Stotal, Nusselt number Nuavg, and Sherwood number Shavg

for different values of Ha at Ri = 10, H = 0.4, R = 0.5, and Le = 2.

field effect. In the absence of magnetic field, i.e., at Ha = 0, the intensity of circulation
is strong and compact due to the dominant shear effect, which produces high convection
mode. Further, the isotherm and isoconcentration contours are highly concentrated near
heat and mass sources. But when the Hartmann number increases (i.e., Ha = 30 and
60), the strength of flow circulation weakens because of the presence of Lorentz force,
which decelerates the flow velocity and results in an attenuation of convection mode
and intensification of conduction mode. It is observed that value of ψmin = −0.022
for Ha = 0 and drops to ψmin = −0.053 for Ha = 60. The concentrated region of
isotherms and isoconcentrations adjacent to the sources becomes less compressed and
smooth. It is noted that the thermal boundary layer begins to fade with the ascending
values of Ha . Figure 7(a) shows the variation of total entropy generated versus Ha . In our
analysis, the entropy decreases when Ha increases. Therefore, we may conclude that the
presence of a high value of Ha can be used to minimize entropy generation in engineering
systems. Influence of Hartmann number on Nuavg and Shavg is plotted in Figs. 7(b) and
7(c). Nuavg and Shavg attenuate with the enhancement of Ha as the presence of a strong

Nonlinear Anal. Model. Control, 27(2):308–330, 2022

https://doi.org/10.15388/namc.2022.27.25338


322 R. Parveen, T.R. Mahapatra

magnetic field intensifies the conduction mechanism and consequently reduces the heat
and mass transfer rate.

5.3 Effect of heat source location and length

The effects of heat and mass source locations R are depicted in Fig. 8 at φ = 0.01, Ha =
30, H = 0.4, Le = 2, Ri = 10. The intensity of the fluid motion significantly rises when
the source position moves up and also the size of the circulation cell changes. The location
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Figure 8. Streamlines, isotherms, and isoconcentrations for different heat and mass source location atRi = 10,
Ha = 30, Le = 2, H = 0.4, and φ = 0.01.
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Figure 9. Streamlines, isotherms, and isoconcentrations for different heat and mass source size at Ri = 10,
Ha = 30, Le = 2, R = 0.5, and φ = 0.01.
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Figure 10. Variation of total entropy generation Stotal, Nusselt number Nuavg, and Sherwood number Shavg

for different values of R at Ri = 10, H = 0.4, Ha = 30, and Le = 2.
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Figure 11. Variation of total entropy generation Stotal, Nusselt number Nuavg, and Sherwood number Shavg

for different values of H at Ri = 10, R = 0.5, Ha = 30, and Le = 2.

of sources has a direct effect on the pattern of streamlines. It is found that the upper
corner’s circulating zones grew up and the lower corner’s circulating zones dwindled by
changing the source position from lower to upward. Also, the strength of isotherm and
isoconcentration lines indicate that the conduction mode changes to convection mode with
the increase in the source location. Numerical simulations of heat and mass source length
H on the fluid flow, heat, and mass transfer are shown in Fig. 9. It is observed that when
H is small, the shear-driven force is dominant as compared to the buoyancy force. The
streamlines show primary clockwise circulation in the major part of the enclosure and
secondary anticlockwise circulation adjacent to the cold right wall. When H increases,
the buoyancy force increases considerably, which augments the circulation strength and
decreases the effect of shear-driven force. The size of the primary circulation grows
bigger, while the secondary circulation reduces as H increases and also the performance
of the thermal process increases. The reason for all these behaviors is the total heat input
that increases as the heat and mass source length increase. The temperature and concen-
tration contours become more skewed for H = 0.8 due to an increase in temperature
and concentration gradient with the increase in source length. Figure 10(a) presents the
variation of total entropy generation with φ for different R. As the heat transfer rises at
R = 0.8, the total entropy is also expected to be maximum. It is also observed that
for all R, the entropy generation drops with the increase in φ. Figure 11(a) shows the
variation of total entropy generated versus H . The total entropy generation is maximum
for H = 0.8 due to heat transfer irreversibility, solutal concentration irreversibility, and

Nonlinear Anal. Model. Control, 27(2):308–330, 2022

https://doi.org/10.15388/namc.2022.27.25338


324 R. Parveen, T.R. Mahapatra

fluid friction irreversibility.Also, the addition of the nanoparticles to the pure fluid leads
to a decrease in total entropy generation for all values of H . This happens due to an
increase in viscosity that increases the fluid friction and significantly affects the entropy
generation. Figures 10(b), 10(c) and 11(b), 11(c) show the variation of average Nusselt
number and Sherwood number with the volume fraction of nanoparticles for different heat
and mass source size and location. Both Nuavg and Shavg number increase with rise in R
and H . This happened because maximum temperature increases.

5.4 Effects of nanoparticle volume fraction

Figure 12 explains the effect of nanoparticles volume fraction φ (0.0 6 φ 6 0.02) on
streamlines, isotherms, and isoconcentrations inside the enclosure at Ri = 10, H = 0.4,
R = 0.5, Ha = 30. It is seen that the effect of the volume fraction parameter is not
prominent on streamlines. The fluid motion is represented by one primary clockwise
circulation and secondary counter-clockwise circulation for all cases. The increase in
the nanoparticle volume fraction results in a decrease in strength of circulation. The value
of ψmin = −0.313,−0.283,−0.249, respectively, for φ = 0.0, 0.01, 0.02. This behavior
is due to an increase in the fluid viscosity caused by the increase in φ and hence results
in a decrease in flow velocity. The convection effect decreases at a high solid volume
fraction of nanoparticles, and hence, the isotherms and isoconcentrations change from
irregular shape for pure fluid to regular shape for nanofluid φ = 0.02. A rise in φ enhances
the thermal conductivity that consequently enhances the temperature and concentration
gradient and leads to a reduction in entropy generation. Figure 13(a) shows the influence
of various types of nanoparticles on total entropy generation. It is detected that the total
entropy generation decreases with rising in the volume fraction of nanoparticles (Cu,
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Figure 12. Streamlines, isotherms, and isoconcentrations for different volume fraction of nanoparticles atRi =
10, Ha = 30, Le = 2, R = 0.5, and H = 0.4.
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Figure 13. Variation of total entropy generation Stotal, Nusselt number Nuavg, and Sherwood number Shavg

for different types of nanoparticles at Ri = 10, R = 0.5, Ha = 30, and Le = 2.
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Figure 14. Nusselt number Nuavg and Sherwood number Shavg for different Lewis number at Ri = 10,
R = 0.5, H = 0.4, and Ha = 30.

Al2O3, Ag, and TiO2), and minimum entropy generation is obtained in case of TiO2

nanoparticles. The variation of the heat and mass transfer rate is shown in Figs. 13(b)
and 13(c) for various types of nanoparticles. Here we find that the highest rate of heat and
mass transfer rate is obtained by adding TiO2 compared to other nanoparticles. Due to
the presence of nanoparticles, the fluid velocities decrease due to an increase in dynamic
viscosity and induce resistance against the fluid motion, which in turn reduces the heat
and mass transfer rate. Figures 14(a) and 14(b) show Nuavg and Shavg for different Lewis
number and volume fraction of nanoparticles. An increase in Le causes the solutal force
to rise and tends to increase the mass transfer rate. A reverse trend is observed by the
average Nusselt number, which decreases with a rise in Le .

6 Conclusion

In the present study, we have adopted a dome-shaped enclosure filled with nanofluid
to study MHD double-diffusive mixed convection in the presence of discrete heating.
We have considered water-based nanofluids using different types of nanoparticles. The
dimensional governing equations are then converted to dimensionless forms using suitable
transformations. The resulting nondimensional forms of the equations were written in
stream function-velocity formulation and solved numerically using the BiCGStab method
followed by the Thomas algorithm. The effect of governing parameters on the heat trans-
fer as well as on the entropy generation is analyzed. It is found that the considered model
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is convenient for entropy generation minimization. Several significant conclusions drawn
from this study are listed in the following:

• An increase in Richardson number augments the strength of convection effect due
to stronger buoyant force, and therefore, better enhances the heat and mass transfer
rate.

• At low Richardson number, the increase in the volume fraction of nanoparticles
leads to an increase in average Nusselt number, while at high Richardson number,
it decreases.

• An increase in Hartmann number reduces the convection effect.
• The increase in the volume fraction of nanoparticles drops the value of stream

function strongly for all values ofR andH and has an adverse effect on the average
Nusselt number, Sherwood number, and entropy generation.

• The heat and mass transfer rate enhances when the source length and its location
increase. The increase in source length leads to an increase in the temperature
inside the enclosure.

• The total entropy generation is an increasing function of Richardson number and
a decreasing function of Hartmann number, volume fraction of nanoparticles, size,
and location of the source.

• The highest rate of heat and mass transfer can be obtained by adding TiO2 compared
to other nanoparticles. The heat transfer rate declines with the increase of Lewis
number, while the mass transfer rate increases.

The current research work can be further extended by considering the porous media
and heat generation effect inside the enclosure.
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T6 = b1ξξa2 + b1ξηe2 + d1ξe2 + b1ηηb2 + 2d1ηb2 + b1ξc2 + b1ηd2 + d1d2,

T7 = d1ξξa2 + d1ξηe2 + d1ηηb2 + d1ξe2 + d1ηd2,

∂Φ

∂ξ
=

1

2d
(Φi+1,j − Φi−1,j) +O

(
d2
)
,

∂Φ

∂η
=

1

2d
(Φi,j+1 − Φi,j−1) +O

(
d2
)
,

∂2Φ

∂ξ2
=

1

d2
(Φi+1,j − 2Φi,j + Φi−1,j) +O

(
d2
)
,

∂2Φ

∂η2
=

1

d2
(Φi,j+1 − 2Φi,j + Φi,j−1) +O

(
d2
)
,

∂2Φ

∂ξ∂η
=

1

4d2
(Φi−1,j−1 − Φi+1,j−1 + Φi+1,j+1 − Φi−1,j+1) +O

(
d2
)
,

∂3Φ

∂ξ3
=

1

d2
[
(Φξ)i+1,j − 2(Φξ)i,j + (Φξ)i−1,j

]
+O

(
d2
)
,

∂3Φ

∂ξ2∂η
=

1

2d3
(2Φi,j−1 − 2Φi,j+1 − Φi−1,j−1 − Φi+1,j−1 + Φi+1,j+1 + Φi−1,j+1) +O

(
d2
)
,

∂3Φ

∂ξ∂η2
=

1

2d3
[2Φi−1,j − 2Φi+1,j − Φi−1,j−1 + Φi+1,j−1 + Φi+1,j+1 − Φi−1,j+1] +O

(
d2
)
,

∂3Φ

∂η3
=

1

d2
[
(Φη)i,j+1 − 2(Φη)i,j + (Φη)i,j−1

]
+O

(
d2
)
,

∂4Φ

∂ξ4
=

6

d4
[
d((Φξ)i+1,j − (Φξ)i−1,j)− 2(Φi+1,j − 2Φi,j + Φi−1,j)

]
+O

(
d2
)
,

∂4Φ

∂η4
=

6

d4
[
d
(
(Φη)i,j+1 − (Φη)i,j−1

)
− 2(Φi,j+1 − 2Φi,j + Φi,j−1)

]
+O

(
d2
)
,

∂4Φ

∂ξ3∂η
=

1

2d3
[
2(Φξ)i,j−1 − 2(Φξ)i,j+1 − (Φξ)i−1,j−1 − (Φξ)i+1,j−1

+ (Φξ)i+1,j+1 + (Φξ)i−1,j+1

]
+O

(
d2
)
,

∂4Φ

∂ξ∂η3
=

1

2d3
[
2(Φη)i−1,j − 2(Φη)i+1,j − (Φη)i−1,j−1 + (Φη)i+1,j−1

+ (Φη)i+1,j+1 − (Φη)i−1,j+1

]
+O

(
d2
)
,

∂4Φ

∂ξ2∂η2
=

1

d4
[
4Φi,j − 2(Φi−1,j + Φi+1,j + Φi,j−1 + Φi,j+1) + Φi−1,j−1

+ Φi+1,j−1 + Φi+1,j+1 + Φi−1,j+1

]
+O

(
d2
)
,
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where the discretization of any function Φ (such as ψ, θ, C, etc.) is shown, and d is the
step length on a uniform rectangular mesh in the transformed domain.
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