
Nonlinear Analysis: Modelling and Control, Vol. 27, No. 3, 413–427
https://doi.org/10.15388/namc.2022.27.25363

Press

Parameter estimation of fractional uncertain differential
equations via Adams method*

Guo-Cheng Wua,1 , Jia-Li Weib, Cheng Luob, Lan-Lan Huanga

aData Recovery Key Laboratory of Sichuan Province,
College of Mathematics and Information Science,
Neijiang Normal University, Neijiang 641100, Sichuan, China
wuguocheng@gmail.com
bSchool of Applied Mathematics,
Nanjing University of Finance and Economics,
Nanjing 210023, Jiangsu, China

Received: November 12, 2021 / Revised: January 3, 2022 / Published online: February 17, 2022

Abstract. Parameter estimation of uncertain differential equations becomes popular very recently.
This paper suggests a new method based on fractional uncertain differential equations for the
first time, which hold more parameter freedom degrees. The Adams numerical method and Adam
algorithm are adopted for the optimization problems. The estimation results are compared to show
a better forecast. Finally, the predictor–corrector method is adopted to solve the fractional uncertain
differential equations. Numerical solutions are demonstrated with varied α-paths.
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1 Introduction

Fractional calculus was born about 300 years ago. It can date back to the discussion
between l’Hôspital and Leibniz about the half-derivative in the early nineteenth century.
With the rapid development in both applications and theories, fractional differential equa-
tions now frequently appear in many fields due to the memory effects of the operators,
for example, long-term behavior of economic time series [10], hereditary effects of vis-
coelastic materials [11], continuous time random walk approach to anomalous diffusion
on fractal media [12].

If deterministic systems possess uncertain dynamics, most of the time, it is difficult
to describe their parameters accurately. One of the most challenging aspects for scientists
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is to develop parameter estimation methods for simulating real-world events. Liu uncer-
tainty theory was introduced in 2005 year [7]. It has been proven to be efficient and useful
in uncertain differential equations (UDEs) [19]. Recently, Zhu et al. investigated existence
conditions of fractional uncertain differential equations (FUDEs) [22]. Lu and Zhu et al.
gave α-path solutions using the predictor–corrector method in [9]. Explicit solutions were
derived in the fractional difference equation with Liu process [8].

Concerning the inverse problems, parameter estimation of UDEs now is popular.
The main purpose is to give an accurate forecast from observed data. This is also one
of important focuses of data-driven study. Together with ordinary differential equations,
some important efforts are dedicated to this field, for example, parameter estimation of
uncertain heat conduction [21], least squares estimation [14,18], moment estimation [20],
α-path estimation [17].

Besides the memory effects, the FUDE also has an additional parameter ν (fractional
order) in comparison with the UDEs. The fractional order ν (see that in Definition 5) is
between 0 and 1, which can be an estimated parameter. This means that the FUDE pro-
vides more freedom degrees in parameter estimation and possibility for better forecasts.
So fractional differential equations may have better performance than ordinary differential
equations. This is another motivation of this paper.

This paper is organized in the following sections. Section 2 introduces preliminaries of
the fractional calculus and Liu uncertainty theory. Section 3 presents a general methodol-
ogy for parameter estimation of fractional differential equations, and performance is given
in comparison with UDEs [14]. After the unknown parameters are estimated, Section 4
solves the FUDEs with initial conditions, and α-path numerical solutions are given.

2 Preliminaries

Let us first revisit some basics of the uncertainty theory.

Definition 1. (See [7].) Let L be a σ-algebra on a nonempty set Γ . A set functionM :
L → [0, 1] is called an uncertain measure if it satisfies the following four axioms:

(A1) Normality axiom.M{Γ} = 1 for the universial set Γ .
(A2) Duality axiom.M{Λ}+M{Λc} = 1 for any event Λ.
(A3) Subadditivity axiom. For every countable sequence of events Λ1, Λ2, . . . , we

have

M

{ ∞⋃
i=1

Λi

}
6
∞∑
i=1

M{Λi}.

(A4) Product axiom. Let (Γk,Lk,Mk) be uncertain spaces for k = 1, 2, . . . . Then
the product uncertain measureM satisfies

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk is arbitrarily chosen event from Lk for k = 1, 2, . . . , respectively.
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Definition 2. (See [7].) Let ξ be an uncertain variable on an uncertain space (Γ,L,M).
Then its expected value E[ξ] is

E[ξ] =

+∞∫
0

M{ξ > x} dx−
0∫

−∞

M{ξ 6 x} dx,

provided that at least one of the two integrals
∫ +∞
0
M{ξ>x} dx and

∫ 0

−∞M{ξ6x} dx
exists, and its variance V[ξ] is

V[ξ] = E
[(
ξ −E(ξ)

)2]
.

Definition 3. (See [7].) An uncertain process Ct is called a Liu process if

(i) C0 = 0, and almost all simple paths are Lipschitz continuous,
(ii) Ct has stationary and independent increments,

(iii) the increment Cs+t − Cs has a normal uncertain distribution

Φt(x) =

(
1 + exp

(
− πx√

3t

))−1
, x ∈ R.

The factional calculus is defined as follows.

Definition 4. (See [5, 13].) Let x(t) be a continuous function and x(t) ∈ L1[a, T ]. The
Riemann–Liouville integral for ν > 0 is defined by

aI
ν
t x(t) =

1

Γ (ν)

t∫
a

x(s)

(t− s)1−ν
ds, t > a.

For ν = 1, the fractional integral becomes the standard integral aIνt x(t) =
∫ t
a
x(s) ds,

t > a.
If ν 6= 1, 2, 3, . . . , the fractional integral holds memory effects, and 1/(t − s)1−ν is

called a weight or memory function.

Definition 5. (See [5,13].) Let x(t) ∈ AC[a, T ]. The Caputo derivative for 0 < ν < 1 is
defined by

CDν
ax(t) =

1

Γ (1− ν)

t∫
a

x′(s)

(t− s)ν
ds, t > a.

For ν = 1, CDν
ax(t) = dx/dt.

Suppose that f : [a,+∞)× Rn and g : [a,+∞)× Rn are two functions. The FUDE
of Caputo type can be presented as

CDν
aXt = f(t,Xt;µ) + g(t,Xt;σ)

dCt
dt

, 0 < ν 6 1, Xt=a = Xa, (1)

where the parameters µ and σ are the drift and diffusion terms, respectively.
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Theorem 1. (See [22].) The FUDE (1) has a unique solution Xt on [a,+∞) if for all
x, y ∈ Rn and t ∈ [a,+∞), the coefficient functions f(t, x) and g(t, x), satisfy

(i) Lipschitz condition ‖f(t, x)− f(t, y)‖+ ‖g(t, x)− g(t, y)‖ 6 L‖x− y‖,
(ii) linear growth condition ‖f(t, x)− f(t, y)‖+ ‖g(t, x)− g(t, y)‖ 6 L‖x− y‖,

where L is a positive constant, and ‖·‖ is a norm. Furthermore, Xt is sample continuous.

3 Parameter estimation

Diethlem developed the Euler and Adams methods for solving fractional differential
equations in [3]. The two methods have convergence ordersO(h) andO(h2), respectively.
Then the predictor–corrector method was well developed by fully use of the two methods.
Parameter estimation mainly includes numerical discretization, optimization algorithms,
hypothesis test and forecast as follows.

3.1 Discretization model and minimum optimization problem

Let us consider the fractional differential equation

CDν
ax(t) = F (t, x), 0 < ν 6 1, x(a) = xa. (2)

φ(t) solves Eq. (2) if and only if φ(t) is a solution of the fractional integral equation

x(t) = xa +a I
ν
t F (t, x), x(a) = xa.

Using a nonuniform partition of [a, b]: a = t0 < t1 < · · · < tn < tn+1 = b, we use
the Adams formula [3]

xn+1 = x0 +
1

Γ (ν)

n+1∑
j=0

aj,n+1F (tj , xj), 0 < ν 6 1, x0 = xa, (3)

where

aj,n+1 =


(tn+1−t0)ν+1−(tn+1−t1)ν+1

ν(ν+1)(t0−t1) + (tn+1−t0)ν
ν , j = 0;

(tn+1−tj+1)
ν+1

ν(ν+1)(tj+1−tj) +
(tn+1−tj−1)

ν+1

ν(ν+1)(tj−tj−1)
− (tj+1−tj−1)(tn+1−tj)ν+1

ν(ν+1)(tj+1−tj)(tj−tj−1)
, 1 6 j 6 n;

(tn+1−tn)ν
ν(ν+1) , j = n+ 1.

The FUDE (1) has a solution

Xtn+1 = Xt0 +
1

Γ (ν)

tn+1∫
t0

(tn+1 − s)v−1f(s,Xs;µ)ds

+
1

Γ (ν)

tn+1∫
t0

(tn+1 − s)v−1g(s,Xs;σ) dCs. (4)
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First, according to the definition of Liu integral from [7], the numerical discretization
reads

1

Γ (ν)

tn+1∫
t0

(tn+1 − s)v−1g(s,Xs;σ) dCs

≈ 1

Γ (ν)

n∑
j=0

(tn+1 − tj)v−1g(tj , Xtj ;σ)(Ctj+1
− Ctj ).

Then from the Adams formula (3) the numerical approximation of Eq. (4) can be
written as

Xtn+1 = Xt0 +
1

Γ (ν)

n+1∑
j=0

aj,n+1f(tj , Xtj ;µ)

+
1

Γ (ν)

n∑
j=0

(tn+1 − tj)ν−1g(tj , Xtj ;σ) · (Ctj+1 − Ctj )

or

1

Γ (ν)

n∑
j=0

(tn+1 − tj)ν−1g(tj , Xtj ;σ) · (Ctj+1
− Ctj )

= Xtn+1 −Xt0 −
1

Γ (ν)

n+1∑
j=0

aj,n+1f(tj , Xtj ;µ). (5)

The LHS of Eq. (5) is regarded as a “noise” term, which should be as small as possible.
By use of the observed data (ti, Xti), i = 0, 1, . . . , N, N + 1, the parameter estimation
of µ and ν is to solve the following minimum optimization problem:

min
µ,ν

N∑
n=0

(
Xtn+1

−Xt0 −
1

Γ (ν)

n+1∑
j=0

aj,n+1f(tj , Xtj ;µ)

)2
. (6)

Suppose (µ∗, ν∗) is the optimal solution of the minimum optimization problem (6).
Next, taking the expected value to Eq. (5), we have

E

[
N∑
n=0

(
1

Γ (ν∗)

n∑
j=0

(tn+1 − tj)ν
∗−1g(tj , Xtj ;σ) · (Ctj+1 − Ctj )

)2 ]

=

N∑
n=0

(
Xtn+1 −Xt0 −

1

Γ (ν∗)

n+1∑
j=0

aj,n+1f(tj , Xtj ;µ
∗)

)2
. (7)

Since Ctj is an stationary and independent increment uncertain process, each Ctj+1−Ctj
is a normal uncertain variable with the expected value 0 and variance (tj+1 − tj)

2,
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respectively. According to the uncertainty theory [7],
∑n
j=0(tn+1− tj)ν

∗−1g(tj , Xtj ;σ)
× (Ctj+1

− Ctj ) is also a stationary and independent increment uncertain process with
the expected value 0 and variance (

∑n
j=0(tn+1 − tj)ν

∗−1|g(tj , Xtj ;σ)| · (tj+1 − tj))2.
So we can get

E

[
N∑
n=0

(
1

Γ (ν∗)

n∑
j=0

(tn+1 − tj)ν
∗−1g(tj , Xtj ;σ) · (Ctj+1

− Ctj )

)2 ]

=

N∑
n=0

1

Γ 2(ν∗)
E

[(
n∑
j=0

(tn+1 − tj)ν
∗−1g(tj , Xtj ;σ) · (Ctj+1

− Ctj )

)2 ]

=

N∑
n=0

1

Γ 2(ν∗)

(
n∑
j=0

(tn+1 − tj)ν
∗−1∣∣g(tj , Xtj ;σ)

∣∣ · (tj+1 − tj)

)2
.

Finally, the estimation σ∗ can be obtained by solving

N∑
n=0

1

Γ 2(ν∗)

(
n∑
j=0

(tn+1 − tj)ν
∗−1|g(tj , Xtj ;σ| · (tj+1 − tj)

)2

=

N∑
n=0

(
Xtn+1

−Xt0 −
1

Γ (ν∗)

n+1∑
j=0

aj,n+1f(tj , Xtj ;µ
∗)

)2
.

3.2 Hypothesis test

Substituting the observed data and the optimal solution (µ∗, ν∗, σ∗) into (5), we set

Xti+1
−Xt0 −

1

Γ (ν∗)

i+1∑
j=0

aj,i+1f(tj , Xtj ;µ
∗) = ε̂ti+1

, i = 0, 1, . . . , N. (8)

Suppose ε̂ti+1 follow a normal uncertainty distribution N (ε̂, σ̂), which has the inverse
uncertainty distribution [7]

Ψ−1(α) = ε̂+
σ̂
√
3

π
ln

α

1− α
.

The expected value and the variance of ε̂ti+1 can be obtained approximately as

ε̂ =
1

N + 1

N∑
i=0

ε̂ti+1 and σ̂ =
1

N + 1

N∑
i=0

(ε̂ti+1 − ε̂)2,

respectively.
Then the statements of null hypothesis (H0) and alternative hypothesis (H1) at signif-

icance level α can be formulated as

(H0) e = ε̂ and σ = σ̂ versus
(H1) e 6= ε̂ or σ 6= σ̂.
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Table 1. Observed data [14] of Example 1.

n 0 1 2 3 4
tn 0.23 0.35 0.42 0.75 1.10
Xtn 13.28 13.86 14.13 14.47 15.14

n 5 6 7 8 9
tn 1.24 1.45 1.89 1.95 2.06
Xtn 15.07 15.26 14.56 14.23 13.78

For null hypothesis (H0), let the rejection region be a set

W =

{
(ε̂t1 , ε̂t2 , . . . , ε̂tN+1

): there are at least α of indexes i, 0 6 i 6 N,

such that ε̂ti+1 < Ψ−1
(
α

2

)
or ε̂ti+1 > Ψ−1

(
1− α

2

)}
.

If the vector (ε̂t1 , ε̂t2 , . . . , ε̂tN+1
) /∈W , we will accept hypothesis (H0).

Example 1. Consider the FUDE [14, Ex. 4]

CDν
aXt = (γ − βXt) + σ

√
Xt

dCt
dt

, t > a, 0 < ν 6 1, (9)

where the parameters γ, β, σ and ν > 0 are real numbers to be estimated.
We solve the minimum optimization problem

min
γ,β,ν

8∑
n=0

(
Xtn+1

−Xt0 −
1

Γ (ν)

n+1∑
j=0

aj,n+1(γ − βXtj )

)2
.

The parameters can be determined using the observed data in Table 1.
Through Adam optimization algorithm [6], we obtain the optimal solution

(γ∗, β∗, ν∗) = (36.1671, 2.5520, 0.9744)

and
8∑

n=0

(
Xtn+1 −Xt0 −

1

Γ (ν∗)

n+1∑
j=0

aj,n+1(γ
∗ − β∗Xtj )

)2
= 0.1889.

From Eq. (7) the estimation σ∗ satisfies

σ2 ·
8∑

n=0

1

Γ 2(ν∗)

(
n∑
j=0

(tn+1 − tj)ν
∗−1
√
Xtj (tj+1 − tj)

)2

=

8∑
n=0

(
Xtn+1 −Xt0 −

1

Γ (ν∗)

n+1∑
j=0

aj,n+1(γ
∗ − β∗Xtj )

)2
,

which gives σ∗ = 0.0082, and we obtain the uncertain model with all determined param-
eters.
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Figure 1. Hypothesis test of Example 1: the significance level α = 0.05.

Figure 2. Parameter estimation of Example 1: UDE versus FUDE with ν∗ = 0.9744.

So the expected value and variance are ε̂ = 0.0195 and σ̂2 = 0.0206, respectively.
Let the significance level α = 0.05. We derive that

Ψ−1
(
α

2

)
= −0.2707 and Ψ−1

(
1− α

2

)
= 0.3098.

All ε̂ti+1
do not belong to the reject field W from Fig. 1, that is, it passes the hypothesis

test.
Finally, by the Adams formula [3] we give the numerical simulation of the determin-

istic version of (9) with the initial condition Xt0 = X0, that is,

Xtn+1 = Xt0 +
1

Γ (ν∗)

n+1∑
j=0

aj,n+1(γ
∗ − β∗Xtj ).

We know that the minimum (6) should be obtained as small as possible. From Fig. 2
the FUDE method achieves a better fitting result in view of this point.
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3.3 Forecasts

From the observed data Xti , i = 0, 1, . . . , N, N + 1, we now consider the forecast
value of XtN+2

. Assume ε̂tN+2
still follows the normal uncertainty distribution N (ε̂, σ̂).

According to the uncertain model (8), we obtain

XtN+2
−Xt0 −

1

Γ (ν∗)

N+2∑
j=0

aj,N+2f(tj , Xtj ;µ
∗) = ε̂tN+2

, ε̂tN+2
∼ N (ε̂, σ̂). (10)

Then take the expected values of both sides of Eq. (10). The forecast value X̂tN+2
can be

obtained by solving

X̂tN+2
−Xt0 −

1

Γ (ν∗)

N+1∑
j=0

aj,N+1f(tj , Xtj ;µ
∗)

− 1

Γ (ν∗)
aN+2,N+2f(tN+2, X̂tN+2

;µ∗) = ε̂. (11)

Example 2. The second example with observed data also comes from [14], which reads

CDν
aXt = µ lnXt + σX

−1/2
t

dCt
dt

, t > a, 0 < ν 6 1. (12)

where the parameters µ, σ and ν > 0 are real numbers to be estimated.
Similarly, using the first 14 groups of observed data in Table 2, parameter estimation

becomes the minimum optimization problem

min
µ,ν

12∑
n=0

(
Xtn+1

−Xt0 −
1

Γ (ν)

n+1∑
j=0

aj,n+1µ lnXtj

)2
.

Through the Adam optimization algorithm, the optimal solution is obtained:

(µ∗, ν∗) = (0.0354, 0.4141)

and
12∑
n=0

(
Xtn+1 −Xt0 −

1

Γ (ν∗)

n+1∑
j=0

aj,n+1µ
∗ lnXtj

)2
= 0.1333.

Table 2. Observed data [14] of Example 2.

n 0 1 2 3 4
tn 1 2 3 4 5
Xtn 9.56 9.73 9.78 9.98 10.10

n 5 6 7 8 9
tn 8 9 10 11 12
Xtn 10.41 10.48 10.76 10.86 11.26

n 10 11 12 13 14
tn 15 16 17 18 19
Xtn 11.25 11.88 12.23 12.46 12.74

Nonlinear Anal. Model. Control, 27(3):413–427, 2022
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Figure 3. Hypothesis test of Example 2: the significance level α = 0.1.

Then the estimation σ∗ solves

σ2
12∑
n=0

1

Γ 2(ν∗)

(
n∑
j=0

(tn+1 − tj)ν
∗−1X

−1/2
tj (tj+1 − tj)

)2

=

12∑
n=0

(
Xtn+1 −Xt0 −

1

Γ (ν∗)

n+1∑
j=0

aj,n+1µ
∗ lnXtj

)2
(13)

and σ∗ = 0.0267.
Similarly, we obtain ε̂t1 , ε̂t2 , . . . , ε̂t13 in Fig. 3. The expected value and variance are

ε̂ = 0.0106 and σ̂2 = 0.0101, respectively. For the significance level α = 0.1, we get

Ψ−1
(
α

2

)
= −0.1529 and Ψ−1

(
1− α

2

)
= 0.1741.

Since only ε̂t10 /∈ [−0.1529, 0.1741], it still passes the hypothesis test (see Fig. 3).
Next, the parameter estimation of the UDE [14] is investigated using the Euler for-

mula. In order to be more accurate, we use the Adams method. However, this results in an
implicit scheme and Eq. (13) becomes a nonlinear equation of Xtn+1

. In order to solve
this problem, the predictor–corrector method [3] is adopted, and the numerical scheme
reads

Xp
tn+1

= Xt0 +
1

Γ (ν∗)

n∑
j=0

bj,n+1µ
∗ lnXtj ,

Xtn+1
= Xt0 +

1

Γ (ν∗)

n∑
j=0

aj,n+1µ
∗ lnXtj +

µ∗an+1,n+1

Γ (ν∗)
lnXp

tn+1
.

Here Xp
tn+1

is a predictor, and bj,n+1 are coefficients of the Euler formula

bj,n+1 =
1

ν

(
(tn+1 − tj)ν − (tn+1 − tj+1)

ν
)
.

https://www.journals.vu.lt/nonlinear-analysis
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Figure 4. Parameter estimation of Example 2: UDE versus FUDE with ν∗ = 0.4141.

The numerical simulation of the fractional differential equation is demonstrated in Fig. 4.

According to (11),

X̂t14 −Xt0 −
1

Γ (ν∗)

13∑
j=0

aj,13f(tj , Xtj ;µ
∗)− a14,14

Γ (ν∗)
f(t14, X̂t14 ;µ

∗) = ε̂,

the forecast uncertain variable can be given as X̂t14 = 12.76, which is in good agreement
with the observed data Xt14 = 12.74.

4 α-path solutions of fractional uncertain differential equation

Since all parameters are estimated and the model passes the hypothesis test, the FUDE is
reliable, and we update it as

CDν∗

a Xt = f(t,Xt;µ
∗) + g(t,Xt;σ

∗)
dCt
dt

. (14)

An α-path Xα
t solves the following fractional differential equation (see [9, Thm. 4.1]):

CDν∗

a X
α
t = f(t,Xα

t ;µ
∗) +

∣∣g(t,Xα
t ;σ

∗)
∣∣Φ−11 (α), (15)

where the Φ−11 (α) is the inverse standard normal distribution, namely,

Φ−11 (α) =

√
3

π
ln

α

1− α
.

To sum up,Xt andXα
t are solutions of Eqs. (14) and (15), respectively. The observed

values can be obtained by the expected value of uncertain variable Xt, that is,

E[Xt] =

1∫
0

Xα
t dα.

Nonlinear Anal. Model. Control, 27(3):413–427, 2022
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We present the numerical approximation of inverse uncertainty distribution Xα
t by the

following predictor–corrector formula:

X̂α
tn+1

= Xα
t0 +

1

Γ (ν∗)

n∑
j=0

bj,n+1

(
f(tj , X

α
tj ;µ

∗) +
∣∣g(tj , Xα

tj ;σ
∗)
∣∣Φ−11 (α)

)
,

Xα
tn+1

= Xα
t0 +

1

Γ (ν∗)

n∑
j=0

aj,n+1

(
f(tj , X

α
tj ;µ

∗) +
∣∣g(tj , Xα

tj ;σ
∗)
∣∣Φ−11 (α)

)
+

1

Γ (ν∗)
an+1,n+1

(
f(tn+1, X̂

α
tn+1

;µ∗) +
∣∣g(tn+1, X̂

α
tn+1

;σ∗)
∣∣Φ−11 (α)

)
.

(16)

Next, consider an equidistance partition with step size ∆α = 1/m, m ∈ N1, so that
0 < α1 < α2 < · · · < αm−1 < 1 and αi = ∆α · i (i = 1, 2, . . . ,m − 1). Giving an
extremely small positive δ, the approximate expected value of Xt can be obtained by the
following Simpson numerical integration formula [9]:

E[Xt] ≈
1−δ∫
δ

Xα
t dα =

∆α

3

[
Xδ
t + 2

m−1∑
i=1

Xαi
t + 2

m/2∑
i=1

X
α2i−1

t +X1−δ
t

]
.

Example 3. Use the FUDE (12) again:

CDν∗

a Xt = µ∗ lnXt + σ∗X
−1/2
t

dCt
dt

, t > a,

where (µ∗, ν∗, σ∗) = (0.0354, 0.4141, 0.0120) and X(t0) = Xt0 .
The α-path solution Xα

t can be written as

CDν∗

a X
α
t = µ∗ lnXα

t + σ∗
(
Xα
t

)−1/2
Φ−11 (α), t > a. (17)

Assume δ = 0.0001 and m = 100 such that δ < α1 < · · · < α99 < 1 − δ and
αi = 0.01i (i = 1, 2, . . . , 99). For t = t1, we can use predictor–corrector formula (16) to
obtain Xδ

t1 , X
α1
t1 , . . . , X

α99
t1 , X1−δ

t1 as follows:

δ = 0.0001, α1 = 0.01, α99 = 0.99, 1− δ = 0.9999,

Xδ
t1 = 9.6008, Xα1

t1 = 9.6257, Xα99
t1 = 9.6751, X1−δ

t1 = 9.6998.

Naturally, we can get

E[Xt1 ] ≈
1−δ∫
δ

Xα
t1 dα =

∆α

3

[
Xδ
t1 + 2

m−1∑
i=1

Xαi
t1 + 2

m/2∑
i=1

X
α2i−1

t1 +X1−δ
t1

]
.

Again, repeat the above steps for expected values of the uncertain variablesXt2 , Xt3 , . . . ,
Xt14 . The α-path numerical solutions are shown in Fig. 5.
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Figure 5. α-path numerical solutions of Eq. (17) with ν∗ = 0.4141.

5 Conclusions

In this study, we suggest a FUDE method for parameter estimation. Especially, the Adams
formula is used in the numerical approximation of the optimal problems. Then hypothesis
test and forecast are given to show the new features of the presented method. Finally, we
use the α-path method to obtain the expected value, and we give the numerical simulation
along α-paths. It can be concluded that the FUDE method holds more parameter freedom
degrees and make the residual value as small as possible in comparison with the UDE
method. There are still some problems not addressed yet:

(a) We only use the Adams method with a convergence order O(h2) in this paper.
Through the application analysis, we can see that high-accuracy numerical method can
achieve better parameter estimation and forecast results. So new and accurate numerical
formulae should be developed.

(b) We only consider the fractional differential equation method in the Caputo’s sense.
Different fractional derivatives may lead to better results. We will consider the general
fractional calculus [1, 4] and choose the best one in specific real world applications.

(c) Parameter estimation of fractional difference equations can be considered in future.
This paper starts from a fractional differential equation and numerical discretization to
a minimum problem. In fact, we also can directly starts from a fractional difference
equation (derived from time scale theory), where the fractional derivative is defined on an
isolated time scale [2, 15, 16]. The fractional difference equation on time scale combines
the discrete and continuous case together, so it becomes more suitable for parameter
estimation even data-driven study.

We will consider these problems in the nearest future.
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