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Abstract. In this paper, the fast synchronization problem of 5D Hindmarsh–Rose neuron networks
is studied. Firstly, the global predefined-time stability of a class of nonlinear dynamical systems is
investigated under the complete beta function. Then an active controller via backstepping design is
proposed to achieve predefined-time synchronization of two 5D Hindmarsh–Rose neuron networks
in which the synchronization time of each state variable of the master-slave 5D Hindmarsh–Rose
neuron networks is different and can be defined in advance, respectively. To show the applicability
of the obtained theoretical results, the designed predefined-time backstepping controller is applied
to secure communication to realize asynchronous communication of multiple different messages.
Three numerical simulations are provided to validate the theoretical results.

Keywords: 5D Hindmarsh–Rose neuron networks, predefined-time stability, complete beta
function, secure communication.

1 Introduction

The fast synchronization problem of nonlinear systems has attracted much attention in
recent years [1, 2, 4, 32, 33], e.g., finite-time synchronization problem for two nonlinear
systems. The primary purpose of finite-time synchronization is to design an appropri-
ate controller to achieve the master-slave systems coupled within a finite time interval
[3]. Ahmad et al. [4] proposed an active controller to realize finite-time multi-switching
synchronization of chaotic systems. The initial condition of the nonlinear systems will
affect the settling time of finite-time synchronization. If the initial condition of the sys-
tems is unknown, the settling time of finite-time synchronization cannot be obtained
in advance. To solve the above problem, fixed-time stability was proposed by [25] and
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applied to fixed-time synchronization. Different from finite-time synchronization, fixed-
time synchronization has a definite synchronization settling time [8,14–16]. Hu et al. [12]
proposed a fixed-time stability theorem. The proposed approach shows better performance
than [25]. Kong et al. [16] investigated the fixed-time synchronization of discontinuous
fuzzy inertial neural networks with parameter uncertainties. Then Kong et al. [14] fur-
ther investigated the fixed-time synchronization of discontinuous fuzzy inertial neural
networks with time varying delays. Chen et al. [7] reconstructed the Lyapunov function
and reproved the fixed-time stability theorem through inequalities, and its settling time
was further improved. Lin et al. [19] proposed a new fixed-time stability theorem and
proved that the settling time is more accurate estimation by segmenting the Lyapunov
function. Many studies on the settling time estimation are based on inequality theories.
How to improve the accuracy of the settling time estimation of fixed-time stability is still
a direction for further research.

In practical applications, such as secure communications or multiple agents control
systems, it is hoped that in the controller design stage, the least upper bound of the settling
time can be set as a tuning parameter of the system. Fixed-time stability is difficult to
establish a direct relationship between the upper bound of the settling time and the param-
eters of nonlinear system. In order to solve the above-mentioned difficulties, a new kind
of time stability, named predefined-time stability, was introduced in [27]. The research on
predefined-time stability is still in the initial stage [13, 22, 26]. Muoz-Vázquez et al. [24]
proposed an active predefined-time controller to achieve synchronization between two
coupled Lorenz systems and applied to secure communication. To enable fully exact
tracking of actuated mechanical systems, an predefined-time controller was proposed
to second-order systems in [23]. Predefined-time stability theorems can realize that all
variables of the nonlinear system are stable within a predefined time. In secure commu-
nication, different messages are of different importance, and the transmission sequence
is also different. Therefore, it is very necessary to design an active control algorithm to
achieve different settling time for different variables, so as to achieve asynchronous time
synchronization of multiple messages communications.

In data encryption and secure communication, there are three very important factors:
(i) complexity of the dynamical nonlinear system; (ii) short transmission response time;
(iii) fast synchronization. These factors can increase the difficulty of hackers to crack.
The one-dimensional chaotic system has simple model, easy circuit implementation, and
relatively simple synchronization, but its output only has one state, which is not conducive
to confidentiality. Therefore, chaotic systems with relatively high dimension are generally
considered in secure communication. The 2D Hindmarsh–Rose (HR) chaotic system has
attracted much attention because of its fast computational speed [10], which is more
than ten times faster than the Hodgkin and Huxley model [11], and complex dynam-
ical behaviors, such as bursting and chaos, observed in real biological neurons. Many
researches have been conducted on the HR neural chaotic systems [21, 28, 29, 31], and
the HR neural chaotic systems have been extended to 3D HR neural chaotic systems [28],
4D HR neural chaotic systems [21], and even 5D HR neuron networks (5D HRNNs)
[31]. The rich dynamical behaviors, including a chaotic super-bursting regime, of the
5D HRNN was shown in [31], and the synchronization of two coupled 5D HR neuron
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networks was realized. Therefore, the 5D HRNN is particularly suitable for the field of
secure communication. At present, the research on the synchronization of the HR neuron
network mainly focuses on asymptotically stable [5,20,30], the research on the fixed-time
synchronization of the HRNNs has not been seen yet. Inspired by the above discussions,
predefined-time synchronization of two 5D HRNNs via backstepping design is proposed
in this paper. The main contribution are the following:

(i) To solve the problem of inaccurate estimation of the settling time, this paper
introduces complete beta function to achieve accurate settling time estimation of
the predefined-time stability.

(ii) An active controller via backstepping design is proposed to achieve the predefined-
time synchronization of master-slave 5D HRNNs in which the synchronization
time of each state variable of the master-slave 5D HRNNs is different and can
be defined in advance, respectively. The designed controller is applied to secure
communication to realize asynchronous communication of multiple messages.

The remainder of this paper is structured as follows. Some preliminaries are included
in Section 2. In Section 3, a new predefined-time stability of a class of nonlinear systems is
investigated under the complete beta function. With the help of predefined-time stability,
the predefined-time synchronization of master-slave 5D HRNNs via backstepping design
is investigated in Section 4. Then the designed predefined-time backstepping controller is
applied to secure communication in Section 5. The conclusion is given in Section 6.

2 Preliminaries

Consider a nonlinear system described by the following [18]:

ẋ = f(x; r), (1)

where x ∈ Rn is the state vector of system (1). x0 is the initial condition. r ∈ Rb with
ṙ = 0 is the parameters. f : R→ Rn is a nonlinear function.

In the process of deriving fixed-time stability, the complete beta function and complete
gamma function will play a key role. The definition of these functions will be provided
the following.

Definition 1. (See [9].) Let σ, θ > 0. The complete beta function, denoted by B(σ, θ), is
defined by the Euler integral and the complete gamma function through

B(σ, θ) =

1∫
0

zσ−1(1− z)θ−1 dz =
Γ(σ)Γ(θ)

Γ(σ + θ)
,

where Γ(·) is the complete gamma function, which is defined by the Euler integral Γ(z) =∫∞
0

e−ttz−1 dt.
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The complete beta function is mainly used in statistics, but it is also used in other
fields, e.g., actuarial science, economics or telecommunications. In this paper, we apply
it to fixed-time stability.

Definition 2. (See [25].) The origin of system (1) is globally fixed-time stable if it is
globally finite-time stable and the settling time is bounded, i.e., there exists Tmax > 0
such that, for all x0 ∈ Rn, T (x0) 6 Tmax.

Definition 3. (See [19].) The origin of system (1) is said to be predefined-time stable if
it is globally fixed-time stable and the settling time T (x0) is

T (x0) 6 Tc ∀x0 ∈ Rn,

where Tc is a tuning constant parameter and called a predefined time.

Lemma 1. (See [6].) For system (1), let there exist a continuous radially unbounded and
positive definite function V (x) : Rn → R and δ > 0, 0 < κ < 1 such that

V̇ (x) 6 −δV κ(x) ∀t > t0 and V
(
x(t0)

)
> 0,

where t0 is the any initial time; x(t0) is the any initial value. Then the relationship between
time t and V (x(t)) is described as

t =
V 1−κ(x(t0))

δ(1− κ)
+ t0,

and system (1) is finite-time stable.

Lemma 2. (See [12].) For system (1), let there exist a continuous radially unbounded
and positive definite function V (x) : Rn → R and α, β, γ, η > 0 satisfying γη > 1 such
that

V̇ (x) 6 −
(
αV γ(x) + β

)η
, x(t) ∈ Rn \ {0}. (2)

Then system (1) can converge to the zero in the settling time T 1
max, and T 1

max is described
as

T (x0) 6 T 1
max ,

1

βη

(
β

α

)1/γ(
1 +

1

γη − 1

)
.

Lemma 3. (See [24].) For system (1), let there exist a continuous radially unbounded
and positive definite function V (x) : Rn → R and 0 < µ < 1 such that

V̇ (x) 6 − π

2µTc

(
V 1−µ(x) + V 1+µ(x)

)
.

Then system (1) is globally predefined-time stable, and the predefined time is Tc.

Lemma 4. (See [17].) If conditions satisfy x1, x2, . . . , xn > 0, 0 < ε1 6 1, ε2 > 1, then

n∑
i=1

xε1i >

(
n∑
i=1

xi

)ε1
,

n∑
i=1

xε2i > n1−ε2

(
n∑
i=1

xi

)ε2
.
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3 Predefined-time stability

The goal of this section is to propose a new fixed-time stability proof method for system
(1). By making some modification of the fixed-time system, a new predefined-time
stability theorem is proposed.

Theorem 1. For system (1), if there exist a continuous radially unbounded and positive
definite function V (x) : Rn → R and α, β, γ, η > 0 satisfying γη > 1 such that

V̇ (x) 6 −
(
αV γ(x)γ + β

)η
, (3)

then system (1) is globally fixed-time stable with the settling time

T (x0) 6 T 2
max =

β1/γ−η

α1/γγ
B(σ, θ),

where B(σ, θ) is the complete beta function.

Proof. Since α, β > 0, then

dV (x)

dt
6 −

(
αV γ(x)γ + β

)η
6 −βη < 0.

Since dV (x)/dt 6 −βη , there exists a constant T (x0) = V (x0)/βη such that
limt→T (x0) V (x) = 0 and V (x) = 0 for all t > T (x0). It follows that

dV (x)

(αV (x)γ + β)η
6 −dt, then − dV (x)

(αV (x)γ + β)η
> dt.

We have

T (x0) =

T (x0)∫
0

dt 6 −
0∫

+∞

1

(αV γ + β)η
dV =

+∞∫
0

1

(αV γ + β)η
dV

=

+∞∫
0

β−η

(αβV
γ + 1)η

dV. (4)

Let z = ((α/β)V γ + 1)−1, then z goes to 1 when V → 0 and to 0 when V → +∞, then

V =

(
β

α

(
1

z
− 1

))1/γ

and

dV = −
(βα )1/γ

z2γ

(
1

z
− 1

)1/γ−1

dz.
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Thus formula (4) can be written as

+∞∫
0

β−η

(αβV
γ + 1)η

dV = −
0∫

1

β−η

(αβ
β
α ( 1

z − 1) + 1)η
·

(βα )1/γ

z2γ
·
(

1

z
− 1

)1/γ−1

dz

= −
0∫

1

β−ηzη ·
(βα )1/γ( 1

z − 1)1/γ−1

z2γ
dz

= −
(βα )1/γ

βηγ
·

0∫
1

zη−2 · (1− z)1/γ−1

z1/γ−1
dz

=
(βα )1/γ

βηγ
·

1∫
0

zη−1−1/γ · (1− z)1/γ−1 dz.

Assume σ = 1/γ and θ − 1 = η − 1− 1/γ, then

B(σ, θ) =

1∫
0

zσ−1(1− z)θ−1 dz =
Γ(σ)Γ(θ)

Γ(σ + θ)
,

and formula (4) can be written as

T (x0) 6

+∞∫
0

β−η dV

(αβV
γ + 1)η

=
(βα )1/γ

βηγ
·B(σ, θ) = T 2

max. (5)

By Definition 2, systems (1) is fixed-time stable, and the settling time T 2
max is bounded

for any x ∈ Rn, which completes the proof.

Remark 1. Obviously, Theorem 1 provides a new proof process of fixed-time stability.
Although Lyapunov function (3) is the same as that in [12] and [19], different settling time
is obtained in Theorem 1. In the proof of Theorem 1, complete beta function is applied
for the first time to realize the accurate settling time estimation, and a small upper bound
of the settling time is obtained, closer to the real value.

Theorem 2. The settling time T 2
max in Theorem 1 is more accurate than the settling time

T 1
max in Lemma 2.

Proof. From the derivation process of Lemma 2 in [12] we have

T 1
max − T (x0) > T 1

max −
+∞∫
0

1

(αV γ + β)η
dV > 0,
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and from formula (5) we have

T 2
max =

+∞∫
0

1

(αV γ + β)η
dV,

then
T 1
max > T 2

max.

That means the settling time T 2
max is closer to the real convergence time than T 1

max. This
proof is completed.

Next, using the results obtained in Theorem 1, a new predefined-time stability is
derived for a Lyapunov like condition.

Theorem 3. For system (1), let there exists a continuous radially unbounded and positive
definite function V : Rn → R such that any solution x(t, x0) of system (1) satisfies

V̇ 6 −T
2
max

Tc

(
αV γ + β

)η
, (6)

where α, β, γ, η > 0, γη > 1, and T 2
max are given in Theorem 1. Then system (1) is

globally predefined-time stable, and the strong predefined time is Tc.

Proof. According to the supposing of Theorem 3, one has that

T (x0) =

T (x0)∫
0

dt 6 −
0∫

+∞

Tc
T 2
max

1

(αV γ + β)η
dV

=

+∞∫
0

Tc
T 2
max

1

(αV γ + β)η
dV =

+∞∫
0

Tc
T 2
max

β−η

(αβV
γ + 1)η

dV

=
Tc
T 2
max

+∞∫
0

β−η dV

(αβV
γ + 1)η

=
Tc
T 2
max

(βα )1/γ

βηγ
·B(δ, θ) = Tc,

where Tc is a tunable parameter of system (1). Consequently, system (1) is predefined-
time stable, and the predefined time is Tc.

Remark 2. Compared with Lemma 1, Lyapunove function (6) in Theorem 3 has one
more constant β and one more adjustable parameter Tc, which turn the asymptotically
stability of Lemma 1 into predefined-time stability of Theorem 3.

Remark 3. T 2
max is related to α, β, and B(δ, θ). If T 2

max is to be adjusted, complicated
calculation is needed. Compared with Theorem 1, Lyapunov function (6) in Theorem
3 has one more adjustable parameter Tc. The complex relationship between the system
parameters and the settling time is transformed into an one-to-one correspondence be-
tween the settling time and the parameter Tc. By tuning Tc, system (1) can be stabilized at
different predefined time, which is simpler and more effective than the fixed-time stability.
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Example 1. Consider the following system:

ẏ(t) = − sign
(
y(t)

)
·
(
α
∣∣y(t)

∣∣γ + β
)η
, (7)

where y(t) is a state variable, and the constants α, β, γ, η > 0 and γη > 1 satisfy the
requirements of Theorem 1. Hence, system (7) is fixed-time stability by Theorem 1. In
order to verify the validity of the Theorem 1, several sets of different parameters are
simulated for system (7). The simulation results are given in Fig. 1 in which two sets of
different parameters are chosen: (i) α = 1.2, β = 0.9, γ = 4/7, η = 5/2; (ii) α = 5,
β = 2, γ = 2, η = 0.9. By computation, T 1

max = 2.6220 s, T 2
max = 1.1662 s under the

first set of parameters, and T 1
max = 0.7626 s, T 2

max = 0.6235 s under the second set of
parameters, which shows that the estimation of the settling time in Theorem 1 are more
accurate compared with Lemma 2 and proves Theorem 2. Consider the following system:

ẏ(t) = −Cv
Tc
· sign

(
y(t)

)
·
(
α
∣∣y(t)

∣∣γ + β1 + ddis
)η
, (8)

where |ddis| < D with D > 0, β = β1 − D > 0. According to Theorem 3, system (8)
is predefined-time stable. In Fig. 2, system (8) converges to zero before a predefined
time Tc for several different initial conditions, which is explicitly defined in advance; the
simulation results are shown in Fig. 2(a) with Tc = 0.8 s and Fig. 2(b) with Tc = 0.2 s.
Consider the following system:

ẏ(t) = −δ sign
(
y(t)

)∣∣y(t)
∣∣κ. (9)

According to Lemma 1, system (9) is finite-time stable. Figure 3 shows the compara-
tive results of systems (8) and (9). From Fig. 3(a) the convergence time of systems (8)
and (9) changes with different initial conditions. When the initial value is y(0) = 80, the
convergence time of system (9) is 12 s, which exceeds the predefined time Tc = 10 s.
The convergence time of system (8) is less than Tc = 10 s under any initial condition.
Compared with system (9), the convergence time of system (8) can be estimated in
advance without initial condition known. If the initial conditions are known, by setting
different parameters, the convergence time of system (9) can be estimated in advance. The
simulation results are shown in Fig. 3(b) in which the parameters are chosen: y(0) = 4,
δ = 21.1336 with Tc = 0.2 s, δ = 8.4534 with Tc = 0.5 s, δ = 5.2834 with Tc = 0.8 s.
From Fig. 3(b) system (9) can achieve more accurate settling time estimation if the initial
conditions are known. Consider the following system:

ẏ(t) = − π

2µTc
· sign

(
y(t)

)
·
(
α
∣∣y(t)

∣∣1−µ + β
∣∣y(t)

∣∣1+µ + ddis
)
. (10)

According to Lemma 3, system (10) is predefined-time stabile. Figure 4 shows the com-
parative results of systems (8) and (10) with disturbance occurring. It can be seen from
Fig. 4 that Theorem 3 can effectively suppress disturbance and has better robustness than
Lemma 3.
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(a) α = 1.2, β = 0.9, γ = 4/7, η = 5/2 (b) α = 5, β = 2, γ = 2, η = 0.9

Figure 1. Trajectories of (7) for different initial conditions.

(a) Tc = 0.8 s (b) Tc = 0.2 s

Figure 2. Trajectories of (8) for different initial conditions and the parameters α = 1.2, β = 0.9, γ = 4/7,
η = 5/2.

(a) Tc = 10 s (b) Different Tc

Figure 3. Comparative results of systems (8) and (9).
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(a) y(0) = ±4, ddis = 0.9 (b) y(0) = ±20, ddis = 0.9

Figure 4. Comparative results of systems (8) and (10).

4 Predefined-time synchronization controller via backstepping
design

In this section, we will apply the theorems obtained in Section 3 and apply them to the
predefined-time synchronization of master-slave 5D HRNNs via backstepping design.
The 5D HRNN is described by

ẋ1 = −ax31 + bx21 + x2 − cx3
+ I0 cos(Ωt− ψ)− k1

(
d+ 3sx25

)
x1,

ẋ2 = f − gx21 − x2 − hx4 + ddis,

ẋ3 = l
[
m(x1 + x10)− x3

]
,

ẋ4 = n
[
p(x2 + x20)− qx4

]
,

ẋ5 = x1 − k2x5,

(11)

where x1 ∈ R is the membrane potential variable, x2 ∈ R is the recovery current variable,
which also is called spiking variable associated with fast ions, x3 ∈ R is the adaptation
variable associated with slow ions, x4 ∈ R is an even slower process. x5 ∈ R is the
magnetic flux across the neuron’s cell membrane. I0 is the amplitude of a harmonic
stimulus with frequency Ω and phase ψ. a, b, c, f , g, h, l, m, n, p, q are the constant
parameters. In neuron activity, the parameters n < l � 1 play a very important role;
l is the ratio of time scales between fast and slow fluxes across the neuron’s membrane.
n controls the speed change of a slower dynamical process x4, in particular, the calcium
exchange between intracellular warehouse and the cytoplasm [21]. |ddis| < D is the
disturbance.

Let (11) be the master 5D HRNN, and the slave 5D HRNN is given by

˙̂x1 = −ax̂31 + bx̂21 + x̂2 − cx̂3
+ I0 cos(Ωt− ψ)− k1

(
d+ 3sx̂25

)
x̂1 + u1,

˙̂x2 = f − gx̂21 − x̂2 − hx̂4 + u2,

(121)
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˙̂x3 = l
[
m(x̂1 + x10)− x̂3

]
+ u3,

˙̂x4 = n
[
p(x̂2 + x20)− qx̂4

]
+ u4,

˙̂x5 = x̂1 − k2x̂5 + u5,

(122)

i = 1, 2, . . . , 5, where x̂i ∈ R represents the membrane potential variable; ui is an active
controller to be designed to achieve the predefined-time synchronization of master-slave
5D HRNNs.

Theorem 4. Suppose that Theorem 3 holds. The slave 5D HRNN (12) can achieve pre-
defined-time synchronization with the master 5D HRNN (11) via the following control
law:

u1 = ax̂31 − bx̂21 − ax31 + bx21 − e2 + ce3 + 3k1sx̂
2
5x̂1 − 3k1sx

2
5x1

− 2η−1T 2
max

Tc1
βη sign

(
e1(t)

)
− 2η−1T 2

max

Tc1
α sign

(
(e1(t)

)∣∣e1(t)
∣∣γη, (13)

u2 = −he4 −
(

2η−1T 2
max

Tc2
βη +D

)
sign

(
e2(t)

)
− 2η−1T 2

max

Tc2
α sign

(
e2(t)

)∣∣e2(t)
∣∣γη, (14)

u3 = −2η−1T 2
max

Tc3
βη sign

(
e3(t)

)
− 2η−1T 2

max

Tc3
α sign

(
e3(t)

)∣∣e3(t)
∣∣γη, (15)

u4 = −2η−1T 2
max

Tc4
βη sign

(
e4(t)

)
− 2η−1T 2

max

Tc4
α sign

(
e4(t)

)∣∣e4(t)
∣∣γη, (16)

u5 = −2η−1T 2
max

Tc5
βη sign

(
e5(t)

)
− 2η−1T 2

max

Tc5
α sign

(
e5(t)

)∣∣e5(t)
∣∣γη, (17)

i = 1, 2, . . . , 5, where Tci represents the predefined synchronization time of each state
variable. Then the master-slave 5D HRNNs can realize predefined-time synchronization,
and the predefined time is given as

Tc = Tc1 + max{Tc3, Tc2 + Tc4, Tc5}.

Proof. Define the following error system of master-slave 5D HRNNs (11) and (12): ei =
x̂i − xi, where i = 1, 2, . . . , 5. Then we have

ė1 = −ax̂31 + bx̂21 + ax31 − bx21 + e2 − ce3
− k1de1 − 3k1sx̂

2
5x̂1 + 3k1sx

2
5x1 + u1,

ė2 = −gx̂21 + gx21 − e2 − he4 + u2 − ddis,
ė3 = l

[
me1 − e3

]
+ u3,

ė4 = n
[
pe2 − qe4

]
+ u4,

ė5 = e1 − k2e5 + u5.

(18)

Firstly, we consider the predefined-time synchronization between x̂1 and x1, i.e., e1
converges to zero in predefined-time Tc1. Considering the candidate Lyapunov function
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Ve1 = ‖e1‖1, then the derivative of the candidate Lyapunov function is

V̇e1 = sign
(
e1(t)

)
ė1(t)

= sign
(
e1(t)

)(
−ax̂31 + bx̂21 + ax31 − bx21 + e2 − ce3

− k1de1 − 3k1sx̂
2
5x̂1 + 3k1sx

2
5x1 + u1

)
= sign

(
e1(t)

)(
−k1de1 −

2η−1T 2
max

Tc1
βη sign

(
e1(t)

)
− 2η−1T 2

max

Tc1
α sign

(
ei(t)

)∣∣e1(t)
∣∣γη)

= −k1d
∣∣e1(t)

∣∣− 2η−1T 2
max

Tc1
βη − 2η−1T 2

max

Tc1
α
∣∣e1(t)

∣∣γη.
By Lemma 4, one can obtain that

V̇e1 6 −2η−1T 2
max

Tc1
βη − 2η−1T 2

max

Tc1
α
∣∣e1(t)

∣∣γη
6 −T

2
max

Tc1

(
2η−1βη + 2η−1α

∣∣e1(t)
∣∣γη)

6 −T
2
max

Tc1

(
β + α

∣∣e1(t)
∣∣γ)η.

Thus, in accordance to Theorem 3, the variable x̂1 and x1 can achieve predefined-time
synchronization under the controller (13) and the predefined-time is Tc1. Then if we plug
e1 = 0 into the fifth formula of error system (18), we have

ė5 = −k2e5 + u5.

Then we are going to implement the predefined-time synchronization between x̂5 and x5,
i.e., e5 converges to zero in predefined-time Tc5. Considering the candidate Lyapunov
function Ve5 = ‖e5‖1, then

V̇e5 = sign
(
e5(t)

)
ė5(t)

= sign
(
e5(t)

)(
−k2e5 −

2η−1T 2
max

Tc5
βη sign

(
e5(t)

)
− 2η−1T 2

max

Tc5
α sign

(
e5(t)

)∣∣e5(t)
∣∣γη)

= −k2|e5| −
2η−1T 2

max

Tc5
βη − 2η−1T 2

max

Tc5
α
∣∣e5(t)

∣∣γη
6 −T

2
max

Tc5

(
β + α

∣∣e5(t)
∣∣α)η.

Thus, in accordance to Theorem 3, the variables x̂5 and x5 can achieve predefined-time
synchronization under the controller (17), and the predefined-time is Tc5. Similarly, we
have

ė3 = −lme3 + u3.
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Considering the candidate Lyapunov function Ve3 = ‖e3‖1,

V̇e3 = sign
(
e3(t)

)
ė3(t) = sign

(
e3(t)

)
(−lme3 − u3)

= −lm|e3| −
2η−1T 2

max

Tc3
βη − 2η−1T 2

max

Tc3
α
∣∣e3(t)

∣∣γη
6 −T

2
max

Tc3

(
β + α

∣∣e3(t)
∣∣γ)η.

In accordance to Theorem 3, the same result can be obtained, i.e., the variables x̂3 and x3
can achieve predefined-time synchronization under the controller (15), and the predefined-
time is Tc3. Similarly, we have

ė2 = −e2 − he4 + u2 − ddis.

The Lyapunov function is designed as Ve2 = ‖e2‖1, then

V̇e2 = sign
(
e2(t)

)
ė2(t)

= sign
(
e2(t)

)(
−e2 − he4 + he4 −

(
2η−1T 2

max

Tc2
βη +D

)
sign

(
e2(t)

)
− 2η−1T 2

max

Tc2
α sign

(
e2(t)

)∣∣e2(t)
∣∣γη)− ddis

= −|e2| −
2η−1T 2

max

Tc2
βη − 2η−1T 2

max

Tc2
α
∣∣e2(t)

∣∣γη − (D + ddis)

6 −T
2
max

Tc2

(
β + α

∣∣e2(t)
∣∣γ)η.

Thus, in accordance to Theorem 3, the variables x̂2 and x2 can achieve predefined-time
synchronization under the controller (14), and the predefined-time is Tc2. Then we plug
e2 = 0 into the forth formula of error system (18), and we have

ė4 = −nqe4 + u4.

The Lyapunov function is designed as Ve4 = ‖e4‖1, then

V̇e4 = sign
(
e4(t)

)
ė4(t)

= sign
(
e4(t)

)(
−nqe4 −

2η−1T 2
max

Tc4
βη sign

(
e4(t)

)
− 2η−1T 2

max

Tc4
α sign

(
e4(t)

)∣∣e4(t)
∣∣γη)

= −nq|e4| −
2η−1T 2

max

Tc4
βη − 2η−1T 2

max

Tc4
α|e4(t)|γη

6 −T
2
max

Tc4

(
β + α

∣∣e4(t)
∣∣γ)η.
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Thus, in accordance to Theorem 3, the variables x̂4 and x4 can achieve predefined-time
synchronization under the controller (16), and the predefined-time is Tc4. Then the five
state variables of the 5D HRNNs all achieve predefined-time synchronization, and the
synchronization time of each variable is different, i.e., the predefined synchronization
time of x̂1 is Tc1, x̂2 is Tc1 + Tc2, x̂3 is Tc1 + Tc3, x̂4 is Tc1 + Tc2 + Tc4, and x̂5 is
Tc1 + Tc5. Thus, the synchronization time of the master-slave 5D HRNNs is

Tc = Tc1 + max{Tc3, Tc2 + Tc4, Tc5}.

This proof is completed.

Remark 4. By designing the controller of each state variable of the system via backstep-
ping, the design process can be made more simpler and convenient. We can also realize
the synchronization of some of state variables of the system according to the needs of
actual applications by designing the controller via backstepping.

Remark 5. State variables of the system can realize synchronization at different pre-
defined time, which increases the complexity of the system. In this way, important
message can be transmitted first in secure communication and different messages has
its own synchronous transmission time, which increases the complexity of transmission
and improves the security communication.

Example 2. Figures 5(a)–5(c) show the chaotic behaviors of the 5D HR neuron net-
work (11) in a super-bursting regime projected onto the 3D subspaces of the 5D phase
space: x1, x2, x5-space, x1, x3, x5-space, x1, x4, x5-space, respectively. The constant
parameters have standard values: a = 1.0, b = 3.0, c = 0.99, f = 1.01, g = 5.0128,
h = 0.0278, l = 0.00215, m = 3.966, x0 = 1.605, n = 0.0009, p = 3.0, y0 = 1.619,
q = 0.9573.

By simple computation, α = 1.2, β = 1.4, γ = 5/6, η = 2.7 , Tc1 = 0.2, Tc2 = 0.2,
Tc3 = 0.4, Tc4 = 0.4, and Tc5 = 0.8, then the conditions of Theorem 3 hold. Parameter
q = 0.17, then the conditions of Lemma 3 hold. The master-slave 5D HRNNs are
step-by-step predefined-time synchronization. For different state variables, the predefined
synchronization time is different. Among them, the predefined synchronization time of x̂1

(a) x1, x2, x5-space (b) x1, x3, x5-space (c) x1, x4, x5-space

Figure 5. Chaotic behaviors of the 5D HRNN.

Nonlinear Anal. Model. Control, 27(4):630–649, 2022

https://doi.org/10.15388/namc.2022.27.26557


644 L. Lin

(a) Tc1 = 0.2 (b) Tc2 = 0.2

(c) Tc3 = 0.4 (d) Tc4 = 0.4

(e) Tc5 = 0.8

Figure 6. Predefined-time synchronization of 5D HRNNs.

is Tc1 = 0.2, x̂2 is Tc1 + Tc2 = 0.4, x̂3 is Tc1 + Tc3 = 0.6, x̂4 is Tc1 + Tc2 + Tc4 = 0.8,
and x̂5 is Tc1 + Tc5 = 1.0. The simulation results are shown in Fig. 6(a) (e1 = x̂1 − x1),
Fig. 6(b) (e2 = x̂2−x2), Fig. 6(c) (e3 = x̂3−x3), Fig. 6(d) (e4 = x̂4−x4), and Fig. 6(e)
(e5 = x̂5 − x5). As can be seen from Fig. 6(b), Theorem 3 has better robustness than
Lemma 3 and can effectively suppress disturbance.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Predefined-time synchronization of 5D Hindmarsh–Rose neuron networks 645

5 Secure communication

This section proposes a secure communication algorithm based on the predefined-time
synchronization of 5D HRNNs.

Example 3. By using plaintext signal, sender generates the following signals:

m1 =

{
r1(t), 0 6 t < 1,

1.6 sin t+ 0.7 cos(0.3t), t > 1,

m2 =

{
r1(t), 0 6 t < 1,

− sin(1.2t) + 2 cos(3t), t > 1,

where r1(t) and r2(t) denote random signals. Sender calculates the encrypted signal

C1(t) = m1(t) + x1(t), C2(t) = m2(t) + x5(t).

Figures 7 and 8 illustrate the state trajectories of mi and Ci, where i = 1, 2. The initial
conditions of 5D HRNNs (11) and (12), r1(t), r2(t), m1(t), and m2(t) can be known
only to the sender.

Receiver receives the secret keys a, b, c, d, f , g, h, l, n, p, q and the encrypted
signals C1(t), C2(t). Then receiver generates the slave 5D HRNN (12). Receiver chooses
the controller (13), (14), (15), (16), and (17); α = 1.2, β = 1.4, γ = 5/6, and η =
2.7. According to Theorem 3, the state variables x1 and x̂1, x5 and x̂5 of master-slave
5D HRNNs can realize their own predefined-time synchronization, and their predefined
synchronization time is Tc1 = 2 and Tc5 = 8, respectively. Figures 9 and 10 illustrate the
receiver decrypted the encrypted messages by calculatingmoi = Ci− x̂i and the message
error emi = moi − mi. As can be seen from Fig. 10, message m1 achieved accurate
transmission within Tc1 = 2 s, and message m2 achieved accurate transmission within
Tc1 + Tc5 = 10 s. In this way, different messages has its own synchronous transmission
time, and the receiver can get accurate message after the predefined time, which increases
the complexity of transmission and improves the security communication.

Figure 7. Plaintext messages m1 and m2. Figure 8. Encrypted signals C1 and C2.
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Figure 9. Decrypted messages mo1 and mo2. Figure 10. Synchronization errors em1 and em2.

6 Conclusion

This paper has provided a new settling time estimation method for a class of fixed-time
stable dynamical nonlinear systems. Although Lyapunov function (3) is the same as that
in reference [12], different settling time is obtained based on the complete beta function.
In order to solve the problem of the settling time adjustment in fixed-time stability, this
paper has proposed a modification to the fixed-time algorithm to build up a more direct
relationship between the tuning parameter of the system and the settling time. Then
an active controller via backstepping has been proposed to achieve the predefined-time
synchronization of 5D HRNNs in which the synchronization time of each state variable
of the master-slave 5D HRNNs is different and can be defined in advance. To show the
applicability of the theoretical results obtained, the designed predefined-time controller
has been applied to secure communication to realize asynchronous communication of
multiple messages. In the future research work, we will continue to study the predefined-
time secure communication under the influence of disturbances and apply it to other fields,
such as discrete-time Boolean control networks, fuzzy sets, and fractional order neural
networks.

Acknowledgment. The author thanks the anonymous reviewers for their insightful sug-
gestions, which improved this work significantly.
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