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Abstract. Mathematical modeling plays a vital role in the epidemiology of infectious diseases.
Policy makers can provide the effective interventions by the relevant results of the epidemic models.
In this paper, we build a fractional-order SIRS epidemic model with time delay and logistic growth,
and we discuss the dynamical behavior of the model, such as the local stability of the equilibria
and the existence of Hopf bifurcation around the endemic equilibrium. We present the numerical
simulations to verify the theoretical analysis.
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1 Introduction

Mathematical models of infectious disease are widely used by many researchers. The first
epidemic model was presented by Bernoulli in 1760 [2]. Epidemic models have become
a valuable tool for the analysis of dynamics of infectious disease in recent years. Many
deterministic or stochastic epidemic models were presented and analyzed by previous
researches [10, 13, 22, 26].

In [16], the authors proposed an SIRS model as follows:

dS(t)

dt
= A− βS(t)I(t) + δR(t)− µS(t),

dI(t)

dt
= βS(t)I(t)− (γ + µ+ α)I(t),

dR(t)

dt
= γI(t)− (δ + µ)R(t),
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where S(t), I(t), R(t) denote the susceptible number, the infected number and the re-
covered number of individuals at time t, respectively. Parameters A, β, δ, µ, γ and α
are nonnegative constants. A is the recruitment rate of the population, β is the disease
transmission coefficient, µ is the death rate of the population, γ is the rate constant for
recovery, α is the death rate due to the disease, and δ is the rate constant for loss of
immunity. Mena-Lorca and Hetheote discussed the dynamical behavior of this model.

In [8], Ranjith Kumar et al. considered an epidemic model with time delay and logistic
growth of the susceptibles as follows:

dS(t)

dt
= rS(t)

(
1− S(t)

K

)
− βS(t− τ)I(t− τ) + χS(t),

dI(t)

dt
= βS(t− τ)I(t− τ)− dI(t),

(1)

where S(t), I(t) represents the number of susceptible and infected population, respec-
tively. r represents intrinsic birth rate constant, K represents carrying capacity of suscep-
tible, β represents the force of infection or the rate of transmission, χ represents immigra-
tion coefficient of S(t), d represents death coefficient of I(t), and τ is the latent period of
the disease. The locally asymptotical stability of the disease-free equilibrium and endemic
equilibrium of system (1) were studied. Hopf bifurcation around the endemic equilibrium
was addressed.

Taking into account the latent period of the disease (time delay) and logistic growth
of the susceptibles, we can present the following SIRS epidemic model:

dS(t)

dt
= rS(t)

(
1− S(t)

K

)
− βS(t− τ)I(t− τ)− µI(t),

dI(t)

dt
= βS(t− τ)I(t− τ)− (µ+ γ + ε)I(t),

dR(t)

dt
= γI(t)− µR(t).

The meanings of parameters r, K, β, τ are same as in system (1). µ is the death rate of
the population, ε is the death rate due to the disease, γ is the rate of disease recovery.

In recent years, many scholars have proposed the idea of using fractional-order model
to study infectious disease model [1, 4, 7, 15, 17, 21, 24, 25]. Fractional-order model is an
extension of integer-order model, and fractional-order model has certain advantages in
describing processes with memory and heritability [12, 14, 20].

In [24], the author studied a class of SIR infectious disease model with Caputo
fractional-order derivative

DαS(t) = A− βS(t)I(t)− µI(t),

DαI(t) = βS(t)I(t)− (µ+ γ + ε)I(t),

DαR(t) = γI(t)− µR(t).

However, the above fractional-order system does not take into account the influence
of the latent period of the disease, i.e., time delay. In fact, it takes a certain time for an
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infected person to show symptoms from being infected, so it is of great significance to
discuss the influence of time-delay factors.

Based on the above analysis, the following SIRS model with Caputo fractional-order
derivative and time delay will be studied in this paper:

DαS(t) = rS(t)

(
1− S(t)

K

)
− βS(t− τ)I(t− τ) + ρR(t),

DαI(t) = βS(t− τ)I(t− τ)− (µ+ δ + σ)I(t),

DαR(t) = σI(t)− µR(t)− ρR(t),

(2)

where 0 < α 6 1. S(t), I(t), R(t) represent the number of susceptible, infected and
removed persons at time t, respectively; β denotes the infection coefficient; µ represents
the natural mortality rate; δ denotes the death rate of the disease; K is the carrying
capacity of susceptible population; ρ is the state transition rate from the recovered to
the susceptible one; σ is the state transition rate from the infected to the recovered one;
τ denotes the latent period of the disease.

The initial value condition of model (2) is

S(θ) = ϕ1(θ) > 0, I(θ) = ϕ2(θ) > 0, θ ∈ [−τ, 0],

R(0) = R0 > 0.
(3)

In this paper, stability and bifurcation problems system of (2) will be studied by using the
theory of fractional-order stability and delay differential equation. The remaining sections
of the paper are organized as follows. Preliminaries, such as definition of fractional-order
Caputo derivative and some useful lemmas, are given in Section 2. Some basic results,
such as the existence and uniqueness, nonnegativity, positive invariance of the solutions
for system (2), are presented in Section 3. The local asymptotic stability and bifurcation
results for fractional-order epidemic model are derived in Section 4. Numerical examples
are given in Section 5 to verify the obtained theoretical results. Finally, Section 6 contains
conclusion.

2 Preliminaries

In this section, we present the definition of Caputo fractional-order derivative, and some
useful lemmas are recalled for next analysis.

Definition 1. (See [19].) The fractional integral of order α for a function f(x) is defined
as

Iαf(x) =
1

Γ(α)

x∫
0

(x− t)α−1f(t) dt,

where x > 0, α > 0, Γ(·) is the gamma function, Γ(t) =
∫∞

0
xt−1e−x dx.
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Definition 2. (See [19].) The Caputo fractional derivative of order α for the function
f(x) ∈ Cn([0,∞),R) is defined by

Dαf(x) =
1

Γ(n− α)

x∫
0

f (n)(τ)

(t− τ)α−n+1
dτ,

where x > 0, and n is a positive integer such that n− 1 6 α < n.

Furthermore, when 0 < α < 1,

Dαf(x) =
1

Γ(1− α)

x∫
0

f ′(τ)

(t− τ)α
dτ.

Lemma 1. (See [9].) Consider the following fractional-order differential system Caputo
derivative:

DαX(t) = AX(t), X(0) = X0, (4)

where α ∈ (0, 1], X(t) ∈ Rn, X(t) ∈ Rn, A ∈ Rn×n. The characteristic equation of
system (4) is |sαE−A| = 0. If all of the roots of the characteristic equation have negative
real parts, then the zero solution of the system is asymptotically stable.

Lemma 2. (See [5].) Consider the following fractional-order delay differential system
with Caputo derivative:

DαX(t) = AX(t) + BX(t− τ), X(t) = φ(t), t ∈ [−τ, 0], (5)

where α ∈ (0, 1], X(t) ∈ Rn, A,B ∈ Rn×n, τ ∈ Rn×n+ , then the characteristic equation
of system (5) is |sαE −A−Be−sτ | = 0. If all of the roots of the characteristic equation
have negative real parts, then the zero solution of the system is asymptotically stable.

3 Basic results

In this section, we will discuss the existence and uniqueness of the solution for system (2).
Furthermore, the solutions of system (2) with initial condition (3) are nonnegative and
positively invariant.

Theorem 1. If C ∈ C([−τ, 0],R+
3 ) is the continuous function of Banach space and

z0(t) ∈ C in an initial condition, then system (2) has a unique solution z(t) ∈ Θ,
where z(t) = (S(t), I(t), R(t)), Θ = {(S(t), I(t), R(t)) ∈ R3: max{|S(t)|, |I(t)|,
|R(t)|} 6 L}.

Proof. Consider the mapping H(z) = (S(t), I(t), R(t)), where

H1(z(t)) = rS(t)

(
1− S(t)

K

)
− βS(t− τ)I(t− τ) + ρR(t),

H2(z(t)) = βS(t− τ)I(t− τ)− (µ+ δ + σ)I(t),

H3(z(t)) = σI(t)− µR(t)− ρR(t).
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For any t1, t2 ∈ Θ,∥∥H(z(t1)
)
−H

(
z(t2)

)∥∥
6
∥∥H1

(
z(t1)

)
−H1

(
z(t2)

)∥∥+
∥∥H2

(
z(t1)

)
−H2

(
z(t2)

)∥∥
+
∥∥H3

(
z(t1)

)
−H3

(
z(t2)

)∥∥
=

∥∥∥∥rS(t1)

(
1− S(t1)

K

)
− βS(t2 − τ)I(t2 − τ)

− rS(t2)

(
1− S(t2)

K

)
+ βS(t2 − τ)I(t2 − τ)

∥∥∥∥
+
∥∥βS(t2 − τ)I(t2 − τ)− (µ+ δ + σ)I(t1)

− βS(t2 − τ)I(t2 − τ) + (µ+ δ + σ)I(t1)
∥∥

+
∥∥σI(t1)− (µ+ ρ)R(t1)− σI(t2) + (µ+ ρ)R(t2)

∥∥
6

∥∥∥∥(r +
2rL
K

)[
S(t1)− S(t2)

]
+ ρ
[
R(t1)−R(t2)

]
+ 2β

[
S(t1 − τ)− S(t2 − τ)

]∥∥∥∥
+
∥∥2β

[
S(t1 − τ)− S(t2 − τ)

]
+ (µ+ δ + σ)

[
I(t1 − τ)− I(t2 − τ)

]∥∥
+
∥∥σ[I(t1 − τ)− I(t2 − τ)

]
+ (µ+ ρ)

[
R(t1 − τ)−R(t2 − τ)

]∥∥
6M

∥∥z(t1)− z(t2)
∥∥,

where M = max{r + 2rL/K, 2β, µ + δ + σ}. Hence, H(z(t)) satisfies Lipschitz
condition. From Lemma 5 in [11] we can obtain that system (2) has a unique solution
z(t).

Theorem 2. The solutions of system (2) with initial condition (3) are nonnegative.

Proof. Assume that R3
+ = {(S, I,R) ∈ R: S > 0, I > 0, R > 0} is positively invariant.

System (2) can be written in the vector form

DαX(t) = H
(
z(t)

)
.

Here z(t) = (S(t), I(t), R(t))>, and

H
(
z(t)

)
=

rS(t)(1− S(t)
K )− βS(t− τ)I(t− τ) + ρR(t)

βS(t− τ)I(t− τ)− (µ+ δ + σ)I(t)
σI(t)− µR(t)− ρR(t)

 ,
z0 = (S(θ), I(θ), R(0))> ∈ R3

+. For that, we investigate the direction of the vector field
H(z(t)) on each coordinate space and see whether the vector field points to the interior
of R3

+. From (2) we have

DαS(t)|S=0 = ρR(t) > 0, DαI(t)|I=0 = 0, DαR(t)|R=0 = σI(t) > 0. (6)
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From Theorem 1 in [18], Lemma 6 in [3] and Eq. (6) the vector field H(z(t)) is interior
of R3

+. The solution of (2) with initial condition z0 ∈ R3
+; say z(t) = z(t,X0), in such

a way, z(t) ∈ R3
+.

Theorem 3. The set Ω = {(S, I,R) ∈ R3
+: S + I +R 6 rK/4} is positively invariant

with respect to system (2).

Proof. Let (S(t), I(t), R(t)) be the solution of system (2) with initial condition (3). Set
N(t) = S(t) + I(t) +R(t). From system (2) we can obtain

DαN(t) = rS(t)

(
1− S(t)

K

)
− µI(t)− µR(t)− δI(t)

6 rS(t)

(
1− S(t)

K

)
− (µ+ δ)N(t)

6
rK

4
− (µ+ δ)N(t).

Hence,

N(t) 6

(
−rK

4
+N(t)

)
Eα
(
−(µ+ δ)tα

)
+
rK

4
.

Obviously, Eα(−(µ + δ)tα) > 0. Hence, N(t) = S(t) + I(t) + R(t) 6 rK/4 when
S(0) + I(0) + R(0) 6 rK/4, and Ω = {(S, I,R) ∈ R3

+: S + I + R 6 rK/4} is
positively invariant with respect to system (2).

4 Analysis of stability and Hopf bifurcation

The equilibria of system (2) are the points of intersections at which DαS(t) = 0,
DαI(t) = 0 and DαR(t) = 0. It is straightforward to see that for system (2), there
always exists a trivial equilibrium E1(0, 0, 0) and a disease-free equilibrium E2(K, 0, 0).

The basic reproduction number is defined as the average number of secondary infec-
tions produced when one infected individual is introduced into a host population, where
everyone is susceptible [23]. Now, we use next-generation matrix method in [23] to obtain
the basic reproduction numberR0 of system (2).

If x = (I, S,R)T , then when τ = 0, the original system can be expressed as

dx

dt
= F(x)− V(x),

where

F(x) =

βSI0
0

 , V(x) =

 (µ+ δ + σ)I
βSI − rS(1− S

K )− ρR
ρR+ µR− σI

 .

We can get

F =

(
βK 0
0 0

)
, V =

(
µ+ δ + σ 0
βK r

)
.
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The next-generation matrix for model (2) is

FV −1 =

( βK
µ+δ+σ 0

0 0

)
.

The spectral radius ρ(FV −1) = βK/(µ + δ + σ). According to Theorem 2 in [23],
the basic reproduction number of system (2) is

R0 =
βK

µ+ δ + σ
.

The basic reproduction number is affected by several factors including: the disease trans-
mission coefficient β, the carrying capacity of susceptible populationK, the natural death
rate of the population µ, the death rate of the disease δ, the state transition rate from the
infected to the recovered one σ.

Theorem 4. If R0 > 1, system (2) has a unique endemic equilibrium E∗. If R0 < 1,
there is no endemic equilibrium of system (2).

Proof. To obtain the endemic equilibrium E∗ of system (2), we need to impose the right
side of system (2) to be equal to 0. In other words, the equilibriumE∗(S∗, I∗, R∗) should
satisfy the following equations:

rS∗
(

1− S∗

K

)
− βS∗I∗ + ρR∗ = 0,

βS∗I∗ − (µ+ δ + σ)I∗ = 0,

σI∗ − µR∗ − ρR∗ = 0.

From above we can obtain

S∗ =
µ+ δ + σ

β
, R∗ =

σ

µ+ ρ
I∗, I∗ =

r(µ+ ρ)(µ+ δ + σ)2(R0 − 1)

Kβ2[µ2 + δ(ρ+ µ) + µ(ρ+ σ)]
.

It is obvious that S∗ > 0. When R0 > 1, I∗ > 0, system (2) has a unique endemic
equilibrium, and whenR0 < 1, I∗ < 0, there is no endemic equilibrium of system (2).

In the following, we will discuss the locally asymptotical stability of the trivial equi-
librium E1, the disease-free equilibrium E2, the endemic equilibrium for system (2) and
the existence of Hopf bifurcation around the endemic equilibrium E∗.

To discuss the locally asymptotical stability of system (2), we have to linearize it. Let
us consider the following coordinate transformation:

x(t) = S(t)− S̄, y(t) = I(t)− Ī , z(t) = R(t)− R̄,

where (S̄, Ī, R̄) denotes any equilibrium of system (2). So we can obtain that the corre-
sponding linearized system is of the form

Dαx(t) =

(
r − 2rS̄

K

)
x(t)− βĪx(t− τ)− βS̄y(t− τ) + ρz(t),

Dαy(t) = βĪy(t− τ) + βS̄x(t− τ)− (µ+ δ + σ)y(t),

Dαz(t) = σy(t)− µz(t)− ρz(t).

(7)
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Taking Laplace transform on both sides of (7), we get

sαS(s)− sα−1x(0) =

(
r − 2rS̄

K

)
S(s)− βĪe−sτ

[
S(s) +

0∫
−τ

e−stϕ1(t) dt

]

− βS̄e−sτ

[
I(s) +

0∫
−τ

e−stϕ2(t) dt

]
+ ρR(s),

sαI(s)− sα−1y(0) = βS̄e−sτ

[
I(s) +

0∫
−τ

e−stϕ2(t) dt

]

+ βĪe−sτ

[
S(s) +

0∫
−τ

e−stϕ1(t) dt

]
− (µ+ δ + σ)I(s),

sαR(s)− sα−1z(0) = σI(s)− (µ+ ρ)R(s).

(8)

Here S(s), I(s), R(s) are the Laplace transform of x(t), y(t), z(t), respectively. The
above system (8) can be written as follows:

∆(s) ·

S(s)
I(s)
R(s)

 =

b1(s)
b2(s)
b3(s)

 ,

where

∆(s) =

sα − r + 2rS̄
K + βĪe−λτ βS̄e−λτ −ρ

−βĪe−λτ sα − βS̄e−λτ + (µ+ σ + δ) 0
0 −σ sα + (µ+ ρ)


and

b1(s) = sα−1x(0)− βĪe−sτ
0∫
−τ

e−stϕ1(t) dt− βS̄e−sτ
0∫
−τ

e−stϕ2(t) dt,

b2(s) = sα−1y(0) + βĪe−sτ
0∫
−τ

e−stϕ1(t) dt+ βS̄e−sτ
0∫
−τ

e−stϕ2(t) dt,

b3(s) = sα−1z(0). �

Theorem 5. The trivial equilibrium E1(0, 0, 0) is always unstable.

Proof. The characteristic matrix at E1(0, 0, 0) is

∆1(s) =

sα − r 0 ρ
0 sα + (µ+ σ + δ) 0
0 σ sα + (µ+ ρ)

 .
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The characteristic equation at the trivial equilibrium E1(0, 0, 0) reduces to(
sα − r

)(
sα + µ+ σ + δ

)(
sα + µ+ ρ

)
= 0. (9)

Obviously, Eq. (9) has a positive root sα = r (0 < α 6 1). Then the trivial
equilibrium E1(0, 0, 0) of system (2) is always unstable.

Theorem 6. If R0 < 1, then the disease-free equilibrium E2 of system (2) is locally
asymptotically stable for all τ > 0.

Proof. The characteristic matrix at E2(K, 0, 0) is

∆2(s) =

sα + r βKe−sτ −ρ
0 sα − βKe−sτ + (µ+ δ + σ) 0
0 −σ sα + (µ+ ρ)

 .

Then the characteristic equation at the disease-free equilibrium E2(K, 0, 0) is(
sα + r

)(
sα + µ+ ρ

)[
sα + (µ+ δ + σ)− βKe−sτ

]
= 0.

When τ = 0, the characteristic equation can be translated into(
sα + r

)(
sα + µ+ ρ

)[
sα + (µ+ δ + σ)− βK

]
= 0. (10)

Let sα = λ, Eq. (10) can be rewritten as

(λ+ r)(λ+ µ+ ρ)
[
λ+ (µ+ δ + σ)− βK

]
= 0.

Its characteristic roots are

λ1 = −r, λ2 = −µ− ρ,
λ3 = βK − (µ+ δ + σ) = (R0 − 1)(µ+ δ + σ).

Obviously, λ1 < 0, λ2 < 0. Hence, | arg(λ1)| = | arg(λ2)| = π > απ/2. | arg(λ3)| =
π > απ/2 when the basic reproduction numberR0 < 1. Hence, all the eigenvalues λi of
∆2(s) satisfy | arg(λi)| = π > απ/2 (i = 1, 2, 3) whenR0 < 1. According to Lemma 2,
the disease-free equilibrium E2 is locally asymptotically stable whenR0 < 1.

When τ 6= 0, since the first two factors of the left side of Eq. (10) do not contain time
delay τ , we only need to consider the third factor

sα − βKe−sτ + (µ+ δ + σ) = 0. (11)

Assume s = iω = ω(cos(π/2) + i sin(π/2)) (ω > 0), then s is substituted in (11),
we get

(iω)α − βKe−iωτ + (µ+ δ + σ) = 0.

Separating the imaginary parts and real parts leads to

ωα cos
απ

2
+ (µ+ δ + σ) = βK cosωτ, ωα sin

απ

2
= −βK sinωτ.
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Squaring and adding both sides of this equation, we can obtain

ω2α + 2(µ+ δ + σ) cos
απ

2
ωα

+ (µ+ δ + σ + βK)(µ+ δ + σ)(1−R0) = 0. (12)

Obviously, 2(µ + δ + σ) cos(απ/2) > 0, then by our assumption that R0 < 1,
Eq. (12) has no positive roots, which ensures that Eq. (10) has no purely imaginary roots
ifR0 < 1. According to Lemma 2, the equilibrium E2 is locally asymptotically stable for
any delay τ > 0 ifR0 < 1. The proof is completed.

Next, we discuss the local stability and bifurcation results at the endemic equilibrium
point E∗. When R0 > 1, the endemic equilibrium point E∗ exists. The characteristic
matrix at E∗ is

∆3(s) =

sα − r + 2rS∗

K + βI∗e−sτ βS∗e−sτ −ρ
−βI∗e−sτ sα − βS∗e−sτ + (µ+ σ + δ) 0

0 −σ sα + (µ+ ρ)

 .

The associated characteristic equation of system (2) at E∗ can be described as

B1(s) +B2(s)e−sτ +B3e−sτ = 0, (13)
where

B1(s) = (sα)3 + p1(sα)2 + p2s
α + p3, B2(s) = q1(sα)2 + q2s

α,

B3 = a2a4a5 − a1a3a5 − a2ρσ

and
p1 = a1 + a4 + a5, p2 = a1a5 + a4a5 + a1a4, p3 = a1a4a5,

q1 = a2 − a3, q2 = a2a5 + a2a4 − a1a3 − a3a5,

a1 = r − 2rS∗

K
, a2 = βI∗, a3 = βS∗, a4 = µ+ σ + δ, a5 = µ+ ρ.

Case 1. When τ = 0, Eq. (13) becomes

(sα)3 + (p1 + q1)(sα)2 + (p2 + q2)sα + (p3 +B3) = 0.

On the basis of Routh–Hurwitz theorem, the endemic equilibrium point E∗ is locally
asymptotically stable if

p1 + q1 > 0, p3 +B3 > 0, (p1 + q1)(p2 + q2) > p3 +B3.

Case 2. When τ > 0, let s = iω = ω(cos(π/2) + i sin(π/2)) (ω > 0) be a root of
Eq. (13). Substituting s in (13), we obtain

(c1 + id1) + (c2 + id2)e−iωτ +B3e−iωτ = 0, (14)
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where

c1 = ω3α cos
3απ

2
+ p1ω

2α cos(απ) + p2ω
α cos

απ

2
+ p3,

d1 = ω3α sin
3απ

2
+ p1ω

2α sin(απ) + p2ω
α sin

απ

2
,

c2 = q1ω
2α cos(απ) + q2ω

α cos
απ

2
, d2 = q1ω

2α sin(απ) + q2ω
α sin

απ

2
.

Separating the real and imaginary parts of (14) yields

(c2 +B3) cos(ωτ) + d2 sin(ωτ) + c1 = 0,

d2 cos(ωτ)− (c2 +B3) sin(ωτ) + d1 = 0.
(15)

From Eq. (15) we have

cos(ωτ) = − (c2 +B3)c1 + d1d2

(c2 +B3)2 + d2
2

, sin(ωτ) =
(c2 +B3)d1 − c1d2

(c2 +B3)2 + d2
2

.

It is obvious that cos2(ωτ) + sin2(ωτ) = 1, and

ω6α + υ1ω
5α + υ2ω

4α + υ3ω
3α + υ4ω

2α + υ5ω
α + υ6ω = 0,

where
υ1 = 2p1 cos

απ

2
, υ2 = p2

1 − q2
1 + 2p2 cos(απ),

υ3 = 2

[
(p1p2 − q1q2) cos

απ

2
−B3 cos

3απ

2

]
,

υ4 = p2
2 − q2

2 − 2(p1p3 + q1B3) cos(απ),

υ5 = 2(p2p3 − q2B3) cos
απ

2
, υ6 = p2

3 −B2
3 .

Let
f(ω) = ω6α + υ1ω

5α + υ2ω
4α + υ3ω

3α + υ4ω
2α + υ5ω

α + υ6ω.

Then let us discuss the distribution of roots of Eq. (13). It is imperative that the following
lemma is useful and needed.

Lemma 3. For Eq. (13), the following results hold:
(i) If v1 > 0, v2 > 0, v3 > 0, v4 > 0, v5 > 0, v6 > 0 and p2

3 − B2
3 6= 0, then

Eq. (13) has no root with zero real parts for all τ > 0.
(ii) If v1 < 0, v2 < 0, v3 < 0, v4 < 0, v5 < 0 and v6 > 0, then Eq. (13) has a pair

of purely imaginary roots ±iω+ when τ = τj , j = 1, 2, 3, . . . , where

τj =
1

ω+

[
arccos

(
− (c2 +B3)c1 + d1d2

(c2 +B3)2 + d2
2

)
+ 2jπ

]
, j = 1, 2, 3, . . . .

Let s(τ) = %(τ) + iω(τ) be the root of Eq. (13) such that when τ = τj satisfies
%(τ) = 0, ω(τ) = ω+. Taking the derivative of Eq. (13) with respect to τ ,

ds

dτ
=

e−sτ [sB2(s) + sB3]

B
′
1(s) +B

′
2(s)e−sτ − τB2(s)e−sτ −B3τe−sτ

. (16)
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In (16), consider the numerator and denominator terms described as

e−sτ
[
sB2(s) + sB3

]
= ς1 + iς2,

B′1(s) +B′2(s)e−sτ − τB2(s)e−sτ −B3τe−sτ = ς3 + iς4,

where

ς1 = q1ω
2α+1

[
cos

2απ

2
sin(ωπ)− sin

2απ

2
cos(ωπ)

]
+ q2ω

α+1

[
cos

απ

2
sin(ωπ)− sin

απ

2
cos(ωπ)

]
+B3ω sin(ωπ),

ς2 = q1ω
2α+1

[
cos

2απ

2
sin(ωπ) + sin

2απ

2
cos(ωπ)

]
+ q2ω

α+1

[
cos

απ

2
sin(ωπ) + sin

απ

2
cos(ωπ)

]
+B3ω cos(ωπ),

ς3 = 3αω3α−1 cos
(3α− 1)π

2
+ 2αω2α−1p1 cos

(2α− 1)π

2
+ αωα−1p2 cos

(α− 1)π

2

+ 2αω2α−1p1

[
cos

(2α− 1)π

2
cos(ωτ) + sin

(2α− 1)π

2
sin(ωτ)

]
+ αωα−1p2[cos(

(α− 1)π

2
) cos(ωτ) + sin(

(α− 1)π

2
) sin(ωτ)]

− τω2αp1

[
cos

2απ

2
cos(ωτ) + sin

2απ

2
sin(ωτ)

]
− τωαp2

[
cos

απ

2
cos(ωτ) + sin

απ

2
sin(ωτ)

]
,

ς4 = αω3α−1 sin
(3α− 1)π

2
+ 2αω2α−1p1 sin

(2α− 1)π

2
+ αωα−1p2 sin

(α− 1)π

2

+ 2αω2α−1p1

[
sin

(2α− 1)π

2
cos(ωτ)− cos

(α− 1)π

2
sin(ωτ)]

+ αωα−1p2

[
sin

(α− 1)π

2
cos(ωτ)− cos

(α− 1)π

2
sin(ωτ)

]
− τω2αp1

[
sin

2απ

2
cos(ωτ)− cos

2απ

2
sin(ωτ)

]
− τωαp2

[
sin

απ

2
cos(ωτ)− cos

απ

2
sin(ωτ)

]
.

Then from Eq. (16) we have

ds

dτ

∣∣∣∣
τ=τj , ω=ωj

=
ς1 + iς2
ς3 + iς4

=
(ς1ς3 + ς2ς4) + i(ς2ς3 − ς2ς4)

ς23 + ς24
,

Re
ds

dτ

∣∣∣∣
τ=τj , ω=ωj

=
ς1ς3 + ς2ς4
ς23 + ς24

6= 0.
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Define τ∗ = min{τj}, and based on the bifurcation theorem for functional differential
equations [6], we have the following theorem.

Theorem 7. AssumeR0 > 1. For system (2), the following results hold:

(i) If vi > 0 (i = 1, 2, 3, 4, 5, 6), then the endemic equilibrium E∗ is locally asymp-
totically stable for τ > 0;

(ii) If vi < 0 (i = 1, 2, 3, 4, 5) and v6 > 0, then the endemic equilibrium E∗ is
locally asymptotically stable for τ ∈ [0, τ0); and

(iii) System (2) undergoes a Hopf bifurcation at the endemic equilibrium E∗ when
τ = τj (j = 1, 2, 3, . . . ).

5 Numerical simulations

In this section, several illustrative numerical examples are presented to confirm the the-
oretical results and to examine the dynamical behavior of system (2). All the figures are
plotted by using Matlab 2018a. From Section 4 we can find that delay τ and fractional
order α are the important factors, which affect the convergence speed of solutions. We
select parameters as follows: r = 0.15, K = 90, β = 0.007, ρ = 0.004, µ = 0.035,
δ = 0.1, σ = 0.2 with initial conditions S0 = 50, I0 = 5, R0 = 50. We can calculate
R0 = 1.880597015 > 1. System (2) have three equilibria E1(0, 0, 0), E2(90, 0, 0)
and E∗(47.85714286, 10.68849472, 54.81279344). We only discuss the stability of E∗.
From Fig. 1 we can see that the positive equilibrium of system (2) exhibits a Hopf
bifurcation when bifurcation parameter τ passes the critical value τ∗ when α fixes.

(i) τ = 0.8 and α = 0.98. We can calculate τ∗ = 3.827693574 from (15).
Obviously, τ < τ∗ = 3.827693574. From Theorem 4 we can obtain that E∗

is locally asymptotically stable (see Fig. 2).
(ii) τ = 12 and α = 0.98. It is to see that τ > τ∗ = 3.827693574. From Theorem 4

we can find that E∗ is unstable and Hopf bifurcation occurs (see Fig. 3).
(iii) τ = 12 and α = 0.90. We can calculate τ∗ = 12.32545463 and τ < τ∗. Then

E∗ is locally asymptotically stable (see Fig. 3).

Figure 1. Bifurcation diagrams of system (2) showing the influence of τ for α = 0.98, where r = 0.15,
K = 90, β = 0.007, ρ = 0.004, µ = 0.035, δ = 0.1, σ = 0.2.
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Figure 2. For the following parameter values r = 0.15, K = 90, β = 0.007, ρ = 0.004, µ = 0.035,
δ = 0.1, σ = 0.2, τ = 0.8 and α = 0.98, the endemic equilibrium E∗ of system (2) is locally asymptotically
stable.

Figure 3. For the following parameter values r = 0.15, K = 90, β = 0.007, ρ = 0.004, µ = 0.035,
δ = 0.1, σ = 0.2, τ = 12 and α = 0.98, the endemic equilibrium E∗ of system (2) is unstable.
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Figure 4. For the following parameter values r=0.15, K =90, β =0.007, ρ=0.004, µ=0.035, δ=0.1,
σ=0.2, τ=12 and α=0.90, the endemic equilibrium E∗ of system (2) is locally asymptotically stable.

6 Conclusion

In this work, we studied a fractional-order SIRS epidemic model with delay and logis-
tic growth of the susceptibles. The dynamical behavior of system (2) is studied. Local
stability of the equilibria for system (2) and Hopf bifurcation are analyzed. The trivial
equilibrium E1(0, 0, 0) of system (2) is always unstable. The disease-free equilibrium
E2 of system (2) is locally asymptotically stable for all τ > 0 when R0 < 1. When
R0 > 1 and τ = 0, the endemic equilibrium is locally asymptotically stable. According to
Theorem 4, whenR0 > 1 and the last two conditions of Theorem 7 satisfied, the stability
of the endemic equilibrium changes at Hopf bifurcation point τ∗. Our findings illustrate
that using the time delay τ as bifurcation parameter, one can conclude that the positive
equilibrium loses its stability, and Hopf bifurcation occurs when time delay increases. The
numerical simulations shown in Figs. 1 and 2 verified the effectiveness of the obtained
theoretical results. From Fig. 3 we can speculate that the positive equilibrium loses its
stability and Hopf bifurcation occurs when α is used as bifurcation parameter. It will be
considered in future work.

Modeling of epidemic diseases by delayed fractional-order differential equations has
more advantages and consistency rather than classical integer-order mathematical model-
ing. Our model takes into account several factors (time delay, Logistic growth, fractional
order, etc.), which is more realistic. The model is thought to contribute valuable insight
for public health, which is useful for some the prediction and control measures for some
diseases.
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