
Nonlinear Analysis: Modelling and Control, Vol. 27, No. 3, 513–533
https://doi.org/10.15388/namc.2022.27.26483

Press

A model analysis to measure the adherence
of Etanercept and Fezakinumab therapy
for the treatment of psoriasis*

Amit Kumar Roya , Fahad Al Basirb , Priti Kumar Roya,1 ,
Amar Nath Chatterjeec

aCentre for Mathematical Biology and Ecology,
Department of Mathematics, Jadavpur University,
Kolkata 700032, India
pritiju@gmail.com
bDepartment of Mathematics, Asansol Girls’ College,
Asansol-4, West Bengal 713304, India
cDepartment of Mathematics, K.L.S. College,
Nawada, Magadh University,
Bodh Gaya, Bihar 805110, India

Received: March 2, 2021 / Revised: October 10, 2021 / Published online: March 16, 2022

Abstract. This article deals with a immunological model, which includes multiple classes of T cells,
namely, the naive T cell, type I, type II and type 17 T helper cells (Th1, Th2, Th17), regulatory
T cell (Treg) along with the activated natural killer cells (NK cells) and epidermal keratinocytes.
In order to describe the etiology of psoriasis development, we have studied the basic mathematical
properties of the model, existence and stability of the interior equilibrium. We have also derived the
drug-induced mathematical model using impulse differential equation to determine the effects of
combined biologics Etanercept (TNF-α inhibitor) and Fezakinumab (IL-22 monoclonal antibody)
therapy considering perfect dosing during the inductive phase. We have determined the required
dosing interval of both drugs to maintain the keratinocytes concentration below a threshold level.
This study shows that Etanercept alone could theoretically maintain the keratinocytes level, whereas
frequent dosing of Fezakinumab alone may not be enough to control the hyper-proliferation of
keratinocytes. Furthermore, combination of the drugs with perfect dosing has the noticeable effect
on keratinocytes dynamics, which may be suitable therapeutic approaches for treatment of psoriasis.
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1 Introduction

Psoriasis is a common, chronic inflammatory skin disease with a complex etiology involv-
ing immune disorder and environmental triggers. According to World Health Organization
(WHO), it affects about 2% to 3% of the world population, although it is more prevalent
in American, Canadian, and European populations [35]. This disease is characterized by
scaly red lesions on skin surface due to a huge proliferation of epidermal keratinocytes.
Although, it is believed that psoriasis is a treatable but not curable disease, enlargement
of treatment procedure is still in progress.

Biologic and biosimilar medications for psoriasis is the best current therapy pro-
posed by many clinical and experimental researchers [20, 21]. These drugs fight with
the causes rather than just eases the symptoms, and they target a specific part of body
immune system. Specifically, biologics are used to suppress the action of a specific type
of immune cells or they block some particular cytokines signaling. Tumor necrosis factor
alpha (TNF-α), Interleukin 17 (IL-17) or Interleukin 12 (IL-12), Interleukin 23 (IL-2),
etc. Over the past decades, several biological therapies have been approved based upon
numerous parameters: FDA- and EU-approved indications, therapeutic efficacy and im-
pact on quality of life, cost-effectiveness, and safety profile [4]. Though some biologics
(Infliximab, Etanercept, Adalimumab, Efalizumab, etc.) have been already approved as
therapeutic agent of psoriasis, yet researchers are still testing the efficacy of new biologics
(Fezakinumab, Alefacept, etc.) [4, 11]. Etanercept, TNF-α inhibitor, is accepted for the
treatment of psoriasis at a dose of 25 mg or 50 mg twice weekly for 3 months followed
by a maintenance dosage of 50 mg weekly thereafter [30, 31]. This biologic binds with
TNF-α (a Th1 mediated cytokine that can bind to TNF receptor 1 or TNF receptor 2 and
is involved in keratinocytes hyper-proliferation) to inhibit the inflammatory responses in
skin which is characteristic of psoriasis [14, 17]. On the other hand, dendritic cells and
keratinocytes mediated cytokine Interleukin IL-23 stimulates Th17 cells within dermis to
create IL-17A and IL-22, which drives keratinocytes hyper-proliferation in psoriasis [6].
Many clinical trials suggested that Fezakinumab, a well-tolerated IL-22 monoclonal anti-
body, which is a promising therapeutic agent to treat epidermal hyperplasia and abnormal
keratinocytes differentiation [9, 19].

Recent evidence indicates that the activated NK cells release a large amount of IFN-γ,
which lead the activation and hyper-proliferation of keratinocytes by the process of bio-
chemical requirements [15, 33]. Activated NK cells mediated IFN-γ, has been shown
to be a highly effective promoter of Th17 cell trafficking to the skin in psoriasis [32].
Th1 participate in promoting NK cell activation with enhanced cytotoxicity through In-
terleukin 21 (IL-21) signaling cascade [28]. Treg, a new subpopulation of suppressor
T cells, are typically known as inhibitors of autoimmune responses. For the psoriatic
case, Treg can differentiate into inflammation-associated Th17 cells (paradigm shift) [2].
Due to the pro-inflammatory cytokine milieu in the psoriasis lesion, especially high levels
of Interleukin 6 (IL-6) secreted from endothelial cells and Th17 cells, which inhibit Treg

activity [3]. The effects of two biologics (Etanercept and Fezakinumab) have been ag-
gregated in this model by taking the mathematical approaches from [29] including some
clinical data from [19, 30, 31].
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Earlier, many researchers have discussed the dynamics of psoriasis to explore the
etiology and possible treatment policies of psoriasis using mathematical models [12, 16,
27]. Grigorieva and coworkers have studied the possible types of the control strategies as-
sociated with the first, second, and third orders singular arcs to enrich the control approach
for the treatment of psoriasis [7, 10]. Recently, Roy et al. have studied the impacts of T
helper cells (Th1, Th2, and Th17) along with the pro-inflammatory and anti-inflammatory
cytokines on psoriasis progression and also discussed about the dominating roles of few
biologics (IL-10, TNF-α inhibitor, IL-22 inhibitor) in the treatment of psoriasis [23–26].

In this research, a mathematical model has been formulated with an aim to study
the etiology of psoriasis development including the dynamics of regulatory T cell (Treg)
and activated natural killer cells (NK cells). Natural killer cells (type of lymphocyte and
a component of innate immune system) become activated in presence of macrophage se-
creted cytokines, and that activated NK cells can produce various inflammatory cytokines
(IFN-γ, TNF-α, etc.) [18, 34]. Here we have focused on the crucial role of regulatory
T cell and activated NK cell along with the other T helper cells (naïve T cells, Th1,
Th2, and Th17) for capturing the excessive rapid proliferation of keratinocytes. We have
observed the effect of Etanercept (TNF-α inhibitor) and Fezakinumab (IL-22 monoclonal
antibody) therapy by considering impulse differential equation. We have determined the
change in drug concentration, which occurs when a new dose is administered by using the
impulsive model. We have found that the minimum dosing interval is required to maintain
the keratinocyte density under a certain threshold. Furthermore, we have determined the
efficacy of the combined drug doses as well as the individual drug doses through numer-
ical analysis. It is also revealed that the Etanercept alone could theoretically maintain
the keratinocytes level, but Fezakinumab alone may not be able to control the hyper-
proliferation of keratinocytes.

This manuscript is organized as follows. In the afterward Section 2, we have for-
mulated the full mathematical model based on the above discussion. In Section 3, we
have theoretically analyzed some basic properties of the system when no drugs is applied.
In Section 4, we have investigated the impulse therapeutic approach with four extreme
cases. The numerical outcomes of our formulated model (without and with therapy) have
been demonstrated in Section 5. Finally, in Section 6, we have discussed the main results
including the limitations, future scope, and novelty for our formulated mathematical
system.

2 The model

In this section, we have formulated a mathematical system to describe the psoriasis dy-
namics by considering naive T cell, four different types of T helper cells (Th1, Th2, Th17,
and Treg), activated natural killer cells (NK cells), and keratinocytes (skin cells). Here
the density of naive T cell, Th1, Th2, Th17, Treg, activated natural killer cells (NK cells),
and keratinocytes are represented by T (t), T1(t), T2(t), T17(t), Treg(t),NA(t), andK(t),
respectively, at any time t. The concentration of our considered two drugs (Etanercept and
Fezakinumab) are represented by E(t) and F (t) at time t 6= tk, where k = 1, 2, . . . , n.
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In order to develop the growth equation of naive T cell, we assume that a is the
constant accumulation of naive T cells from bone marrow. Here we have considered
that ηi (i = 1, 2, 3, 4) are the production rate of Th1, Th2, Th17, Treg, respectively, from
naive T cell. δi (i = 1, 2, 3) represent the negative regulatory effect of Th2 cell on naive
T cell, Th1, Th17 cell, respectively, and γ1 and γ2 denote the negative regulatory effect of
Th1 cell on Th2 and Th17 cell, respectively. The inhibitory effect of Th17 cell on Th1 and
Treg are denoted by β1 and β2, these inhibitory effects are associated with IL-17 and IL-6
cytokines signaling, respectively. We have assumed that ξ1 and ξ2 are the proliferation
rate of Th1 and Th2, respectively, due to self released cytokines. Due to paradigm shift,
Treg differentiate into Th17, this rate is denoted by λ1 and, at a rate λ2 activated NK cells
promote Th17 through IFN-γ signaling cascade.

Let b be the constant accumulation of activated natural killer cells (NK cells) from
bone marrow. Also, let ξ3 and λ3 are the proliferation rates of activated NK cells by the
effect of self released and Th1 mediated cytokines, respectively.

We assume that c is the constant growth of keratinocytes due to the constant migration
of cells from dermal layer to epidermal layer. The effect of the vast IFN-γ released by
activated NK cells, which help to proliferate the keratinocytes at a rate α3. Furthermore,
the positive regulatory effect of Th1 and Th17 cells on the proliferation of keratinocytes
is given by the rate α1 and α2, respectively, and at the same time, Th2 cells inhibit the
proliferation of keratinocytes at the rate of δ4. Natural death rates of naive T cell, Th1,
Th2, Th17, Treg, activated natural killer cells, and keratinocytes are denoted by µi (i =
1, 2, . . . , 7), respectively.

Based on the above assumptions and discussion, our formulated mathematical model
to describe psoriasis dynamics is as follows:

dT

dt
= a− δ1TT2 − µ1T,

dT1
dt

= η1T + ξ1T1 − δ2T1T2 − β1T17T1 − µ2T1,

dT2
dt

= η2T + ξ2T2 − γ1T1T2 − µ3T2,

dT17
dt

= η3T + λ1Treg + λ2NA − γ2T1T17 − δ3T2T17 − µ4T17,

dTreg
dt

= η4T − β2T17Treg − µ5Treg,

dNA
dt

= b+ ξ3NA + λ3T1 − µ6NA,

dK

dt
= c+ α1

(
E50

E50 + E

)
T1 + α2

(
F50

F50 + F

)
T17

+ α3NA − δ4T2K − µ7K.

(1)

In the seventh equation of system (1), the Hill functions E50/(E50 + E) and F50/
(F50 + F ) represent the degree to which Etanercept and Fezakinumab inhibit the positive
regulatory effects of Th1 and Th17, respectively, on keratinocytes. Value of α1 and α2
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decrease due to the inhibitory effects of these two biologics. E50 and F50 represent the
concentration of Etanercept and Fezakinumab, which required to inhibit hyper-prolifera-
tion of keratinocytes by 50%.

The dynamics of two drugs are described by the following:

dE

dt
= −r1E for t 6= tk,

dF

dt
= −r2F for t 6= θj .

E
(
t+k
)
= E

(
t−k
)
+ Ec for t = tk, where k = 1, 2, . . . , n.

F
(
θ+k
)
= F

(
θ−k
)
+ Fc for t = θj , where k = 1, 2, . . . , n.

(2)

In system (2), r1 and r2 denote the rate at which the drugs are cleared. HereE(t+k ) and
F (θ+k ) are used to denote the concentration of Etanercept and Fezakinumab, respectively,
at just after the Kth number of doses are taken. The concentration of these biologics at
just before the intake ofKth number doses are represented byE(t−k ) and F (θ−k ). HereEc
and Fc are the dosages of Etanercept and Fezakinumab, respectively, those drugs are taken
at each impulse time t = tk, where k = 1, 2, . . . , n, and t = θk where k = 1, 2, . . . , n.
In general, tk 6= θk, so that the two drugs are taken at different times.

3 The system without drugs

When drugs are absent, i.e., E = 0 and F = 0, the system becomes:

dT

dt
= a− δ1TT2 − µ1T,

dT1
dt

= η1T + ξ1T1 − δ2T1T2 − β1T17T1 − µ2T1,

dT2
dt

= η2T + ξ2T2 − γ1T1T2 − µ3T2,

dT17
dt

= η3T + λ1Treg + λ2NA − γ2T1T17 − δ3T2T17 − µ4T17,

dTreg
dt

= η4T − β2T17Treg − µ5Treg,

dNA
dt

= b+ ξ3NA + λ3T1 − µ6NA,

dK

dt
= c+ α1T1 + α2T17 + α3NA − δ4T2K − µ7K

(3)

subject to the following initial conditions:

T (0) > 0, T1(0) > 0, T2(0) > 0, T17(0) > 0,

Treg(0) > 0, NA(0) > 0, K(0) > 0.

In this section, we have studied the boundedness property of the solutions of system (3).
We have also discussed the existence of the interior equilibria and stability criteria.

Nonlinear Anal. Model. Control, 27(3):513–533, 2022
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3.1 Boundedness

It is very important to establish that all the model variables are bounded for all time t. This
will ensure that the model is well-posed and plausible to represent the cell populations.
The following theorem describes the boundedness of the solutions of system (3).

Theorem 1. All the solutions of system (3) enter into the region Ω ⊂ R7
+ and are

ultimately bounded, where Ω is defined as

Ω =
{
(T, T1, T2, T17, Treg, NA,K)> ∈ R7

+: 0 6 T 6M1,

0 6 T1 6M2, 0 6 T2 6M3, 0 6 T17 6M4,

0 6 Treg 6M5, 0 6 NA 6M6, 0 6 K 6M7

}
,

if the following conditions hold:

T (0) 6M1, T1(0) 6M2, T2(0) 6M3, T17(0) 6M4,

Treg(0) 6M5, NA(0) 6M6, K(0) 6M7

and
µ6 > ξ3, µ2 > ξ1, µ3 > ξ2.

Here the symbol “>” denotes the transpose, and Mi, i = 1, 2, . . . , 7, are defined by the
following formulas:

M1 =
a

µ1
, M2 =

η1M1

µ2 − ξ1
, M3 =

η2M1

µ3 − ξ2
, M4 =

η3M1 + λ1M5 + λ2M6

µ4
,

M5 =
η4M1

µ5
, M6 =

b+ λ3M2

µ6 − ξ3
, M7 =

c+ α1M2 + α2M4 + α3M6

µ7
.

Proof. Let us consider the first equation of system (3) and neglecting the term δ1TT2, we
have the relationship:

dT

dt
< a− µ1T. (4)

By applying the well-known comparison principle described by [1] to (4) and considering
M1 = a/µ1, we obtain the inequality

0 < T1(t) < M1

(
1− e−µ1t

)
+ T (0)e−µ1t, t > 0,

from which it follows that T (t) 6 M1 if T (0) 6 M1. By using similar arguments (one
can see [25] for detail analysis) we can easily show that all solutions (T, T1, T2, T17, Treg,
NA,K)> of system (3) that start in Ω remain in this set for all t > 0. It means that Ω
is invariant set of this system. Moreover, the region Ω is bounded, and therefore, all
mentioned solutions ultimately bounded.
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3.2 Equilibrium analysis

Here we have considered interior equilibrium (IE) as a steady state solution where the
disease persists.

For the existence of interior equilibrium IE = (T ∗, T ∗1 , T
∗
2 , T

∗
17, T

∗
reg, N

∗
A,K

∗)>, its
coordinates should satisfy the conditions: T ∗ > 0, T ∗1 > 0, T ∗2 > 0, T ∗17 > 0, T ∗reg > 0,
N∗A > 0, K∗ > 0. In order to obtain the existence condition of the interior equilibrium,
we set the first, second, third, fifth, sixth, and seventh equations of system (3) to zero.
Solving state variables in terms of T ∗2 , we obtain the following:

T ∗ =
a

δ1T ∗2 + µ1
, T ∗1 =

η2T
∗ + (ξ2 − µ3)T

∗
2

γ1T ∗2
,

T ∗17 =
η1T

∗ + (ξ1 − δ2T ∗2 − µ2)T
∗
1

β1T ∗1
,

T ∗reg =
η4T

∗

β2T ∗17 + µ5
, N∗A =

b+ λ3T
∗
1

µ6 − ξ3
,

K∗ =
c+ α1T

∗
1 + α2T

∗
17 + α3N

∗
A

δ4T ∗2 + µ7
.

(5)

Now using the values expressed in system (5), we have obtained the tenth degree polyno-
mial of T ∗2 from the fourth equation of system (3). Now, we compare with the standard
form

f(T ∗2 ) = T ∗2
10 +B9T

∗
2
9 +B8T

∗
2
8 +B7T

∗
2
7 +B6T

∗
2
6 +B5T

∗
2
5

+B4T
∗
2
4 +B3T

∗
2
3 +B2T

∗
2
2 +B1T

∗
2 +B0. (6)

Since it is hard to evaluate all coefficients, viz. Bi (i = 1, 2, . . . , 9) of (6), so we can
construct the following lemma to conclude the existence criteria by using the fact that if
B0 < 0, then it has at least one positive root in [0,∞).

Lemma 1. If λ2λ3+γ2µ3 > γ2ξ1(µ6−ξ3) holds, then there exists an interior equilibrium
point IE of system (1).

Analytically, it is also very difficult to determine the steady state values of system
populations. We have determined numerically by performing the numerical stability
analysis. For the stability analysis, we need the Jacobian at any steady point at IE

J(IE) =



− a
T∗ 0 −δ1T ∗ 0 0 0 0

η1 − η1T
∗

T∗
1
−δ2T ∗

1 −β1T ∗
17 0 0 0

η2 −γ1T ∗
2 − η2T

∗

T∗
2

0 0 0 0

η3 −γ2T ∗
17 −δ3T ∗

17 −(γ2T ∗
1 +δ3T

∗
2 +µ4) λ1 λ2 0

η4 0 0 −β2T ∗
reg − η4T

∗

T∗
reg

0 0

0 λ3 0 0 0 ξ3 − µ6 0
0 α1 −δ4K∗ α2 0 α3 −(δ4T ∗

2 + µ7)


.
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The matrix J(IE) has characteristic equation

(χ+ δ4T
∗
2 + µ7) detM(IE) = 0,

where

M(IE) =



− a
T∗ −χ 0 −δ1T ∗ 0 0 0

η1 − η1T
∗

T∗
1
−χ −δ2T ∗

1 −β1T ∗
17 0 0

η2 −γ1T ∗
2 − η2T

∗

T∗
2
−χ 0 0 0

η3 −γ2T ∗
17 −δ3T ∗

17 −(γ2T ∗
1 +δ3T

∗
2 +µ4)−χ λ1 λ2

η4 0 0 −β2T ∗
reg − η4T

∗

T∗
reg
−χ 0

0 λ3 0 0 0 (ξ3−µ6)−χ


.

Let elements of the above matrixM(IE) are in the form of aij , where {i, j ∈ (1, 2, . . . , 6)}.
Now, detM(IE) gives

χ6 +A1χ
5 +A2χ

4 +A3χ
3 +A4χ

2 +A5χ+A6 = 0,

where Ai, i = 1, 2, . . . , 6, are the coefficient of the above polynomial. The coefficients
are defined as

A1= −
∑

aij ,

A2=
∑

aiiajj−
∑

aijaji

A3=
∑

aijajiakk−
∑

aiiajjakk−
∑

aijajkaki

A4=
∑

aiiajjakkall+
∑

aijajiakiall+
∑

aijajiaklalk−
∑

aijajiakkall

−
∑

aijajiaklali

A5=
∑

aijajiakkallamm−
∑

aiiajjakkallamm−
∑

aijajkaklaliamm

−
∑

aijajkakiallamm−
∑

aijajiaklalkamm+
∑

aijajkaklalmami

A6=
∑

aiiajjakkallammann+
∑

aijajkaklalmamiann+
∑

aijajiaklalkammann

+
∑

aijajkakialmamnanl−
∑

aijajiakkallammann−
∑

aijajiaklalmamkann.

Here Ai, i = 1, 2, . . . , 6, followed a rule that i 6= j 6= k 6= l 6= m 6= n. In aij , if i = 1,
then j can go to 6 or 5. Following same rule for k, l, m, n. Similarly, 2 can go 5 or 6, 3
can go 5, 4 can go 5 or 3, 5 can go 2 or 3 or 4 or 6, and 6 can go 1 or 2 or 5. In aijaji,
let i = 1, then j can go 5 or 6, but a15a51 does not exist because 5 cannot go to 1. For
example, applying the above rule, we get the expression of A2 as follows:

A2 =

5∑
i=1

aii

6∑
j=i+1

ajj − {a16a61 + a26a62 + a25a52 + a35a53 + a45a54 + a56a65}.

Now, we can conclude the stability criteria by the following remark.
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Remark 1. All the roots of the characteristic equation are negative or have negative real
part if the determinants of all the Hurwitz matrices are positive, i.e., det(Hj) > 0,
j = 1, 2, . . . , 6. Thus, according to the Routh–Hurwitz criterion [8, 22], the system is
asymptotically stable if det(Hj) > 0, j = 1, 2, . . . , 6, where the Hurwitz matrices are
given by

H1 =
(
A1

)
, H2 =

(
A1 1
0 A2

)
,

H3 =

A1 1 0
A3 A2 A1

0 0 A3

, H4 =


A1 1 0 0
C A2 A1 1
0 A4 A3 A2

0 0 0 A4



H5 =


A1 1 0 0 0
A3 A2 A1 1 0
A5 A4 A3 A2 A1

0 0 A5 A4 A3

0 0 0 0 A5

 and H6 =


A1 1 0 0 0 0
A3 A2 A1 1 0 0
A6 A5 A4 A3 A2 A1

0 A6 A5 A4 A3 A2

0 0 0 A6 A5 A4

0 0 0 0 0 A6

 .

4 The system with drugs

In this section, we have analyzed the drug-induced system using modified impulsive
method to evaluate the dosing interval. The consideration of impulsive differential equa-
tions to measure the drug adherence will obviously perturb the interior steady state. Due
to these impulse effect, the solutions of our formulated model exhibit periodic orbits with
discontinuities. It is clear from models (1), (2) that only the drugs will exhibit discontinu-
ities directly, and the other parameters may have discontinuities in their derivatives, but
will have continuous solutions.

Here we have considered that the drugs (Etanercept and Fezakinumab) are given at
fixed intervals. Let τ = tk+1 − tk be the period of Etanercept (TNF-α inhibitor), and let
σ = θj+1− θj be the period of Fezakinumab (IL-22 monoclonal antibody) (for k, j > 1).
For t satisfying tk+1 < t < tk and θj+1 < t < θj , we have

E(t) = E
(
t+k
)
e−r1(t−tk), F (t) = F

(
θ+j
)
e−r2(t−θj). (7)

The recursion relation at the moments of impulse is given by

E
(
t+k
)
= E

(
t−k
)
+ Ec, F

(
θ+j
)
= F

(
θ−j
)
+ Fc. (8)

From the first equation of system (7) along with the recursion relation (8), we have
obtained

E
(
t+k
)
= Ec

1− e−kr1τ

1− e−r1τ
→ Ec

1− e−r1τ
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as k →∞. Similarly, as j →∞, we have

F (θ+j )→
Fc

1− e−r2σ
.

In order to obtain the ends of a positive impulsive periodic orbit of Etanercept, we have
considered

E
(
t+k+1

)
= E

(
t−k+1

)
+ Ec,=

Ec
1− e−r1τ

e−r1τ + Ec,=
Ec

1− e−r1τ
.

Furthermore,

E
(
t+k
)
− Ec

1− e−r1τ
= Ec

1− e−kr1τ

1− e−r1τ
− Ec

1− e−r1τ
,= −Ec

e−kr1τ

1− e−r1τ
.

Hence, the ends of a positive impulsive periodic orbit of Etanercept has been defined by
the impulse points Ec/(1 − e−r1τ ) and Ece−r1τ/(1 − e−r1τ ) to which the endpoints of
each cycle monotonically increase.

Similarly, the ends of a positive impulsive periodic orbit of Fezakinumab has been
defined by the impulse points Fc/(1 − e−r2σ) and Fce−r2σ/(1 − e−r2σ) to which the
endpoints of each cycle monotonically increase.

4.1 Extreme cases analysis

Here we have analyzed four extreme cases to manifest the different outcomes that can
occur depending on the dosing intervals. Before analysing the case, we cite the following
lemma from [29].

Lemma 2. Suppose x is a variable satisfying

dx

dt
< c− q(φ)x(t),

where c is a constant, and q(φ) is independent of x and t. Then if x(0) < c/q(φ), it
follows that x(t) < c/q(φ) for all t.

We have considered that a small dosing interval corresponds to frequent drug adminis-
tration. It is obvious that small dosing intervals should provide the most effective therapy,
whereas large dosing intervals should have little effect on over proliferated keratinocytes.
We have also considered K̃, the normal keratinocytes density. The value of K̃ has been
taken 200 mm−3. Our target is to keep the keratinocytes density below K̃ by administrat-
ing drug with suitable dosing interval. Furthermore, only the keratinocytes population has
been considered in describing the following four extreme cases depending on the dosing
intervals. In order to avoid mathematical complexity, we have ignored the effect of drugs
on the other immune cells.
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The initial conditions on the drug concentrations and the monotonicity of the impul-
sive trajectories imply that

E(t) <
Ec

1− e−r1τ
and F (t) <

Fc
1− e−r2σ

for all t. Since the impulsive drug orbits are asymptotically stable, it follows that for any
ε > 0, there exists t1 such that

E(t) >
Ece
−r1τ

1− e−r1τ
− ε and F (t) >

Fce
−r2σ

1− e−r2σ
− ε.

Case 1. Absence of both drugs (i.e., E(t) = 0 and F (t) = 0).
If no drugs have been applied, then we can consider the situation where Th1, Th17,

and activated NK cells dominate, while Th2 is present at the low density level. By using
Theorem 1 we can consider the keratinocytes density as follows:

dK

dt
< c+ α1M2 + α2M4 + α3M6 − µ7K, K(t) < M7,

where M2, M4, M6, M7 have been defined in Theorem 1. Here we have concluded by
the following remark.

Remark 2. Drugs will be applied when the keratinocytes density K(t) satisfies the
condition K̃ < K(t) < M7 for any time t. Note that keratinocytes density at interior
equilibrium K∗ also satisfies the condition K̃ < K∗ < M7.

Case 2. The absence of Fezakinumab (i.e., F (t) = 0) but frequent use of Etanercept.
Here, for a fixed value of ε, the dynamics of keratinocyte is described as follows:

dK

dt
< c+ α1

(
E50

E50 + Ece−r1τ/(1− e−r1τ )− ε

)
M2

+ α2M4 + α3M6 − µ7K,

K(t) <
Ψ(τ)

µ7
.

Suppose that Etanercept is applied at dosing interval, i.e., τ1 for which keratinocytes
density will be less than or equal to K̃. Hence, the following inequality holds:

Ψ(τ1)

µ7
6 K̃,

α1

(
E50

E50 + Ece−r1τ1/(1− e−r1τ1)− ε

)
M2 6 µ7K̃ − (c+ α2M4 + α3M6),

e−r1τ1

1− e−r1τ1
>

α1M2E50

Ec(µ7K̃ − c− α2M4 − α3M6)
− E50

Ec
+

ε

Ec
,

τ1 6
1

r1
ln

∣∣∣∣ Λ

1 + Λ

∣∣∣∣, (9)
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where

Ψ(τ1) = c+ α1

(
E50

E50 + Ece−r1τ1/(1− e−r1τ1)− ε

)
M2

+ α2M4 + α3M6,

Λ =
α1M2E50

Ec(µ7K̃ − c− α2M4 − α3M6)
− E50

Ec
+

ε

Ec
.

From (9) we get the upper value of dosing interval of the frequent dose of Etanercept. By
the following remark we can conclude this case.

Remark 3. In absence of Fezakinumab, if only Etanercept is applied at the dosing inter-
val τ1, described in equation (9) the keratinocytes density will be less than or equal to K̃.
For a fixed value of ε, we can determine the value of τ1, which have been demonstrated
in numerical section.

Case 3. The absence of Etanercept (i.e.,E(t) = 0) but frequently use of Fezakinumab.
Here, for a fixed value of ε, the dynamics of keratinocyte is described as follows:

dK

dt
< c+ α1M2 + α2

(
F50

F50 + Fce−r2σ/(1− e−r2σ)− ε

)
M4

+ α3M6 − µ7K,

K(t) <
Ψ(σ)

µ7
.

Again, suppose that Fezakinumab is applied at dosing interval, i.e., σ1 for which ker-
atinocytes density will be less than or equal to K̃. Hence, by using Lemma 2 the following
inequality can be established:

Ψ(σ1)

µ7
6 K̃,

α2

(
F50

F50 + Fce−r2σ1/(1− e−r2σ1)− ε

)
M4 6 µ7K̃ − (c+ α1M2 + α3M6),

e−r2σ1

1− e−r2σ1
>

α2M4F50

Fc(µ7K̃ − c− α1M2 − α3M6)
− F50

Fc
+

ε

Fc
,

σ1 6
1

r2
ln

∣∣∣∣ Ω

1 +Ω

∣∣∣∣, (10)

where

Ψ(σ1) = c+ α1M2 + α2

(
F50

F50 + Fce−r2σ1/(1− e−r2σ1)− ε

)
M4 + α3M6,

Ω =
α2M4F50

Fc(µ7K̃ − c− α1M2 − α3M6)
− F50

Fc
+

ε

Fc
.

From (10) we get the upper bound of dosing interval of the frequent dose of Fezakinumab.
By the following remark we make a conclusion on Case 3.
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Remark 4. In absence of Etanercept, if only Fezakinumab is applied at the dosing interval
σ1, described in equation (10) the keratinocytes density will be less than or equal to K̃.
For a fixed value of ε, we can determine the value of σ1, which have been demonstrated
in numerical section.

Case 4. Frequent dosing of both drugs.
Here we have recalled inequalities (9) and (10) to describe the case when Etanercept

and Fezakinumab are taken frequently. τ∗ and σ∗ are the fixed dosing intervals of Etan-
ercept and Fezakinumab. Hence, for a fixed value of ε, the dynamics of keratinocyte is
described as follows:

dK

dt
< c+ α1

(
E50

E50 + Ece−r1τ
∗/(1− e−r1τ∗)− ε

)
M2

+ α2

(
F50

F50 + Fce−r2σ
∗/(1− e−r2σ∗)− ε

)
M4

+ α3M6 − µ7K,

K(t) <
Υ (σ∗, τ∗)

µ7
.

Hence, the following inequality holds:

Υ (σ∗, τ∗)

µ7
6 K̃,

where

Υ (σ∗, τ∗) = c+ α1

(
E50

E50 + Ece−r1τ
∗/(1− e−r1τ∗)− ε

)
M2

+ α2

(
F50

F50 + Fce−r2σ
∗/(1− e−r2σ∗)− ε

)
M4

+ α3M6. (11)

We write our conclusion on Case 4 in the following remark.

Remark 5. If Etanercept and Fezakinumab are taken frequently at the dosing interval τ∗

and σ∗ satisfying inequalities (9) and (10), then for a fixed value of ε, we can determine
the value of τ∗ and σ∗ by using inequality (11).

5 Numerical simulations and discussion

In this section, we have performed the numerical simulations of the mathematical sys-
tems (1), (2), and (3) to understand the analytic results. First, we have shown the solution
of different cells and their effects on the psoriatic dynamics that is reflected in the model
(without drug). Then the dynamical behavior of keratinocytes have been numerically
evaluated under impulse therapeutic approach. The corresponding drugs (Etanercept and
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Table 1. Values of the system parameter used in numerical simulations. For the choice of parameters
values, we have found the ranges of few parameters from literatures [23–26]. Many of the model
parameters are estimated from different literatures [5, 13, 16] that allowed model behaviour to be
biologically feasible.

Parameter Value [Day−1] Parameter Value [Day−1] Parameter Value [Day−1]
α1 0.2 δ4 0.028 µ3 0.1
α2 0.2 η1 0.06 µ4 0.2
α3 0.005 η2 0.003 µ5 0.03
β1 0.001 η3 0.06 µ6 0.3
β2 0.004 η4 0.06 µ7 0.05
γ1 0.0002 λ1 0.03 ξ1 0.02
γ2 0.0002 λ2 0.04 ξ2 0.02
δ1 0.002 λ3 0.0014 ξ3 0.045
δ2 0.002 µ1 0.12 r1 0.25
δ3 0.036 µ2 0.05 r2 0.25

a = 25 mm−3Day−1 b = 10 mm−3Day−1 c = 30 mm−3Day−1
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Figure 1. Time series solutions of our formulated system (3), which demonstrate the qualitative nature of all
cells (naive T cells, Th1 cells, Th2 cells, Th17 cells, regulatory T cells, activated NK cells, and keratinocytes)
during the disease progression. Parameter’s values are taken from Table 1.

Fezakinumab) dynamics also have been demonstrated. Parameter’s value used for numer-
ical simulations are listed in Table 1.

In Fig. 1, we have plotted the numerical solution of considered immune cells (naive
T cell, Th1 cell, Th2 cell, Th17 cell, regulatory T cell, activated NK cell) and keratinocytes
to investigate the qualitative behavior of model populations for psoriatic state. This fig-
ure manifests that the psoriatic situation is dominated by Th1, Th17, and activated NK
cells as well as Th2, and regulatory T cell are in suppressed condition. In presence of
various pro-inflammatory cytokines (released by Th1, Th17, and activated NK cells) the
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Figure 2. Comparison of the keratinocytes density represented by system (3) with the overestimate
keratinocytes, mentioned in Theorem 1, which is used when the growth rate is assumed to be maximal.

keratinocytes population undergone a hyperproliferative nature and reach to a high density
level (350 mm−3).

Figure 2 shows the comparison of actual keratinocytes (seventh equation of sys-
tem (3)) with the overestimated keratinocytes (described by Theorem 1). From this figure
it is clear that the overestimated keratinocytes concentration reaches to stable condition
after 50 days at density level about 350 mm−3, this is almost same as the dynamical be-
havior of actual keratinocytes. In order to simulate the impulsive effect on keratinocytes,
we have considered the keratinocytes dynamics (with no drug situation) as described
by the seventh equation of system (3). In impulsive approach, it is mandatory that the
population must be in equilibrium state; thus, for this approximation, the initiation of
treatment policy will not be hampered [27].

In Fig. 3, we have demonstrated the qualitative behavior of keratinocytes for the cases:
with and without impulse effect by considering different doses of Etanercept (Ec = 0.002
and 0.0002) when Fezakinumab is absent. This figure manifests that for the low dose of
Etanercept, keratinocytes density is oscillating with small magnitude and chronologically
decreasing towards the normal condition (K̃). Furthermore, for the high dose of Etaner-
cept (Ec = 0.002), keratinocytes density rapidly decreases and reaches to a density level
below the desired threshold (K̃). The corresponding time-course of drug concentration
also has been illustrated in Fig. 3. In absence of Fezakinumab, the dynamical behavior of
keratinocytes and corresponding drug dynamics have been scrutinized for different dosing
intervals of Etanercept (τ = 3 and 6 days) by considering the fixed dose Ec = 0.002 (see
Fig. 4). From these two Figs. 3 and 4 it is clear that Etanercept (dose regime: Ec = 0.002,
τ = 6 days) alone is able to control the hyper-proliferation of keratinocytes after 20 days
of treatment.

In Fig. 5, we have exposed the dynamical nature of keratinocytes for with and without
impulse therapy by considering different dosages of Fezakinumab (Fc = 0.02, 0.002, and
0.0002) when Etanercept is absent. This figure exhibits that for any dose of Fezakinumab
(low to high), keratinocytes density shows oscillating nature with very small magni-
tude. Though keratinocytes density is chronologically decreasing due to this inductive
phase, but it not achieve the predefined healthy condition (K̃). The time-course of drug

Nonlinear Anal. Model. Control, 27(3):513–533, 2022

https://doi.org/10.15388/namc.2022.27.26483


528 A. Kumar Roy et al.

0 20 40 60 80 100 120 140 160 180
100

150

200

250

300

350

K
e
ra

ti
n
o
c
y
te

 (
m

m
-3

)

0 20 40 60 80 100 120 140 160 180

Time (days)

0

1

2

3

4

D
ru

g
 E

(t
) 

×10
-3 (b)

E
c
 = 0.0002

E
c
 = 0.002

K̃

without treatment

Figure 3. In absence of Fezakinumab, concentration changes of keratinocytes with time and corresponding drug
dynamics for different dosages of Etanercept (Ec), where the dosing interval (τ = 6 days) is fixed. In order to
simulate this figure, we have taken E50 = 0.00001, and the rest of the parameter are taken from Table 1.
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Figure 4. In absence of Fezakinumab, keratinocytes dynamics for different dosing intervals of Etanercept (τ ),
where dose (Ec = 0.002) is fixed. In order to simulate this figure, we have taken E50 = 0.00001, and the
other parameter values are taken from Table 1.

concentration by considering dosing interval σ = 2 days has been illustrated in Fig. 3.
For the different dosing intervals of Fezakinumab (σ = 3 and 6 days), by considering the
fixed dose Fc = 0.002 the dynamical behavior of keratinocytes and corresponding drug
dynamics have been plotted in Fig. 6. These two Figs. 5 and 6 show that Fezakinumab
alone can only partially control the hyper-proliferation of keratinocytes.
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Figure 5. In absence of Etanercept, keratinocytes dynamics for different dosages (Fc) of Fezakinumab, where
the dosing interval (σ = 3 days) is fixed. In order to simulate this figure, we have taken F50 = 0.00001, and
the rest of the parameter are taken from Table 1.
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Figure 6. In absence of Etanercept, keratinocytes dynamics for different dosing intervals (σ) of Fezakinumab,
where dose (Fc = 0.002) is fixed. In order to simulate this figure, we have taken E50 = 0.00001, and the
other parameters are taken from Table 1.

The effect of combined biologic (Etanercept, Fezakinumab) on keratinocytes, taking
dosing intervals τ = 6, σ = 4 days and doses Ec = 0.0002, Fc = 0.0002, has been
illustrated in Fig. 7. This figure depicts that within 20 days of this combined impulse
therapy keratinocytes decrease to the preferred density level (K̃). Single drug and the
combined drug’s levels have been provided in the corresponding drug dynamics.
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Figure 7. The qualitative behaviour of keratinocytes dynamics in presence of both drug (Etanercept and
Fezakinumab). In order to simulate this figure, we have taken E50 = 0.00001 and F50 = 0.00001. The
rest of the parameter are taken from Table 1.

6 Conclusion

In this paper, formulating a mathematical model, we have studied the roles of different
immune cells viz. Th1, Th2, Th17, Treg, and activated NK cells to encounter the hyper-
proliferation of keratinocytes during the disease progression. In absence of drugs, the
proposed model system exhibits a unique steady state, namely, the coexistence equilib-
rium, which represents the psoriatic state. By using modified impulse theory we have also
measured the efficacy and safety of Etanercept and Fezakinumab, which are applied as
combined biologics. We have successfully demonstrated the effects of taking single drug
and the combined drug by considering different dosing intervals for altered doses. The
numerical simulations revel that high dose (Ec = 0.002) of Etanercept is able to clear
the psoriatic lesions within 3 weeks. We have not found any suitable dose regime for
Fezakinumab to maintain the normal keratinocytes level. On the other hand, our study
shows that treatment with the low doses (Ec, Fc = 0.0002) of that combined biologics
(Etanercept: 6 days interval and Fezakinumab: 4 days interval) may be an effective dosing
schedule for the treatment of psoriasis. This study finally leads to the conclusion for
short time treatment policy, instead of taking Etanercept with high dose for the entire
length of the induction period, it would be better if the patient takes the drug combination
(Etanercept and Fezakinumab) with low doses.

Due to the lack of sufficient primary data, we have chosen our parameter values to
see the dynamical behaviors, namely, asymptotic stability, periodic oscillations, etc. Fur-
thermore, the proposed treatment regime using Etanercept and Fezakinumab is based on
hypothetical value of model parameters, but the result can be proposed for future clinical
trials. It is also possible to determine the therapy schedule for the similar combined drugs
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using the analytical and numerical techniques. Moreover, if proper data are obtained, a
particular situation can be modeled, then we will be able to make these proposed results
more applicable and biologically reasonable.
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