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Abstract. Based on properties of Green’s function and by Avery—Peterson fixed point theorem, the
existence of multiple positive solutions are obtained for singular p-Laplacian fractional differential
equation with infinite-point boundary conditions, and an example is given to demonstrate the
validity of our main results.
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1 Introduction

In this paper, we will devote to considering the following infinite-point singular p-Laplacian
fractional differential equation:

DY (¢ (‘D)) () + f(tu(t), ' (t)) =0, 0<t<1, (1)
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with infinite-point boundary condition

u(0) =u/(0)=--- = u(i—l)(o) = u(i+1)(0) S u("‘l)(O) =0,

1) = anu(gj), DI, u(0) =0, ®

0+u ZCJS% 0+u f]))

where 8,7 € Rt = [0,4+),1 < 83<2,n—1<~vy<n(n>=3),vy > i pLaplacian
operator ¢, is defined as ¢, (s) = [s[P~2s,p,q > 1,1/p+1/qg = 1,and 0 < 1;,¢;, & < 1
(i=1,2,...,00), f € C((O 1) xRL xRY, RL)) (RL = [0,+00)), and f(t, 1, x2) has
smgularlty att =0, 1, D0+u is the standard Riemann-Liouville derivative, CD0 L uis the
standard Caputo derivative.

Fractional-order system may have additional attractive feature over the integer-order
system. For example, the analytical solutions of the systems

%x(t) =at" 1, Dex(t) =at® ', 0<a<l,

are t*+x(0) and al'(a)t* T~ /T (a+a)+z(0), respectively. Obviously, the integer-order
system is unstable for a € (0, 1), the fractional dynamic system is stableas 0 < a < 1—a.
Moreover, fractional-order systems have been shown to be more accurate and realistic
than integer-order models, and it also provides an excellent tool to describe the hereditary
properties of material and processes, particularly, in viscoelasticity, electrochemistry,
porous media, and so on. As a result, there has been a significant development in the
study of fractional differential equations in recent years, readers can refer to [2,4-10, 15—
17,21-24]. Jong [12] studied the following p-Laplacian fractional differential equations:

DY (¢p(Dgu)) (1) = f(tu(t), 0<t<1, 3)

with m-point boundary condition

’LL(O) = 0, 0+’U, Z Sz 0+u 777,

m—2 (4)
DS@u(O) = 0, (DO+U Z Cz@p 0+u(771))

=1

where ] < o, <23 <a+8<40<y<l,a—vy—-1>0,0<mn;,,6 <1
(i=1,2,...,00), Z;ﬂ Cemt T <1, 7 2 Gn? Tt < 1 < 1, p-Laplacian operator
©p 18 defined as op(s) = s |” 2s,p,g > 1, 1/p+1/qg = 1, and f € C([0,1] x
(0, 4+00), [0, +00)). The authors obtained the existence and uniqueness of solutions by
using the fixed point theorem for mixed monotone operators. Jong [11] obtained the
existence and uniqueness of positive solutions by the Banach contraction mapping prin-
ciple for equation (3), (4). In [20], the author considered following fractional differential
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equation:
D§ u(t)+g(t) f(tu(t) =0, 0<t<1,

with infinite-point boundary condition
uw(0) = w'(0) = =u"2(0) =0, wl(1) =) aju(g),
=1

wheren —1 < a <n,n >3,i € [l, n—2]isafixed integer, a; > 0,0 < & < & <

S< o1 < <o <1 =1,2,...), f permits singularities with respect to both the
time and space variables. According to introducing height functions, the author obtained
the existence and multiplicity of positive solution theorems, and Zhang and Zhai obtained
the existence and uniqueness of positive solution for this equation in [18]. In [19], Zhang
and Liu investigated the following infinite-point fractional differential equation:

D u(t) = f(t,z(t), Dy u(t), DS u(t), 0<t<l,

with infinite-point boundary condition
u(0) =0, Dg& Lu(0 = Z u(&;), u(l Zaj u(&;),

where 2 <a< 3 f €10,1] x R® — R is a Caratheodory function, &;,~; € (0,1), and
{6357, {7}/ are two monotonic sequence with lim; 1 & = @, lim; 100 Vi =
b, a,b € (0, ) al,ﬁl € R, D§, u is the standard Riemann—Liouville derivative. The
authors established the existence of at least one solution for this equation by Mawhin’s
continuation theorem.

Motivated by the excellent results above, in this paper, the existence of multiple
positive solutions are obtained for a singular infinite-point p-Laplacian boundary value
problems. Compared with [19], the equation in this paper is p-Laplacian fractional differ-
ential equation, and the method which we used in this paper is Avery—Peterson fixed point
theorem. Compared with [12], fractional derivative is involved in the nonlinear terms for
BVP (1), (2), and multiple positive solutions are obtained for the BVP (1), (2).

2 Preliminaries and lemmas

In this section, we introduce definitions and preliminary results, which are used through-
out this paper. First, we let E = ([0, 1] be the Banach space with the maximum norm
lull = max{[lulo, [/]lo}. where ullo = maxe o, lu(t)], llu’lo = maxye o, |/ (£)],
then we list a condition below to be used later in the paper.

(HO) f:(0,1) xR} xRY — R!, andforall¢ € (0, 1), there exists an function ¥(t)
such that 9(t) € L*(0,1) and f(t, 2o, x1) < V(¢).

Now, we state some lemmas, which are basic and used in this paper.

Nonlinear Anal. Model. Control, 27(4):609-629, 2022
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Lemma 1. (See [13,16].) Assume that v € C™[0, 1], then
I8, D u(t) = u(t) — Cy — Cot — -+ - — Cpt"™ ™1,
where n is the least integer greater than or equal to o, C; € R (i = 1,2,...,n).
Lemma 2. (See [13,16].) Assume that u € C™[0, 1], then
o DS u(t) = u(t) + Crt* + Cot® 2 4o Cpt™ ™",

where n is the least integer greater than or equalto o, C; €e R (1 =1,2,...,n).
Lemma 3. (See [3, Thm. 1.2.7].) Let H C C*[J, E], then H is a relatively compact set if
and only if

(i) H'is equicontinuous, and H'(t) is a relatively compact set for any t € J on E;

(il) There exists to € J such that H (to) is a relatively compact set on E.

Lemma 4. (See [1,14].) Let P be a cone of E, @ and 6 be nonnegative continuous
convex functionals on P, ¢ be a nonnegative continuous concave functional on P, and )
be a nonnegative continuous functional on P, (ux) < p(z) for 0 < p < 1 such that
for some positive numbers L and h, ¢(x) < ¢¥(x) and ||z|| < LP(x) for all z € P(P, h).
Let A : P(®,h) — P(®P, h) is completely continuous and there exist positive numbers e,
¢, d with e < c such that the following conditions are satisfied:

(S1) {z € P(®,0,0,c,d,h): ¢(x) > c} # ¢, ¢(Ax) > cforx € P(P,0,,¢,d,h);
(52) ¢p(Ax) > cforx € P(D,p,c,h), and §(Ax) > d;
(S3) 0 ¢ R(D,v,e,h) and p(Azx) < e for x € R(P, 1, e, h) with (x) = e.
Then A has at least three fixed points x1, Ta, x3 such that ®(x;) < hfori=1,2,3, and
c < ¢(x1), e < P(x2), p(x2) < ¢ P(x3) < e
Lemma 5. Giveny € L'[0,1] N C(0, 1), then the solution of the BVP

Diyu(t) +yt)=0, 0<t<l, (35)
with boundary condition (2) can be expressed by
1
ut) = [ Gltolo)ds, e, ©
0
where
1 T P(s)(1 =) — At —s)71 0<s<t <,
Clts) — ()P(5)(1 =)=~ = At =) -
AT(y) | #T(y)P(s)(1 — s)7 471, 0<t<s<1,
in which
1 1 & —s\"! _
P(s)=——F— — i 2 ) 1-—s)", ()
S O rm%”ﬂ(l—s e
A=il = nh ©)
j=1

https://www.journals.vu.lt/nonlinear-analysis
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Proof. By means of Lemma 1 we reduce (5) to an equivalent integral equation
u(t) = —IJ,y(t) + C1+ Cat + -+ Ct' " + Cipqt' + -+ + Cpt" !

for C; € R (i = 1,2,...,n). From u(0) = «/(0) = --- = w(=1(0) = «(+Y(0) =
-+ = u(=1(0) = 0 we have C; = 0(j # i + 1). Consequently, we get

u(t) = Cipat" — Ig, y(t),
hence, we have
uD(t) = ilCiy1 — I 'y(). (10)

On the other hand, u(” (1) = >=°2, n;u(¢;) combining with (10), we get
; (1—s)"" i—1 —8)7~ 1
Cip1 = / oA v Zm/ “reya v ds
1

= [T

0

where P(s) is as (8), and A is as (9). Hence,

u(t) = Cipat' — 13+Z/(7f)
t

:_/A(t 5 d8+/1 sy 1ﬁp( D (51 ds.
0 0

I'(y)A
Therefore, G(t, s) is as (7). By simple calculation we have

i1 —i—1 -2
W T (Y)P(s)(1 —s8)Y7" 4 — (v — D) A(t — s)7™=,
9G(t5) . () P(s)(1 = s) (v = DA(t - s)
= 0<s<t<l, O
ot AT(v) | .. .
it I0(y)P(s)(1—s)Y7 71 0<t<s< 1.

Lemma 6. Let f € C((0,1] x (0,+00)2,[0,+00)), then the BVP (1), (2) has a unique

solution.
1 1
u(t) = /G(t,s)goq(/H(S,T)f(T,u(T),u’(T)) dr) ds, (11)
0 0
where G(t, s) is as (6), and
1 L(BP(s)tP~1(1—s Alt—s)P~1, 0<s<t<1,
Hits) = AL(B) {Fgg;PEsgﬂ“El - s;‘“, Y 0<t<s<1, 2

Nonlinear Anal. Model. Control, 27(4):609-629, 2022
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in which

Z:1—Zggf‘1, (13)

P(s) = % N0 Z@(fﬂ ) : (14)

Proof. Lety € C[0,1], v(t) = ¢,(°Dj; u)(t). Consider the boundary value problem

D) +7(t) =0, 0<t<1,  v(0)=0, v(1)=) ¢u(&). U5

By means of the Lemma 2 we reduce (15) to an equivalent integral equation
o(t) = —IP, g(t) + CrtP =1 + CptP 2 (16)
for C; € R (i = 1,2). From v(0) = 0 we have Cy = 0. Consequently, we get

v(t) = it — 17 ().
On the other hand, v(1) = 3772, (jv(&;), and combining with (16), we get

1 9]
1—s)P1_ = j—sﬂ_lf
1
— )81
= [EE g as

where A is as (13), P(s) is as (14). Hence,
o(t) = CrtP = 10 y(1)

F A — )81 _ §)B-148-1P(5
= A s as v [y,
0

r(p)A
Therefore, H (¢, s) is as (12). O

Lemma 7. Take 3,0 € (0,1) with j < £ such that 3* > 771, i3*=t > (v — 1)0772, then
we have

i < 0G(t, s) < i

g t? g = )
0<Glts) ot T(y—1

)g(s), t,s €10,1],

% > hg(s), te]yd, sel0,1],

where g(s) = (1—3s)Y" "1 /A by = AP =01 /T(y) <1, he = A(ig L — (y—1) x
07=2)/T(y) < 1. Then h = min{hy, ha} < 1.

G(t,s) > hy(s),

https://www.journals.vu.lt/nonlinear-analysis
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Proof. By direct calculation we get P'(s) > 0, s € [0,1], and so P(s) is nondecreasing
with respect to s. For s € [0,1], v — 1 > i, we get

-1

TP = s - Yo ($52) -y

Py -1 s<E;
F() 5o, (65
7T ‘;”J(l—s) e
F(’Y) _ - ~y—1
=(r-D(r—-2) me” '
>l — angl
and obviously,
_ 1 1 §-s\"" — ) ! s
TR s@’“<1—s) A S M
Hence, for ¢, s € [0,1], % > p, we have
HT()P(s)(1 = 5771 _ T()P(s)(1 = s)7 " i
S rga ST twa S
0G(t,s) _ it IT(y)P(s)(1 —s)7—¢71 z(l s)y—i=t B 7
o S I'(7)A < (y—i)A  T(y-— i)g(s)'
Furthermore, for 0 < s < ¢ < 1, we get
() P(s)(1 —s)7 7 — At — 5)77!
Gl s) = ATCy)
_ tHT(y)P(s)(1 — s)77 L — A(t — s)7= 71t — )t >0
Ar(v) 7

and obviously, for 0 < ¢ < s < 1, we get G(t,s) > 0. On the other hand, for 0 < s <
t < 1, we have

0G(t, s)
ot
it () P(s) (L —s) " - Ay = 1)(t— )7
AL(y)
L BT PO)(A = 8) 77 = Aly = 1)t = 5)7 (= 5)" !
- AT (v)

Nonlinear Anal. Model. Control, 27(4):609-629, 2022
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(R = 3252 ™) = (= D)0 — 0, mi€0)) (1 — 571
g AT(7)
(Fis — (y=1)il + (= 1) 3552 myl — i 3052 my&) ~ ) (1—s) i1
AT(y)
1
- - _ 1 _ _ —2) — (7 —1)!
AI(7)<CV Di((y=2)(y=3)---(y—4) = (i-1))
4ww—n§:mg—w§:mg1>u—3y””#*>0,
j=1 j=1
and 9G(t, s) /Ot > 0 obviously holds for 0 < ¢ < s < 1.
For t € [, ], we get
tT(Y)P(s)(1 —s)Y 1 — A(t — s)771
G(t,s) =
) AT(y)
_ TP = )71 — Al — £~
AT(v)
AL s 0 (1 e
- AT(y)
Alfi — 1) (1 — s)r-icl
> 40 AF)Ev) S g, sl
and for ¢ € [y, (], we have
OG(t,s) it" 'T(y)P(s)(1—s)"""" 1 — A(y —1)(t — )72
o AT (%)
- i T AL — 8)Y T — Ay — 1) (£ — £s)7 72
g AL (v)
Alif=1 = (y — 1)07=2)(1 — 5)7—i~1
> S =0 O g, seloal
Therefore, the proof of Lemma 7 is completed. O

Lemma 8. Let A > 0, then the Green functions defined by (12) satisfies:

() H:[0,1] x [0,1] — RY is continuous and H (t,s) > 0 forall t,s € (0,1);
(i) tﬁ’:H(i, s) < H(t,s) < H(L,s) forall t,s €[0,1] inwhich H(1,s) =
(1/8)(P(s) = A/T(B)(1 — )71,

Proof. The proof is similar to Lemma 3 of [20], we omit it here. O

Now we define a cone K on C'*[0, 1] and an operator A : K — C1[0, 1] as follows:
K= {u e CL0,1]: u(t) = 0, W/(t) = 0, t € [0,1], min w9 (t) = oful, j =0, 1},

" tely,0)

https://www.journals.vu.lt/nonlinear-analysis
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where 0 < o =hl(y—4)/i < 1,0 <h < hy = (3 =0~ H/T(v) <i/T(y—1i), 7and ¢
are the same as in Lemma 7, and

Au(t) = /G(t,s)goq(/H(S,T)f(r,u(r),u'(r)) d7'> ds.
0 0

Problems (1), (2) has a positive solution if and only if « is a fixed point of A in K.

3 Main results

Lemma 9. The operator A : K — E is continuous.

Proof. First, by the integrability of f and (HO) we get

igally )T
Ty — ) A(AT(B))r!
ipg(Jo A(r)dr) (1 s)i

T T DA@GTE)T i

so we have that A is well defined on K. Moreover, it follows from the uniform continuity
of G(t, s) on [0,1] x [0, 1] and (HO)

|Au(tz) — Au(ty)|

1
/|G t27 tl, {gﬁq<
0

< Sﬁq(fo J(7)dr)
© o (Ar(g))e!

/ BlfTu() (T))dT)dS
0

1
/‘G(tQ,S) tl, |d8
0

Nonlinear Anal. Model. Control, 27(4):609-629, 2022
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Thus, we have that Au € C[0,1], v € K. Furthermore, by the uniform continuity of
0G(t,s)/0t, fort, s € [0, 1], we get

(Au)'(t)_/aGts </Hs7' 7, u(T), u (T))dT)dSEC[O,l].

0

Let u,, u € K, u, — uin C[0,1]. Since G(t, s), OG(t, s)/Ot are uniformly continuous,
there exists M > 0 such that

maX{G(t,s),aGgi’s)} <M, t,sel0,1].

On the other hand, since u,, — u in C*[0, 1], there exists A > 0 such that |ju,| < A
(n=1,2,...), and then ||u|| < A. Furthermore, by (HO) we have

/H(s, T)f(T, u(T), u’(T)
0

/1—7[3 1f7'u()u(7'))d7’
0

1
6119)

»Q
,_.
o\

so, we have

= My, a7y

hence, for any & > 0, there exists § > 0 such that, for any s1, s € [0,1], 23,23, 2},2% €
[0, A], [s1 — 82| < 8, |z — 23| < 6, |2} — 23| < 4, by (17) and Lebesgue controls

convergence theorem, we have

1 1
@q(/H(ShT)f(Tvmé?x%)dT) —@q(/H(827T)f(T7$(2),l‘%)dT>
0 0

By |lun, — ul| — 0, for the above 6 > 0, there exists N such that for all n > N, we
get |u,, (t) — u(t), |ul,(t) — v (t)] < ||up —ul| < 6 forany ¢ € [0, 1]. Hence, for any
t €10,1],n > N, by (18) we obtain

(/HSTf(Tun()7 ul, (1) d7'>— (/HST Tu) (T)dT)>

<e. 19)

<e. (18)

https://www.journals.vu.lt/nonlinear-analysis
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Thus, forn > N, t € [0, 1], by (19) we have

| (Aun)(t) = (Au)(t)]

/1G (/1H (7, un(7), u;(f))d7> ds

0

jG (/1H (r), '(T))dr> ds

0

0
O/G ( <O/H (7,11 (7). u;(T))dT>
- soq< / H(s,7)f (r,u(r), (7)) d>> 0
< Mo/ads < Me

| (Aun)' () — (Au)'(1)]

/1 (jHSTf(Tun( ), (7 ))d7)>ds
0

1

0
/18G (/HST (r,u(r),u (T)dT))dS

0

0

18G < ( 1H(s ) f (7, un(7) U/(T))d’]')

it

— ©q H(s,7)f(r,u(r), (7)) dT)) ds
(/

< Me,

and

and hence, we get ||Au, — Aullp — 0, ||[(Au,) — (Au)’|lo — 0 (n — oo). That is,
|Aw,, — Aul|| — 0 (n — 00), namely, A is continuous in the space E. O

Lemma 10. A : P — P is completely continuous.

Nonlinear Anal. Model. Control, 27(4):609-629, 2022
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Proof. From Lemma 7 we have (Au)(t), (Au)'(t) > 0,t € [0, 1], and

maxAut—max/Gts
te(0,1] te[0,1]

thus, [|Aullo, [[(Aw)llo < [ (i/T(v — 0))g(s)eq(fy H(s,7)f(r,u(r), (1)) dr)ds,
consequently,

[ Au| = max{|| Aufo, || (Au)[|,}
1 1

< 0/Wg(s)cpq<O/H(s,7)f(7',u(7'),u’(7')) dT) ds.

On the other hand, for all u € P, t € [y, ¢], by Lemma 7 we have

g r(?_@) /F( - S011</H(5’T)f T ( )) d7'> ds
( o 0
B[ ;
> 7 G(t78)§0q< H(S,T)f T u( ) ( ) d’r) ds
T'(a—1) 0/ 0/ ( )

https://www.journals.vu.lt/nonlinear-analysis
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/ 1 OG(t, s) ( 1 |
(Au)'(t) = eo| [ H(s,7)f (1, u(r),u/ (1)) d7> ds
<5/
hag(s ( H(s, 1) Tu T),u (T))d7—> ds
o [
== 0/ Dy - z>g(5)%(/ Hs,m)f (. “(T),u/(T))dT> ds,

1
> hf /aG (t,5) (/H (r), ’(7))017) ds.
T'(a—1) 0 0

min{ Au(t) (Au)’(t)}

> mm{hl,hg}/ = q</1H(5,T)f(T,u(T),u'(T)) dT> ds
0

T'(a—1) 0

Hence,

'«
> MO =D pu) = o au.

Thus, A(P) C P.

Now we will prove that AV is relatively compact for bounded V' C K. Since V is
bounded, there exists D > 0 such that for any u € V, ||u]| < D. Fort € [0,1], u € V,

we have
©q </H(s, ) f (7, u(r), v/ (7)) d7-> ds

I
O\H
Q
W

_ 1pq fo 7)dr) (1 )
T(y —i)A(AT(8))1~

Similarly, for t € [0,1], u € V, we derive

|(Au)'(t)| g 7’90(1 fO 7( ) (1_8)77i’
D(y —i)A(AL(B))et v —1

Nonlinear Anal. Model. Control, 27(4):609-629, 2022
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which shows that AV is bounded. Next, we will verify that (AV')’ is equicontinuous. Let
t1,te € 10,1],t1 < to,u € V, we get

[(Au)'(t2) = (Auw)'(t1)]

<[ =47

[TPEA—sp— (] :
X 0/ ©q (O/H(S,T)f(T,u(T),u (7')) dT) ds

AL(y)
_ i — )72 1 s,7)f(r,u(r), v (r)) dr | ds
+F(’y—1)0/(t2 ) @q(O/H(a )f(a ()7 ())d>d

o _
Ja
\E‘Ib
ﬂ
SN—
“\.‘
—
i
I
—
2
:\
—
\]
Nt
o
\]
N——
o
V2]

1
i‘Pq(fol J(r)dr) i—1 _ 4i—1 _ Mo — )77 %ds
" AT(y —i)(Ar(8))e! 7 =)+ o/(1 o

x [ty =17

Furthermore,

¢ 1
/(t — s 2ds =771 /(1 — 5)72ds.
0 0

Z'Sl’q(fol J(r)dr) -1 4i—1
Aﬂv—U(FWD“J@2 )l
_c
L(y—1)

Thus, we obtain

=

|(Au) (t2) — (Au)'(t1)] <

L

+ (L—s)"2ds- 37" =477, uweW

o _

From above and the uniform continuity of ¢*~!, t*~2, and together with Lemma 3, we
can derive that AV is relatively compact in C*[0, 1], and so we get that A : K — K is
completely continuous. O
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Let ¢, 6 be nonnegative continuous convex functionals on P, ¢ be a nonnegative
continuous concave functional on P, and ¢ be a nonnegative continuous functional on P.
Then for nonnegative numbers e, ¢, d, h, we define the following convex sets:

P(p,h) ={z € P | p(zx) < h},
P(p,¢.c,h) ={x € P | ¢(z) > ¢, p(x) < h},
P(p,0,¢,c,d,h) ={z € P ’ c < P(z), 0(x) < d, p(z) < h},
R(p, 9, e,h) = {CE epP | e <Y(x), pz) < h}.

We will apply the following fixed point theorem of Avery and Peterson to solve
problem (1), (2).

Let the convex functions ¢(u) = 8(u) = ®(u) = |lu|| on P, and define a concave
function ¢(u) = min{mine[, ¢ [u(t)[, minge, o [’ (t)[}, where j, £ are the same as in
Lemma 7.

Theorem 1. Assume that there exist positive numbers e, ¢, d, h with ¢ > e, d >
max{1/h, e'=/2}¢, h > rc/(hQ), and h > d such that

(H1) (bq(fo flt,x y Ydt) < h/r for (t,x,y) € [0,1] x [0, h]?;

(H2) @[y H(1, 1) f(t,2,y)) ds > ¢/ (hQ) for (t,3,y) € [5,] x [c,d]*;

(H3) qﬁq(fo f(t,z,y)dt)<e/r for (t,x,y)€[0,1] x[0, €], wherer = zfo s)ds/
(T(y = )(AT(B))* ), Q = fj s~V g(s) ds.

Then problem (1), (2) has at least three fixed points u1, us, us satisfying

||u1|| <h, =123, (20)
and
c< mm{ min |uy(¢)], min_ |u}(t |}, e < [Juzll, (21)
te(y,0] te[y,0]
mln{ min_|us(t)], mm ‘uz |} <, lug]| < e. (22)
te(y,4] te(y,L

Proof. Letu € P(p,h). By condition (H1) we get

lAullo = max |Au(t)

N
O\H
Q
&
S
2
/N
- O\H
o
)
\]
\‘
<
2
IS
—
\]
=
o
\]
N———
o,
Va)

Nonlinear Anal. Model. Control, 27(4):609-629, 2022


https://doi.org/10.15388/namc.2022.27.26363

624 L. Guo et al.

Juy, - 8 (w0

:O/aG“ (/HST 7 u(r), (T))dT)ds
ols (/fm ))dT)d

N
\

L(y =) (AL(B))e

Consequently, we obtain $(Au) = ||Aul| < h. This, together with Lemmas 9 and 10,
means that A : P($, h) — P(P, h) is completely continuous.

Take u(t) = ce!=%%, ¢ € [0,1]. By simple calculation we have that u € P,
|lul| < d, and ¢(u) > ¢, and so {u € P(P,0,¢,c,d,h): ¢ < ¢p(u)} # (. Foru €
P(®,0,0,c,d,h), by (H2) we get

d(Au) = mln{ min |Au(t)|, min |(Au)'(t )|}

t€[y,4] te(y,0]

P ﬁ/g(s)s(q_l)(ﬂ_l) (/H (L,7)f(r,u(r),u' (1)) d7'> ds
¢

B (a-1)(B-1) q
> /g ShQ
J

which shows that condition (S1) is satisfied.
Take u € P(®P, ¢, c, h) and || Aul| > d. Since Au € P, we obtain

d(Au) = mm{trenér} |Au(t)], tren[;lz] |(Au)'(t )}} > o||Aul| = od > ¢,

which implies that condition (S2) holds.
Next, we will verify that condition (S3) holds. For 1(0) = 0, we have 0 € R(®, v, ¢, h).
Letu € R(P,%), e, h) and ¢(u) = |Ju|| = e, by (H3) we get
| Aullo = max | Au(t)]

< /Wg(s)s%(/H(S,T)f(T,u(T)7U(T)) dT) ds

0 0
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1

/A

and

¢4yl

1 1

625

L(y—i)(A ql/g )ds - %(/fru (T))dr>

g/r( (/HST (7, u(r), u (T))dT)dS
0

0

) W—Mr(ﬂ))q—l/ ooy ds: *”</ f (7 u(r), o' (7)) dT>

3|0
—
A
»Q
L
O\H
b

Consequently, we have 1)(Au) = ||Aul|| < e. Thus, condition (S3) holds.
By Lemma 4 we get that (1), (2) has at least three positive solutions wuj, us, us

satisfying (20)—(22). O
4 An example
Consider the following infinite-point p-Laplacian fractional differential equations:
DY (03 (“Dy2u)) (1) + f(t,u(t),u'(£) =0, 0<t<1,
u(0) = w'(0) =u"(0) =0, (1) = inju<sj>, o)
DYu(0) =0,  @3(Dy u(l ZCMS (“Dy/*u(;)),
where
g ) (fry) € (0.1] x [0, ] % [0, 4],
F(tw,y) = sz (Vo + )%, (ta,y) € (0,1] x [1,20] x [1,20],
P et 8 (t,2,y) € (0,1] x [100, 00) x [100, c0).
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Clearly,

4993

fltz,y) < mzﬁ(ﬂ

and
1

1
4993 L 4993 /1 1
_ -1/2(1 _ 1/2
/ﬁ(t)dt o /t (1—t)"1/2dt = —— B<2 2)
0 0

s0, ¥(t) is integrable, condition (HO) holds.
We take 7 = 3/15, £ = 4/15,; = 2/(357/2), n; = 1/(25%), & = 1/3, by simple
calculation we have

A=il = n;él ~1.4589,

j=1
Z—1—§: »5‘1—1—2§:;~07215
=126 = 1= 5D S 07215,
i= j=
(1—s)rt 1 1/2
= = 1_ .
9(s) A Ta5s0 %)

Hence, we have

Ju—

_ 1_ l/Qd
(% —2)(0. 72151‘% 1/2/14589 s) 7 ds
0
8 1 43039

T 3'x 14589 x (0.7215 x 0.5)1/2 73/4 ~ 73/4

4
1 2//4\** [/11\*?
L: = —— — — -
/g(s)ds 1.45893((5) (15) )
J

4/15

¢
1
- (g=1)(B-1) - 121/2__ = (1 _4)1/2
Q /s g(s)ds /s 1.4589(1 s) /< ds
7 3/15

4/15
= 0.6854 / sY4(1 — )12 ds = 0.0278,

3/15

ﬂ~0193si~01093<1
T'(y) IRV ’

A - i—1 -1 ga—2 1
(iy (=D)L 043361 ~ 0.2446 < 1,
() VT

hi=A

hy =
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and as by < By < 1, h = hy. Lete = 1/2, ¢ = 1, d = 20, h = 400. Then for
(t,z,y) € [0,1] x [0,400]?, we have

1 1
4992 4992 /1 1
— e — = B PN,
<pq</f(t,x,y) dt) L)03/2</47Tt1/2(1 _t)1/2 dt) \/477—<2’2)
0

0

1275 < M a 219.23,
T

so condition (H1) of Theorem 1 hold. For (¢, z,y) € [0,1]x[1,20] x[1, 20], by MATLAB
software we have

@q(/H(l,t)f(t,m,y) dt)

0

1
_ A 2
= P32 (/ % (P(t) - r(ﬁ))“ - f)ﬁ—lwtl/;(li%)_t)l/2 dt) ~ 345.56

0
1
> e — © ~333.33,
0.1093 x 0.6854 [,/ s1/4(1 = 5)1/2ds  PQ

therefore, condition (H2) of Theorem 1 hold. By the same method with proofing (H1)
we get (H3) hold, so all the conditions of Theorem 1 hold. Hence, the BVP (23) has at
least three positive solutions w1, ug, us satisfying u; < 600,¢ = 1,2,3, and 1 < ¢(u1),
1/2 <luz|, ¢(uz) <1, [lus]l < 1/2.

Acknowledgment. The authors would like to thank the referee for his/her valuable
comments and suggestions.
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