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Abstract. In this paper, we study the multiple solutions for some second-order p-Laplace
differential equations with three-point boundary conditions and instantaneous and noninstantaneous
impulses. By applying the variational method and critical point theory the multiple solutions are
obtained in a Sobolev space. Compared with other local boundary value problems, the three-point
boundary value problem is less studied by variational method due to its variational structure. Finally,
two examples are given to illustrate the results of multiplicity.

Keywords: three-point BVPs, variational method, critical point theory, multiple solutions, non-
instantaneous impulse.

1 Introduction

In recent years, the research on impulsive differential equations have attracted widespread
attention. This is because many phenomena in life are not a continuous process and will
change suddenly due to the influence of external factors. Therefore, it is more appropri-
ate to use impulsive differential equations to describe such situations instead of simply
using differential equations or difference equations. Impulsive differential equations have
been widely used in recent years, especially, in the field of biological mathematics. For
example, in the study of pharmacokinetic model, since oral and injected drugs often
enter the human body in the form of impulse, it is more reasonable to use impulse
differential equations to describe the changes of drug concentration in the human body.
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Moreover, the impulsive differential equations have been fully applied in the fields of pest
control and comprehensive environmental management, and many gratifying results have
been obtained.

Impulses can be divided into instantaneous and noninstantaneous impulses due to the
duration. However, in many applications, instantaneous and noninstantaneous impulses
occur at the same time in some dynamic processes such as intravenous injection. Since
the drug enters the blood and the subsequent absorption of the body is a sudden and
continuous process, this situation can be explained as an impulsive behavior. The impulse
suddenly starts to jump at any fixed point in time (drug enters the blood) and continues
to occur within a limited time interval (the body absorbs the drug). Due to its wide range
of applications, some scholars began to study the existence of solutions of differential
equations with instantaneous and noninstantaneous impulses, and through fixed point
theorems, upper and lower solution theorems, variational methods, etc., they obtained
some excellent results [1, 3, 4, 6–8, 10, 11, 13–19]. Especially, in [4], Bai and Nieto first
gave the variational structure of a linear equation with noninstantaneous impulses as the
following problem:

−y′′(t) = fj(t), t ∈ (sj , tj+1], j = 0, 1, . . . ,m,

y′(t) = αj , t ∈ (tj , sj ], j = 1, 2, . . . ,m,

y′
(
s+
j

)
= y′

(
s−j
)
, j = 1, 2, . . . ,m,

y(0) = y(T ) = 0, y′(0) = α0.

It is the first time that the critical point theory has been applied to consider the problems
with noninstantaneous impulses. Then Tian and Zhang in [15] studied the existence
of classical solutions for differential equations with instantaneous and noninstantaneous
impulses, they considered the following problem:

−y′′(t) = fj
(
t, y(t)

)
, t ∈ (sj , tj+1], j = 0, 1, . . . ,m,

−∆y′(tj) = Ij
(
y(tj)

)
, j = 1, 2, . . . ,m,

y′(t) = y′
(
t+j
)
, t ∈ (tj , sj ], j = 1, 2, . . . ,m,

y′
(
s+
j

)
= y′

(
s−j
)
, j = 1, 2, . . . ,m,

y(0) = y(T ) = 0.

In addition, Bai et al. in [9] studied a three-point boundary value problem, they firstly gave
the variational structure of the nonlocal boundary value problem, and gave a different idea
to deal with the functionals by imposing the boundary value conditions on admissible
space rather than the functionals.

Inspired by the above literatures, we try to study the problem, which the impulse
suddenly starts to jump at any fixed point tj and continues to occur within a limited time
interval (tj , sj ]. This paper considers the multiple solutions for a class of three-point
boundary value problems (BVPs) with instantaneous and noninstantaneous impulses as
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follows:

−
(
µ(t)Φp

(
y′(t)

))′
+ λ(t)Φp

(
y(t)

)
= fj

(
t, y(t)

)
, t ∈ (sj , tj+1],

j = 0, 1, . . . ,m,

−∆
(
µ(tj)Φp

(
y′(tj)

))
= Ij

(
y(tj)

)
, j = 1, 2, . . . ,m,

µ(t)Φp
(
y′(t)

)
= µ

(
t+j
)
Φp
(
y′
(
t+j
))
, t ∈ (tj , sj ], j = 1, 2, . . . ,m,

µ
(
s+
j

)
Φp
(
y′
(
s+
j

))
= µ

(
s−j
)
Φp
(
y′
(
s−j
))
, j = 1, 2, . . . ,m,

y(0) = 0, y(1) = ζy(η),

(1)

where p > 1, Φp(y) := |y|p−2y, µ(t), λ(t) ∈ Lp[0, 1], 0 = s0 < t1 < s1 < · · · < sm1
=

η < tm1+1 < · · · < sm < tm+1 = 1, ζ > 0, 0 < η < 1, and

∆
(
µ(tj)Φp

(
y′(tj)

))
= µ

(
t+j
)
Φp
(
y′
(
t+j
))
− µ

(
t−j
)
Φp
(
y′
(
t−j
))

for y′(t±j )=limt→t±j
y′(t), j=1, 2, . . . ,m, and fj ∈C((sj , tj+1]× R,R), Ij ∈C(R,R).

The remainder of the paper is organized as follows. Section 2 will prove that the crit-
ical point of functional J is the classical solution of BVPs (1). Section 3 will present the
main results with the specific proof. Section 4 will give two examples to verify the results.

2 Preliminaries

In this paper, we assume the following condition:

(A1) 1 6 λ(t) 6 c and µ(t) > 1 for t ∈ (sj , tj+1], µ(t), λ(t) ∈ Lp[0, 1], p > 1,
j = 0, 1, . . . ,m, and c is a positive constant.

Let Z = {y ∈W 1,p([0, 1],R): y(0) = 0, y(1) = ζy(η)} with the norm

‖y‖Z =

[ 1∫
0

(
µ(t)

∣∣y′(t)∣∣p + λ(t)
∣∣y(t)

∣∣p)dt

]1/p
,

then the following norm

‖y‖ =

[ 1∫
0

µ(t)
∣∣y′(t)∣∣p dt

]1/p

∀y ∈ Z

is equivalent to the norm ‖y‖Z . In fact, for all y ∈ Z, there is y(t) =
∫ t

0
y′(s) ds, then by

Hölder inequality
1∫

0

∣∣y′(t)∣∣ dt 6 [ 1∫
0

∣∣y′(t)∣∣p dt

]1/p

,
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let (c/µ(t) + 1)1/p 6 c0, we can obtain

‖y‖ 6 ‖y‖Z 6 c0‖y‖.

Define the following functional on Z:

J(y) =
1

p
‖y‖p +

m∑
j=0

tj+1∫
sj

λ(t)Φp
(
y(t)

)
y(t) dt−

m∑
j=0

tj+1∫
sj

Fj
(
t, y(t)

)
dt

−
m∑
j=1

y(tj)∫
0

Ij(s) ds, (2)

then for all ω ∈ Z, there is the derivative〈
J ′(y), ω

〉
=

1∫
0

µ(t)Φp
(
y′(t)

)
ω′(t) dt−

m∑
j=0

tj+1∫
sj

[
fj
(
t, y(t)

)
− λ(t)Φp

(
y(t)

)]
ω(t) dt

−
m∑
j=1

Ij
(
y(tj)

)
ω(tj). (3)

Lemma 1. (See [9].) Z ↪→ C([0, 1],R).

Lemma 2. For each y ∈ Z, there is ‖y‖∞ 6 ‖y‖.

Proof. For each y(t) ∈ Z, there holds y(0) = 0 and

∣∣y(t)
∣∣ 6 1∫

0

∣∣y′(t)∣∣dt 6 [ 1∫
0

µ(t)
∣∣y′(t)∣∣p dt

]1/p

,

thus ‖y‖∞ 6 ‖y‖. The proof is complete.

Definition 1. Let Z be a real Banach space, J ∈ C1(Z,R). If any sequence {yj} ⊂ Z
with

J(yj) being bounded and lim
j→∞

J ′(yj)→ θ

contains a convergent subsequence, then the functional J is called satisfying the Palais–
Smale (PS)c condition.

Lemma 3. (See [5].) Let Z be a real Banach space, and let J ∈ C1(Z,R) be a lower
bounded functional, which satisfies the (PS)c condition. Then J have the minimum value
in Z, that is, there exists y0 ∈ Z such that J(y0) = infy∈Z J(y), then y0 is a critical
point of J .
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Lemma 4. (See [2].) Let Z be a real Banach space, and let J ∈ C1(Z,R) satisfy the
(PS)c condition. Assume J(θ) = 0 and

(P1) there are constants ρ, α > 0 such that J |∂Bρ > α, and
(P2) there is an e ∈ Z \Bρ such that J(e) 6 0.

Then there exists a critical point y∗ of J such that

c = J(y∗) = inf
h∈Γ

max
s∈[0,1]

J
(
σ(s)

)
> δ,

where Γ = {σ ∈ C([0, 1], Z): σ(0) = y0, σ(1) = y1}.
Lemma 5. (See [11].) Let E be a real Banach space, J ∈ C1(E,R) be even, and let the
functional J satisfy the (PS)c condition. Assume that J satisfies the following:

(i) J(θ) = 0;
(ii) There exist α, τ > 0 such that J |∂Bτ∩Z > α;

(iii) If E1 ⊂ E, where E1 is a finite dimensional subspace, there exists r = r(E1)
such that J(y) 6 0 for all y ∈ E1 with ‖y‖ > r.

Then J possesses an unbounded sequence of critical values.

Lemma 6. The weak solution y ∈ Z is the classical solution of problem (1).

Proof. Let y is a weak solution of (1), then 〈J ′(y), ω〉 = 0, that is, for all ω ∈ Z,

1∫
0

µ(t)Φp
(
y′(t)

)
ω′(t) dt−

m∑
j=0

tj+1∫
sj

[
fj
(
t, y(t)

)
− λ(t)Φp

(
y(t)

)]
ω(t) dt

−
m∑
j=1

Ij
(
y(tj)

)
ω(tj) = 0. (4)

Without loss of generality, let ω ∈ C∞0 (sj , tj+1], and let ω(t) ≡ 0 as t ∈ [0, sj ]∪(tj+1, 1],
j = 0, 1, . . . ,m. Then substitute ω(t) into equation (4). For j = 0, 1, . . . ,m, there is

tj+1∫
sj

µ(t)Φp
(
y′(t)

)
ω′(t) dt =

tj+1∫
sj

[
fj
(
t, y(t)

)
− λ(t)Φp

(
y(t)

)]
ω(t) dt,

thus
−
(
µ(t)Φ

(
y′(t)

))′
= fj

(
t, y(t)

)
− λ(t)Φp

(
y(t)

)
, t ∈ (sj , tj+1]. (5)

Then substitute (5) into (4), there is
m∑
j=0

µ
(
t−j+1

)
Φp
(
y′(t−j+1)

)
ω
(
t−j+1

)
−

m∑
j=0

µ
(
s+
j

)
Φp
(
y′(s+

j )
)
ω(s+

j )

+

m∑
j=1

sj∫
tj

µ(t)Φp
(
y′(t)

)
ω′(t) dt−

m∑
j=1

Ij
(
y(tj)

)
ω(tj) = 0 ∀ω(t) ∈ Z. (6)
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Assume ω ∈ C∞0 (tj , sj ], and ω(t) ≡ 0 as t ∈ [0, tj ] ∪ (sj , 1], j = 1, 2, . . . ,m. Then
substituting ω(t) into equation (6), we get that µ(t)Φp(y

′(t)) is a constant, that is, for
j = 1, 2, . . . ,m,

µ(t)Φp
(
y′(t)

)
= µ(t+j )Φp

(
y′
(
t+j
))

= µ(s−j )Φp
(
y′
(
s−j
))
, t ∈ (tj , sj ]. (7)

Substitute (7) into (6), there is
m∑
j=0

µ
(
t−j+1

)
Φp
(
y′
(
t−j+1

))
ω
(
t−j+1

)
−

m∑
j=0

µ
(
s+
j

)
Φp
(
y′
(
s+
j

))
ω
(
s+
j

)
+

m∑
j=1

µ
(
t+j
)
Φp
(
y′
(
t+j
))
ω(sj)

m∑
j=1

µ
(
t+j
)
Φp
(
y′
(
t+j
))
ω(tj)

−
m∑
j=1

Ij
(
y(tj)

)
ω(tj) = 0 ∀ω(t) ∈ Z,

that is,
m∑
j=1

[
µ
(
t−j
)
Φp
(
y′
(
t−j
))
− µ

(
t+j
)
Φp
(
y′
(
t+j
))
− Ij

(
y(tj)

)]
ω(tj)

+

m∑
j=1

[
µ
(
t+j
)
Φp
(
y′
(
t+j
))
− µ

(
s+
j

)
Φp
(
y′
(
s+
j

))]
ω(sj) = 0.

Then for j = 1, 2, . . . ,m,

µ
(
t−j
)
Φp
(
y′
(
t−j
))
− µ

(
t+j
)
Φp
(
y′
(
t+j
))
− Ij

(
y(tj)

)
= 0,

µ
(
t+j
)
Φp
(
y′
(
t+j
))
− µ

(
s+
j

)
Φp
(
y′
(
s+
j

))
= 0,

so there is
µ
(
s+
j

)
Φp
(
y′
(
s+
j

))
= µ

(
s−j
)
Φp
(
y′
(
s−j
))
,

and for j = 1, 2, . . . ,m, there is

Ij
(
y(tj)

)
= µ

(
t−j
)
Φp
(
y′
(
t−j
))
− µ

(
t+j
)
Φp
(
y′
(
t+j
))

= −∆
(
µ(tj)Φp

(
y′(tj)

))
.

Then we can get y is a classical solution of problem (1), the proof is completed.

3 Main results

Theorem 1. Assume that N1 = {0, 1, . . . ,m}, N2 = {1, 2, . . . ,m} and the following
conditions hold:

(A2) There are constants αj , βj ∈ R and M > 0 such that for |y| >M ,

(i) 0 < αjFj(t, y) 6 yfj(t, y), t ∈ (sj , tj+1], j ∈ N1;

(ii) 0 < βj
∫ y(t)

0
Ij(s) ds 6 yIj(y), (t, y) ∈ [0, 1] × R, j ∈ N2, where

Fj(t, y) =
∫ y

0
fj(t, s) ds for (t, y) ∈ (sj , tj+1] × R, j ∈ N1, and 1 <

p < β = min{infj∈N1 αj , infj∈N2 βj} as β ∈ R.
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(A3) For p > 1, there is

lim
y→0

Fj(t, y)

|y|p
= 0, (t, y) ∈ (sj , tj+1]× R, j ∈ N1,

lim
y→0

∫ y(t)

0
Ij(s) ds

|y|p
= 0, (t, y) ∈ [0, 1]× R, j ∈ N2.

Then BVPs (1) has at least two classical solutions.

Proof. Firstly, let {yk} be a sequence in Z such that {J(yk)} is bounded and
limk→∞ J ′(yk) = 0. Then there exists nonnegative constants D such that |J(yk)| 6 D.
By (3) there is

m∑
j=0

tj+1∫
sj

fj
(
t, yk(t)

)
yk(t) dt+

m∑
j=1

Ij
(
yk(tj)

)
yk(tj)

= ‖yk‖p +

m∑
j=0

tj+1∫
sj

λ(t)Φp
(
yk(t)

)
yk(t) dt−

〈
J ′(yk), yk

〉
,

then

D > J(yk)

=
1

p
‖yk‖p +

m∑
j=0

tj+1∫
sj

λ(t)Φp
(
yk(t)

)
yk(t) dt−

m∑
j=0

tj+1∫
sj

Fj
(
t, yk(t)

)
dt

−
m∑
j=1

yk(tj)∫
0

Ij(s) ds

>
‖yk‖p

p
+

m∑
j=0

tj+1∫
sj

λ(t)Φp
(
yk(t)

)
yk(t) dt−

m∑
j=0

1

αj

tj+1∫
sj

fj
(
t, yk(t)

)
yk(t) dt

−
m∑
j=1

1

βj
Ij
(
yk(tj)

)
yk(tj)

>
‖yk‖p

p
+

m∑
j=0

tj+1∫
sj

λ(t)Φp
(
yk(t)

)
yk(t) dt− 1

β

[
m∑
j=0

tj+1∫
sj

fj
(
t, yk(t)

)
yk(t) dt

]

− 1

β

[
m∑
j=1

Ij
(
yk(tj)

)
yk(tj)

]
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>

(
1

p
− 1

β

)
‖yk‖p +

(
1− 1

β

) m∑
j=0

tj+1∫
sj

λ(t)Φp
(
yk(t)

)
yk(t) dt+

1

β

〈
J ′(yk), yk

〉
>

(
1

p
− 1

β

)
‖yk‖p +

1

β

〈
J ′(yk), yk

〉
,

by (A2), β > p > 1, and 〈J ′(yk), yk〉 → 0 as k → +∞, thus {yk} is bounded in Z.
Then there exist a subsequence {yi} of sequence {yk} such that yi ⇀ y in Z, so〈

J ′(yi)− J ′(y), yi − y
〉

=

1∫
0

µ(t)
(
Φp
(
y′i(t)

)
− Φp

(
y′(t)

))(
y′i(t)− y′(t)

)
dt

+

m∑
j=0

tj+1∫
sj

λ(t)
(
Φp
(
yi(t)

)
− Φp

(
y(t)

))(
yi(t)− y(t)

)
dt

+

m∑
j=0

tj+1∫
sj

[
fj
(
t, yi(t)

)
− fj

(
t, y(t)

)](
yi(t)− y(t)

)
dt

+

m∑
j=1

[
Ij
(
yi(tj)

)
− Ij

(
y(tj)

)](
yi(tj)− y(tj)

)
,

by Lemma 1 there is yi → y in C[0, 1], then

m∑
j=0

tj+1∫
sj

[
fj
(
t, yi(t)

)
− fj

(
t, y(t)

)](
yi(t)− y(t)

)
dt→ 0,

m∑
j=1

[
Ij
(
yi(tj)

)
− Jj

(
y(tj)

)](
yi(tj)− y(tj)

)
→ 0,

and by J ′(yi) → 0, yi ⇀ y in Z there is 〈J ′(yi) − J ′(y), yi − y〉 → 0 as i → +∞.
By [12, Eq. (2.2)] there exist cp, dp > 0 and v1(t), v2(t) ∈ Z such that

1∫
0

µ(t)
(
Φp
(
v′1(t)

)
− Φp

(
v′2(t)

))(
v′1(t)− v′2(t)

)
dt

+

m∑
j=0

tj+1∫
sj

λ(t)
(
Φp
(
v1(t)

)
− Φp

(
v2(t)

))(
v1(t)− v2(t)

)
dt

>

cp
∫ 1

0
µ(t)|v′1(t)− v′2(t)|p dt+

∑m
j=0

∫ tj+1

sj
λ(t)|v1(t)− v2(t)|p dt, p > 2

dp
∫ 1

0
µ(t)|v′1(t)−v′2(t)|2

(|v′1(t)|+|v′2(t)|)2−p dt+
∑m
j=0

∫ tj+1

sj

λ(t)|v1(t)−v2(t)|2
(|v1(t)|+|v2(t)|)2−p dt, 1 < p < 2,
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and by [14, Lemma 2.7], for p > 1, there is ‖yi−y‖ → 0 as i→ +∞. Therefore, yi → y
in Z, that is, the sequence {yk} ⊂ Z has a convergent subsequence, then J satisfies the
(PS)c condition.

Secondly, by (2) and assumption (A2) we get J(θ) = 0. For any τ > 0, let Bτ =
{y ∈ Z: ‖y‖ < τ}. By assumption (A3), given

∑m
j=0 ε1j +

∑m
j=1 ε2j = 1/(2p) > 0,

where ε1j > 0 (j = 0, 1, . . . ,m), ε2j > 0 (j = 1, 2, . . . ,m), there exists δ > 0 such that
Fj(t, y) 6 ε1j |y|p, j ∈ N1, and

∫ y
0
Ij(s) ds 6 ε2j |y|p, j ∈ N2, for ‖y‖ 6 δ. Then for

all y ∈ ∂Bδ , ‖y‖ = δ, there is

J(y) =
1

p
‖y‖p +

m∑
j=0

tj+1∫
sj

λ(t)Φp
(
y(t)

)
y(t) dt−

m∑
j=0

tj+1∫
sj

Fj
(
t, y(t)

)
dt−

m∑
j=1

y(tj)∫
0

Ij(s) ds

>
1

p
‖y‖p −

m∑
j=0

tj+1∫
sj

ε1j |y|p dt−
m∑
j=1

ε2j |y|p dt

>
1

p
‖y‖p −

(
m∑
j=0

ε1j +

m∑
j=1

ε2j

)
‖y‖p∞ >

‖y‖p

p
−

(
m∑
j=0

ε1j +

m∑
j=1

ε2j

)
‖y‖p

=

[
1

p
−

(
m∑
j=0

ε1j +

m∑
j=1

ε2j

)]
‖y‖p =

1

2p
‖y‖p.

Then taking into Lemma 5, setting τ = δ, α = δp/(2p) > 0, one has that (P1) holds.
Moreover, J is a lower bounded functional, which satisfies the (PS)c condition in B̄δ , and
B̄δ is a real Banach space by B̄δ ⊂ Z. So by Lemma 3 there exists ŷ ∈ B̄δ such that
J(ŷ) = infy∈B̄δ J(y), then ŷ is a critical point of J . Moreover, J(ŷ) 6 J(θ) = 0 < α as
θ ∈ B̄δ .

Thirdly, by assumption (A2), for all y ∈ Z \Bδ , that is, ‖y‖ > δ, one has

Fj(t, y) > aj |y|αj − dj , y ∈ (sj , tj+1], j ∈ N1;
y∫

0

Ij(s) ds > bj |y|βj − cj , t ∈ [0, 1], j ∈ N2,

where aj , bj , dj , cj are positive constants. Then for r ∈ R \ {0}, one has

J(ry) =
|r|p

p
‖y‖p +

m∑
j=0

tj+1∫
sj

λ(t)Φp
(
ry(t)

)
ry(t) dt−

m∑
j=0

tj+1∫
sj

Fj
(
t, ry(t)

)
dt

−
m∑
j=1

ry(tj)∫
0

Ij(s) ds
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6
|r|p

p
‖y‖p + c

m∑
j=0

tj+1∫
sj

|r|p‖y‖p dt−
m∑
j=0

tj+1∫
sj

(
aj
∣∣ry(t)

∣∣αj − dj) dt

−
m∑
j=1

(bj
∣∣ry(tj)

∣∣βj − cj)
6

(
1

p
+ c

)
|r|p‖y‖p − |r|β

[
m∑
j=0

aj

tj+1∫
sj

∣∣y(t)
∣∣αj dt+

m∑
j=1

bj
∣∣ry(tj)

∣∣βj]

+

m∑
j=0

dj +

m∑
j=1

cj ,

where β > p, then J(ry) → −∞ as r → ∞, that is, when y1 is sufficiently large (that
is, away from the origin), one has J(y1) < 0, thus (P2) holds. Then by Lemma 4 there is
a critical point y∗ such that J(y∗) > δ > 0 > J(ŷ). Therefore, ŷ and y∗ are two different
critical points of J , that is, BVPs (1) has at least two classical solutions.

Proposition 1. Under the assumptions of Theorem 1, if Fj(t, y) (j = 0, 1, . . . ,m) and
Ij(t) (j = 1, 2, . . . ,m) are odd functions with respect to y and p is an odd number, then
BVPs (1) has infinitely many classical solutions.

Proof. J is a even functional by assumptions, and let Z1 ⊂ Z be a finite dimensional
subspace. By Theorem 1 it is easy to prove (i) and (ii) in Lemma 5 and choose an r0 =
r0(Z1) such that J(y) < 0 for all y ∈ Z1 \ Br0 with ‖y‖ > r0. By Lemma 5 BVPs (1)
possesses infinitely many classical solutions.

4 Examples

Example 1. Consider the following boundary value problem:

−y′′(t) + (1 + t)y(t) = y3, t ∈ (sj , tj+1], j = 0, 1, . . . ,m,

−∆
(
(1 + tj)y

′(tj)
)

= y5, j = 1, 2, . . . ,m,

(1 + t)y′(t) =
(
1 + t+j

)
y′
(
t+j
)
, t ∈ (tj , sj ], j = 1, 2, . . . ,m,(

1 + s+
j

)
y′
(
s+
j

)
=
(
1 + s−j

)
y′
(
s−j
)
, j = 1, 2, . . . ,m,

y(0) = 0, y(1) = 2y(0.5).

(8)

Compare with (1), p = 2, ζ = 2, η = 0.5, µ(t) = λ(t) = (1 + t) > 1 for 0 6 t 6 1, then
(A1) holds. When αj = 3 (j = 0, 1, . . . ,m), βj = 4 (j = 1, 2, . . . ,m), we can get

0 <
3

4
y4 = αjFj(t, y) 6 yfj(t, y) = y4, j = 0, 1, . . . ,m,

0 <
2

3
y6 = βj

y∫
0

Ij(s) ds 6 yIj(y) = y6, j = 1, 2, . . . ,m,
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then (A2) holds, and

lim
y→0

Fj(t, y)

|y|p
= lim
y→0

y4

4|y|2
= 0, j = 0, 1, . . . ,m,

lim
y→0

∫ y
0
Ij(s) ds

|y|p
=

y6

6|y|2
= 0, j = 1, 2, . . . ,m.

Then (A3) holds. Thus, by Theorem 1, problem (8) has at least two classical solutions.

Example 2. Consider the following boundary value problem:

−
(
(1 + t)Φ1.1

(
y′(t)

))′
+ (1 + t)Φp

(
y(t)

)
= y0.6, t ∈ (sj , tj+1],

j = 0, 1, . . . ,m,

−∆
(
(1 + tj)Φ1.1

(
y′(tj)

))
= y1/3, j = 1, 2, . . . ,m,

(1 + t)Φ1.1

(
y′(t)

)
=
(
1 + t+j

)
Φ1.1

(
y′
(
t+j
))
, t ∈ (tj , sj ], j = 1, 2, . . . ,m,(

1 + s+
j

)
Φ1.1

(
y′
(
s+
j

))
=
(
1 + s−j

)
Φ1.1

(
y′
(
s−j
))
, j = 1, 2, . . . ,m,

y(0) = 0, y(1) = 2y(0.5).

(9)

Compare with (1), p = 1.1, ζ = 2, η = 0.5, µ(t) = λ(t) = (1 + t) > 1 for 0 6 t 6 1,
then (A1) holds. When αj = 1.2 (j = 0, 1, . . . ,m), βj = 1.25 (j = 1, 2, . . . ,m), we can
get

0 <
3

4
y1.6 = αjFj(t, y) 6 yfj(t, y) = y1.6, j = 0, 1, . . . ,m,

0 <
15

16
y4/3 = βj

y∫
0

Ij(s) ds 6 yIj(y) = y4/3, j = 1, 2, . . . ,m,

then (A2) holds, and

lim
y→0

Fj(t, y)

|y|p
= lim
y→0

5y1.6

8|y|1.1
= 0, j = 0, 1, . . . ,m;

lim
y→0

∫ y
0
Ij(s) ds

|y|p
=

3y4/3

4|y|1.1
= 0, j = 1, 2, . . . ,m,

then (A3) holds. Thus, by Theorem 1, problem (9) has at least two classical solutions.

5 Conclusion

The interesting points of this paper are the following:

(i) By using the variational method we study a three-point boundary value problem
instead of the local boundary value problem such as [15];

(ii) We study the second-order p-Laplace differential equations with instantaneous
and noninstantaneous impulses;

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Applications of variational methods to some three-point boundary value problems 477

(iii) The nonlinear term fj and the impulsive term Ij in this paper do not have to meet
the sublinear growth conditions in [15];

(iv) We choose an appropriate space instead of functional to contain the boundary
conditions.

Acknowledgment. The authors would like to express their deep thanks to the referee
for valuable suggestions that allowed us to revise and improve the manuscript.
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