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Abstract. In this paper, we are concerned with the Kirchhoff-type variable-order fractional Laplac-
ian problem with critical variable exponent. By using constraint variational method and quantitative
deformation lemma we show the existence of one least energy solution, which is strictly larger than
twice of that of any ground state solution.
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1 Introduction and main results

In this paper, we are interested in the existence of least energy nodal solutions for the fol-
lowing Kirchhoff-type variable-order fractional Laplacian problems with critical variable:
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growth: (
a+ b[u]2s(·)

)
(−∆)s(·)u = |u|q(x)−2u+ λf(x, u) in Ω,

u = 0 in RN \Ω,
(1)

where

[u]s(·) :=

( ∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s(x,y)
dx dy

)1/2

,

a, b > 0, s(·) : RN × RN → (0, 1) is a continuous function, Ω is a bounded domain
in RN with Lipschitz boundary, λ > 0 is a parameter, N > 2s(x, y) for all (x, y) ∈
Ω ×Ω, (−∆)s(·) is the variable-order fractional Laplace operator, 4 < q(x) 6 2?(x) :=
2N/(N − 2s(x, x)) for all x ∈ Ω. The variable-order fractional Laplace operator
(−∆)s(·) is defined as follows:

(−∆)s(·)ϕ(x) = 2PV

∫
RN

ϕ(x)− ϕ(y)

|x− y|N+2s(x,y)
dy

along any ϕ ∈ C∞0 (Ω), where PV denotes the Cauchy principle value. As s(·) ≡ const,
the variable-order fractional Laplace operator (−∆)s(·) reduces to the usual fractional
Laplace operator; see [14, 15] for the concise introduction to the fractional Laplace oper-
ator and related variational results.

We now impose the assumptions on the functions s(·) and f that will in full force
throughout the paper. Firstly, we suppose that s : RN × RN → (0, 1) is a continuous
function satisfying the following assumptions:

(s1) 0 < s− := min(x,y)∈RN×RN s(x, y) 6 s+ := max(x,y)∈RN×RN s(x, y) < 1;
(s2) s(·) is symmetric, that is, s(x, y) = s(y, x) for all (x, y) ∈ RN × RN .

From now on, for the variable exponents m, we set

m = ess inf
x∈Ω

m(x), m = ess sup
x∈Ω

m(x).

Moreover, we suppose that f ∈ C1(R,R) satisfies the following conditions:

(f1) limt→0 f(x, t)/|t|3 = 0;
(f2) there exist θ(x) ∈ (4, 2?(x)) and C > 0 such that |f(x, t)| 6 C(1 + |t|θ(x)−1)

for all t ∈ R and all x ∈ Ω;
(f3) f(x, t)/|t|3 is a strictly increasing function of t ∈ R \ {0}.

A typical example of function fulfilling hypotheses (f1)–(f3) is as follows: f(x, t) =
|t|θ(x)−2t, where t ∈ R and x ∈ Ω.

The main driving force for studying problem (1) includes two aspects. On the one
hand, when s(·) ≡ 1, Eq. (1) reduces to the general Kirchhoff-type model. Recently, some
researchers also explored such equations in the study of nonlinear vibrations theoretically
or experimentally. For example, Carrier [1] used a more rigorous method to deduce a more
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general Kirchhoff model. Moreover, the nonlocal Kirchhoff problems of parabolic type
can model several biological systems such as population density; see, for instance, [4]. In
fact, the energy functionals of (1) have obviously different properties from the case b = 0,
and thus, several mathematical difficulties arise naturally in the study of the case b 6= 0 by
variational and topological methods. It is worth mentioning that Fiscella and Valdinoci [9]
deduced a new Kirchhoff model involving the fractional Laplacian by considering the
nonlocal aspect of the tension arising from nonlocal measurements of the fractional length
of the string; see [9, App. A] for more details.

In recent years, finding sign-changing solutions to the Kirchhoff-type problems has
been an attractive subject, and many interesting results have been obtained. In the fol-
lowing, let us sketch some advances related to the subject of our paper. Concerning the
advances of Kirchhoff-type problems in the bounded domains, Zhang and Perera in [26]
applied the method of invariant sets of descent flow to investigate the existence of sign-
changing solutions for Kirchhoff-type problems; see also Mao and Zhang in [12] for more
related results via similar approaches. Using the constraint variational methods, Shuai
in [18] obtained that Kirchhoff-type problems has one least energy sign-changing solution
ub and the energy of ub strictly larger than the ground state energy. After that, with the
help of non-Nehari manifold method, Tang and Cheng in [19] generalized some results
obtained in [18]; see also [2] for more general Kirchhoff-type function in this direction. In
[20], Wang obtained the following results for Kirchhoff-type equation with critical growth
by employing the constraint variational method and the quantitative deformation lemma:
the existence of least energy sign-changing solutions ub and the energy of ub is strictly
larger than twice that of the ground state solutions. Concerning the advances in the ab-
stract Kirchhoff framework, here we just review two papers as follows: by using the min-
imization argument and a quantitative deformation lemma, Figueiredo et al. in [7] investi-
gated the existence of a sign-changing solution for the following Kirchhoff-type equation:

−M
(∫
Ω

|∇u|2 dx

)
∆u = g(u) in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain in R3, M : R+
0 → R is a continuous function with some

appropriate assumptions, and g is a superlinear C1 class function with subcritical growth.
In unbounded domains, Figueiredo and Santos Júnior in [8] obtained a least energy sign-
changing solution to a class of nonlocal Schrödinger–Kirchhof problems involving only
continuous functions by using a minimization argument and a quantitative deformation
lemma. Moreover, the authors also proved that the problem has infinitely many nontriv-
ial solutions when it presents symmetry. In [3], Cheng and Gao studied the following
Kirchhoff-type problem, which involves a fractional Laplacian operator:(

a+ b

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy

)
(−∆)su+ V (x)u = f(x, u) in RN ,

where 0 < s < 1 is a constant, f satisfies subcritical growth. The authors proved the
existence of least energy sign-changing solutions for this problem by using the constraint
variation method and quantitative deformation lemma.
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On the other hand, variable-order fractional Laplacian problems was introduced by
Xiang et al. in [25]. They studied the following variable-order fractional Laplacian prob-
lems involving variable exponents:

(−∆)s(·)u+ λV (x)u = α|u|p(x)−2u+ β|u|q(x)−2u in Ω,

u = 0 in RN \Ω.
(2)

Under some suitable assumptions, they showed that problem (2) admits at least two dis-
tinct solutions by applying the mountain pass theorem and Ekeland’s variational principle.
Subsequently, Wang and Zhang in [21] proved the existence of infinitely many solutions
for possibly degenerate Kirchhoff-type variable-order fractional Laplacian problems by
using the new version of Clark’s theorem due to Liu and Wang in [11]. Very recently,
Xiang et al. in [24] obtained the existence of two solutions for a class of degenerate
Kirchhoff-type variable-order fractional Laplacian problems by employing the Nehari
manifold approach.

However, regarding the existence of sign-changing solutions for Kirchhoff-type var-
iable-order fractional Laplacian problems involving variable exponents, there has been
no paper in the literature as far as we know. Hence, a natural question is whether or
not there exists sign-changing solutions of problem (1)? Another interesting question is
whether or not the same conclusion still holds for critical exponent q(x) = 2?(x) :=
2N/(N − 2s(x, x))? The goal of the present paper is to give an affirmative answer.

The corresponding energy functional Ib,λ : H
s(·)
0 (Ω) → R to problem (1) is defined

by

Ib,λ(u) =
a

2
[u]2s(·) +

b

4
[u]4s(·) − λ

∫
Ω

F (x, u) dx−
∫
Ω

1

q(x)
|u|q(x) dx. (3)

It is standard to verify that Ib,λ belongs to C1(H
s(·)
0 (Ω),R), and the critical points of

Ib,λ are the solutions of problem (1). Furthermore, if we write u+(x) = max{u(x), 0}
and u−(x) = min{u(x), 0} for u ∈ H

s(·)
0 (Ω), then every solution u ∈ H

s(·)
0 (Ω) of

problem (1) with the property that u± 6= 0 is a sign-changing solution of problem (1).
Now, we give the following first main result.

Theorem 1. Assume that (s1)–(s2) and (f1)–(f3) hold. Then there exists λ∗ > 0 such that
for all λ > λ∗, problem (1) has a least energy sign-changing solution ub.

Another objective of this paper is to establish the so-called energy doubling property
(cf. [22]), i.e., the energy of any sign-changing solution of problem (1) is strictly bigger
than twice that of the ground state solution. We have the following result.

Theorem 2. Assume that (s1)–(s2) and (f1)–(f3) hold. Then there exists λ∗∗ > 0 such
that for all λ > λ∗∗, c∗ := infu∈Nb,λ Ib,λ(u) > 0 is achieved and Ib,λ(u) > 2c∗,
where Nb,λ = {u ∈ H

s(·)
0 (Ω) \ {0}: 〈(Ib,λ)′(u), u〉 = 0}, and u is the least energy

sign-changing solution obtained in Theorem 1. In particular, c∗ > 0 is achieved either by
a positive or a negative function.
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Remark 1. As an application of Theorem 2, problem (1) with s = 9/10, 2?(x) = 5, and
θ(x) = 9/2, (

a+ b[u]29/10

)
(−∆)9/10u = |u|3u+ λ|u|5/2u in Ω,

u = 0 in R3 \Ω

has a least energy sign-changing solution u with energy doubling property.

2 Preliminaries

In this section, we first recall some definitions and results of variable exponent Lebesgue
spaces (see [5, 6, 16]), which will be used later.

Let N > 1 and Ω ⊂ RN be a nonempty open set. A measurable function p : Ω →
[1,∞) is named a variable exponent.

The variable exponent Lebesgue space is

Lp(x)(Ω) =

{
u : Ω → R is a measurable function: ηp(x)(u) =

∫
Ω

∣∣u(x)
∣∣p(x)

dx <∞
}

with the Luxemburg norm

‖u‖Lp(·)(Ω) = inf
{
% > 0: ηp(x)

(
%−1u

)
6 1
}
,

then Lp(x)(Ω) is a Banach space, and when p is bounded, we have the following relations:

min
{
‖u‖p

Lp(·)(Ω)
, ‖u‖p

Lp(·)(Ω)

}
6 ηp(·)(u) 6 max

{
‖u‖p

Lp(·)(Ω)
, ‖u‖p

Lp(·)(Ω)

}
.

That is, if p is bounded, then norm convergence is equivalent to convergence with respect
to the modular ηp(x). For the bounded exponent, the dual space (Lp(·)(Ω))′ can be identi-
fied with Lp

′(x)(Ω), where the conjugate exponent p′ is defined by p′ = p(x)/(p(x)−1).
If 1 < p 6 p < ∞, then the variable exponent Lebesgue space Lp(x)(Ω) is separable
and reflexive. So we can see that Hölder’s inequality is still valid in the variable exponent
Lebesgue space. For all ϕ ∈ Lp(·)(Ω), φ ∈ Lp′(·)(Ω) with p(x) ∈ (1,∞), the following
inequality holds:∫

Ω

|ϕφ|dx 6

(
1

p
+

1

p′

)
‖ϕ‖Lp(x)(Ω)‖φ‖Lp′(x)(Ω) 6 2‖ϕ‖Lp(x)(Ω)‖φ‖Lp′(x)(Ω).

Next, we give some definitions and results of variable-order fractional Sobolev spaces.
Define Hs(·)(Ω) as the linear space of Lebesgue measurable functions from RN to R

such that any function u = 0 in RN \Ω belongs to L2(Ω) and

[u]s(·) :=

(∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s(x,y)
dxdy

)1/2

<∞.
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Equip Hs(·)
0 (Ω) with the norm

‖u‖
H
s(·)
0 (Ω)

=
(
‖u‖2L2(Ω) + [u]2s(·)

)1/2
.

Similar to the proof of Lemma 7 in [17], we can show that (H
s(·)
0 (Ω), [·]s(·)) is a Hilbert

space. In this paper, we used norm ‖·‖ = [·]s(·) to study problem (1).

Lemma 1. (See [25, Lemma 2.1].) The embeddings Hs2
0 (Ω) ↪→ H

s(·)
0 (Ω) ↪→ Hs1

0 (Ω)
are continuous. Moreover, if N > 2s1, for any fixed constant exponent t ∈ [1, 2N/

(N − 2s1)], Hs(·)
0 (Ω) can be continuously embedded into Lt(Ω).

The following embedding theorem shows that the variable-order fractional Sobolev
space is related with the variable exponent Sobolev spaces.

Lemma 2. (See [25, Thm. 2.1].) Let Ω ⊂ RN be a smooth bounded domain. Assume
that s : RN × RN → (0, 1) and p : Ω → (1,∞) are two continuous functions satisfying
(s1)–(s2) and 2 < p(x) < 2N/(N − 2s(x, x)), respectively. Then there exists Cp =

C(N, p, s, s) > 0 such that for any u ∈ Hs(·)
0 (Ω), it holds that

‖u‖Lp(x)(Ω) 6 Cp‖u‖Hs(·)0 (Ω)
.

That is, the embedding Hs(·)
0 (Ω) ↪→ Lp(x)(Ω) is continuous. Furthermore, this embed-

ding is compact. If u ∈ Hs(·)
0 (Ω), then there exists Cp = C(N, p, s, s) > 0 such that

‖u‖Lp(x)(Ω) 6 Cp[u]s(·).

3 Some technical lemmas

Now, for fixed u ∈ Hs(·)
0 (Ω) with u± 6= 0, we define function σu : R+

0 × R+
0 → R and

mapping Tu : R+
0 × R+

0 → R2 by

σu(α, β) = Ib,λ
(
αu+ + βu−

)
and

Tu(α, β) =
(〈

(Ib,λ)′
(
αu+ + βu−

)
, αu+

〉
,
〈
(Ib,λ)′

(
αu+ + βu−

)
, βu−

〉)
. (4)

Lemma 3. Assume that (s1)–(s2) and (f1)–(f3) hold. If u ∈ Hs(·)
0 (Ω) with u± 6= 0, then

σu has the following properties:

(i) The pair (α, β) is a critical point of σu with α, β > 0 if and only if αu++ βu− ∈
Mb,λ;

(ii) The function σu has a unique critical point (αu, βu) on (0,∞) × (0,∞), which
is also the unique maximum point of σu on [0,∞) × [0,∞). Furthermore, if
〈(Ib,λ)′(u), u±〉 6 0, then 0 < αu, βu < 1.

Nonlinear Anal. Model. Control, 27(3):556–575, 2022
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Proof. (i) By definition of σu we have that

∇σu(α, β) =
(〈

(Ib,λ)′
(
αu+ + βu−

)
, u+

〉
,
〈
(Ib,λ)′

(
αu+ + βu−

)
, u−

〉)
=

(
1

α

〈
(Ib,λ)′

(
αu+ + βu−

)
, αu+

〉
,

1

β

〈
(Ib,λ)′

(
αu+ + βu−

)
, βu−

〉)
.

Thus, item (i) holds.
(ii) For any u ∈ Hs(·)

0 (Ω) with u± 6= 0, we prove the existence of αu and βu.
From (f1) and (f2), for any ε > 0, there is Cε > 0 such that∣∣f(x, t)

∣∣ 6 ε|t|+ Cε|t|θ(x)−1 for all t ∈ R. (5)

Then by the Sobolev embedding theorem we have〈
(Ib,λ)′

(
αu+ + βu−

)
, αu+

〉
> (a− λεC2)α2

∥∥u+
∥∥2

+ bα4
∥∥u+

∥∥4 −
(
αq + αq

)
C1 max

{∥∥u+
∥∥q,∥∥u+

∥∥q}
− λCεC3

(
αθ + αθ

)
max

{∥∥u+
∥∥θ,∥∥u+

∥∥θ}.
Choose ε > 0 such that (a − λεC2) > 0. Since q, θ > 4, we have that 〈(Ib,λ)′(αu+ +
βu−), αu+〉 > 0 for α small enough and all β > 0. Similarly, we are also able to prove
that 〈I ′b,λ(αu+ + βu−), βu−〉 > 0 for β small enough and all α > 0. Therefore, there
exists δ1 > 0 such that〈

(Ib,λ)′
(
δ1u

+ + βu−
)
, δ1u

+
〉
> 0,

〈
(Ib,λ)′

(
αu+ + δ1u

−), δ1u−〉 > 0. (6)

On the other hand, by (f2) and (f3) we claim

f(x, t)t > 0, t 6= 0; F (x, t) > 0, t ∈ R. (7)

Therefore, choose α = δ∗2 > δ1. If β ∈ [δ1, δ
∗
2 ] and δ∗2 is large enough, it follows that〈

(Ib,λ)′
(
δ∗2u

+ + βu−
)
, δ∗2u

+
〉

6 a(δ∗2)2
∥∥u+

∥∥2
+ b
(
δ∗2
)4∥∥u+

∥∥4
+ b(δ∗2)4

∥∥u+
∥∥2∥∥u−∥∥2

− (δ∗2)q
∫
Ω

∣∣u+
∣∣q(x)

dx 6 0.

Similarly, we have 〈(Ib,λ)′(αu+ + δ∗2u
−), δ∗2u

−〉 6 0. Let δ2 > δ∗2 be large enough, we
obtain〈

(Ib,λ)′
(
δ∗2u

+ + βu−
)
, δ∗2u

+
〉
< 0 and

〈(
Ib,λ)′

(
αu+ + δ∗2u

−), δ∗2u−〉 < 0 (8)

for all α, β ∈ [δ1, δ2]. Combining (6) and (8) with Miranda’s theorem [13], there exists
(αu, βu) ∈ R+ × R+ such that Tu(α, β) = (0, 0), i.e., αu+ + βu− ∈Mλ.

According to the proof in [20], we can prove the uniqueness of the pair (αu, βu).
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Lastly, we prove that 0 < αu, βu 6 1 if 〈(Ib,λ)′(u), u±〉 6 0.
Suppose αu > βu > 0. By αuu+ + βuu

− ∈Mb,λ we have

aα2
u

∥∥u+
∥∥2

+ bα4
u

∥∥u+
∥∥4

+ bα4
u

∥∥u+
∥∥2∥∥u−∥∥2

> aα2
u

∥∥u+
∥∥2

+ bα4
u

∥∥u+
∥∥4

+ bα2
uβ

2
u

∥∥u+
∥∥2∥∥u−∥∥2

= λ

∫
Ω

f
(
x, αuu

+
)
αuu

+dx+

∫
Ω

∣∣αuu+
∣∣q(x)

dx. (9)

On the other hand, by 〈(Ib,λ)′(u), u+〉 6 0 we have

a
∥∥u+

∥∥2
+ b
∥∥u+

∥∥4
+ b
∥∥u+

∥∥2∥∥u−∥∥2
6 λ

∫
Ω

f
(
x, u+

)
u+dx+

∫
Ω

∣∣u+
∣∣q(x)

dx. (10)

So, according to (9) and (10), we obtain

a

(
1

α2
u

− 1

)∥∥u+
∥∥2

> λ

∫
Ω

[
f(x, αuu

+)

(αuu+)3
− f(x, u+)

(u+)3

]
(u+)4 dx

+

∫
Ω

(
α(q(x)−2)
u − 1

)∣∣u+
∣∣q(x)

dx.

In view of (f3), we conclude that αu 6 1. Thus, we have that 0 < αu, βu 6 1.

Lemma 4. Let cb,λ = infu∈Mb,λ
Ib,λ(u). Then we have that limλ→∞ cb,λ = 0.

Proof. For any u ∈Mb,λ, we have

a
∥∥u±∥∥2

+ b
∥∥u±∥∥4

+ b
∥∥u+

∥∥2∥∥u−∥∥2
= λ

∫
Ω

f
(
x, u±

)
u± dx+

∫
Ω

∣∣u±∣∣q(x)
dx.

Then by (5) and Sobolev inequalities we get

a
∥∥u±∥∥2

6 λ

∫
Ω

f
(
x, u±

)
u± dx+

∫
Ω

∣∣u±∣∣q(x)
dx

6 λεC1

∥∥u±∥∥2
+ λCε min

{∥∥u±∥∥θ,∥∥u±∥∥θ}
+ C min

{∥∥u±∥∥q,∥∥u±∥∥q}.
Thus, we obtain

(a− λεC1)
∥∥u±∥∥2

6 λCε min
{∥∥u±∥∥θ,∥∥u±∥∥θ}+ C min

{∥∥u±∥∥q,∥∥u±∥∥q}.
Nonlinear Anal. Model. Control, 27(3):556–575, 2022
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Choosing ε small enough such that a− λεC1 > 0, since θ, θ, q, p > 4, there exists ρ > 0
such that ∥∥u±∥∥ > ρ for all u ∈Mb,λ. (11)

On the other hand, for any u ∈ Mb,λ, it is obvious that 〈(Ib,λ)′(u), u〉 = 0. Thanks to
(f2) and (f3), we obtain that

f ′(x, t)t− 3f(x, t) > (<) 0 for all t > 0,

This fact implies that

Θ(x, t) := f(x, t)t− 4F (x, t) > 0 (12)

is increasing when t > 0 and decreasing when t < 0 for almost every x ∈ Ω. Then we
have

Ib,λ(u) = Ib,λ(u)− 1

4

〈
(Ib,λ)′(u), u

〉
>
a

4
‖u‖2.

From above discussions we have that Ib,λ(u) > 0 for all u ∈ Mb,λ. Therefore, Ib,λ is
bounded below onMb,λ, that is, cb,λ = infu∈Mb,λ

Ib,λ(u) is well defined.
Let u ∈ Hs(·)

0 (Ω) with u± 6= 0 be fixed. By Lemma 3, for each λ > 0, there exist
αλ, βλ > 0 such that αλu+ + βλu

− ∈Mb,λ. By Lemma 3 we have

0 6 cb,λ = inf
u∈Mb,λ

Ib,λ(u) 6 Ib,λ(αλu
+ + βλu

−)

6
a

2

∥∥αλu+ + βλu
−∥∥2

+
b

4

∥∥αλu+ + βλu
−∥∥4

6 aα2
λ

∥∥u+
∥∥2

+ aβ2
λ

∥∥u−∥∥2
+ 2bα4

λ

∥∥u+
∥∥4

+ 2bβ4
λ

∥∥u−∥∥4
.

For our purpose, we just prove that αλ → 0 and βλ → 0 as λ→∞.
Let

Tu =
{

(αλ, βλ) ∈ R+
0 × R+

0 : Tu(αλ, βλ) = (0, 0), λ > 0
}
,

where Tu is defined as (4). By (5) there holds

min
{
αqλ, α

q

λ

}∫
Ω

∣∣u+
∣∣q(x)

dx+ min
{
βqλ, β

q

λ

}∫
Ω

∣∣u−∣∣q(x)
dx

6
∫
Ω

α
q(x)
λ

∣∣u+
∣∣q(x)

dx+

∫
Ω

α
q(x)
β

∣∣u−∣∣q(x)
dx

+ λ

∫
Ω

f
(
x, αλu

+
)
αλu

+ dx+ λ

∫
Ω

f
(
x, βλu

−)βλu−dx

= a
∥∥αλu+ + βλu

−∥∥2
+ b
∥∥αλu+ + βλu

−∥∥4

6 2aα2
λ

∥∥u+
∥∥2

+ 2aβ2
λ

∥∥u−∥∥2
+ 4bα4

λ

∥∥u+
∥∥4

+ 4bβ4
λ

∥∥u−∥∥4
.
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Hence, Tu is bounded. Let {λn} ⊂ R+ be such that λn → ∞ as n → ∞. Then there
exist α0 and β0 such that (αλn , βλn)→ (α0, β0) as n→∞.

Now, we claim α0 = β0 = 0. Suppose, by contradiction, that α0 > 0 or β0 > 0. By
αλnu

+ + βλnu
− ∈Mb,λn , for any n ∈ N, we have

a
∥∥αλnu+ + βλnu

−∥∥2
+ b
∥∥αλnu+ + βλnu

−∥∥4

= λn

∫
Ω

f
(
x, αλnu

+ + βλnu
−)
(
αλnu

+ + βλnu
−) dx

+

∫
Ω

∣∣αλnu+ + βλnu
−∣∣q(x)

dx. (13)

Thanks to αλnu
+ → α0u

+ and βλnu
− → β0u

− in Hs(·)
0 (Ω), (5) and (7), we have that∫

Ω

f
(
x, αλnu

+ + βλnu
−)(αλnu+ + βλnu

−) dx

→
∫
Ω

f
(
x, α0u

+ + β0u
−)(α0u

+ + β0u
−) dx > 0

as n → ∞. It follows a contradiction with equality (13) from two facts: λn → ∞
as n → ∞, and {αλnu+ + βλnu

−} is bounded in Hs(·)
0 (Ω). Hence, α0 = β0 = 0.

Therefore, we conclude that limλ→∞ cb,λ = 0.

Lemma 5. There exists λ∗ > 0 such that for all λ > λ∗, the infimum cb,λ is achieved.

Proof. By the definition of cb,λ there exists a sequence {un} ⊂ Mb,λ such that
limn→∞ Ib,λ(un) = cb,λ. Obviously, {un} is bounded in Hs(·)

0 (Ω). Then, up to a sub-
sequence, still denoted by {un}, there exists u ∈ Hs(·)

0 (Ω) such that un ⇀ u. Since the
embedding Hs(·)

0 (Ω) ↪→ Lt(Ω) is compact, for all t ∈ (2, 2?(x)), we have

un → u in Lt(Ω), un → u a.e. x ∈ Ω.

Hence, u±n → u±, a.e. x ∈ Ω, and

u±n ⇀ u± in Hs(·)
0 (Ω), u±n → u± in Lt(Ω).

By Lemma 3 we have

Ib,λ(αu+
n + βu−n ) 6 Ib,λ(un) for all α, β > 0.

Then by Brézis–Lieb lemma and Fatou’s lemma we get

lim inf
n→∞

Ib,λ
(
αu+

n + βu−n
)

> Ib,λ
(
αu+ + βu−

)
+
aα2

2
lim
n→∞

∥∥u+
n − u+

∥∥2
+
aβ2

2
lim
n→∞

∥∥u−n − u−∥∥2

+
bα4

2
lim
n→∞

∥∥u+
n − u+

∥∥2∥∥u+
∥∥2

+
bβ4

2
lim
n→∞

∥∥u−n − u−∥∥2∥∥u−∥∥2

Nonlinear Anal. Model. Control, 27(3):556–575, 2022

https://doi.org/10.15388/namc.2022.27.26575


566 S. Liang et al.

+
bα4

4

(
lim
n→∞

∥∥u+
n − u+

∥∥2
)2

+
bβ4

4

(
lim
n→∞

∥∥u−n − u−∥∥2
)2

−
∫
Ω

αq(x)

q(x)

∣∣u+
n − u+

∣∣q(x)
dx−

∫
Ω

βq(x)

q(x)

∣∣u−n − u−∣∣q(x)
dx

> Ib,λ
(
αu+ + βu−

)
+
aα2

2
A1 +

bα4

2
A1

∥∥u+
∥∥2

+
bα4

4
A2

1 −
max{αq, αq}

q
B1

+
aβ2

2
A2 +

bβ4

2
A2

∥∥u−∥∥2
+
bβ4

4
A2

2 −
max{αq, αq}

q
B2,

where

A1 = lim
n→∞

∥∥u+
n − u+

∥∥2
, A2 = lim

n→∞

∥∥u−n − u−∥∥2
,

B1 = lim
n→∞

∣∣u+
n − u+

∣∣q(x)

q(x)
, B2 = lim

n→∞

∣∣u−n − u−∣∣q(x)

q(x)
.

That is, one has

Ib,λ
(
αu+ + βu−) +

aα2

2
A1 +

bα4

2
A1

∥∥u+
∥∥2

+
bα4

4
A2

1 −
max{αq, αq}

q
B1

+
aβ2

2
A2 +

bβ4

2
A2

∥∥u−∥∥2
+
bβ4

4
A2

2 −
max{βq, βq}

q
B2 6 cb,λ (14)

for all α > 0 and all β > 0.
Now, we claim that u± 6= 0. In fact, since the situation u− 6= 0 is analogous, we just

prove u+ 6= 0. By contradiction we suppose u+ = 0. Hence, let β = 0 in (14), and we
have

aα2

2
A1 +

bα4

4
A2

1 −
max{αq, αq}

q
B1 6 cb,λ for all α > 0. (15)

Case 1: B1 = 0.
If A1 = 0, that is, u+

n → u+ in Hs(·)
0 (Ω). From Lemma (11) we obtain ‖u+‖ > 0,

which contradicts our supposition. If A1 > 0, by (14) and Lemma 4 we have

0 <
aα2

2
A1 +

bα4

4
A2

1 6 cb,λ → 0 for all α > 0 and λ→ +∞.

The inequality is absurd. Anyway, we have a contradiction.

Case 2: B1 > 0.
One the one hand, by Lemma 4 there exists λ∗ > 0 such that

cb,λ < Λ := min
{
C
−q
q , C−qq

}
aq/(q−2) for all λ > λ∗.
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On the other hand, since B1 > 0, we obtain A1 > 0. Hence, by means of (15) we
have

Λ 6

[
(aA1)q/2

B1

]2/(q−2)

6 max
06α61

{
aα2

2
A1 −

αq

q
B1

}
6 max

06α

{
aα2

2
A1 +

bα4

4
A2

1 −
αq

q
B1

}
6 cb,λ,

which is a contradiction. Hence, we deduce that u± 6= 0.

Second, we prove B1 = B2 = 0.
Since the situation B2 = 0 is analogous, we only prove B1 = 0. By contradiction we

suppose that B1 > 0.
Case 1: B2 > 0.
According to B1, B2 > 0 and Sobolev embedding, we obtain that A1, A2 > 0. Let

ϕ(α) =
aα2

2
A1 +

bα4

4
A2

1 −
max{αq, αq}

q
B1 for all α > 0.

It is easy to see that ϕ(α) > 0 for α > 0 small enough and ϕ(α) < 0 for α < 0 large
enough. Hence, by the continuity of ϕ(α) there exists α̃ > 0 such that

aα̃2

2
A1 +

bα̃4

4
A2

1 −
max{α̃q, α̃q}

q
B1

= max
s>0

{
aα2

2
A1 +

bα4

4
A2

1 −
max{αq, αq}

q
B1

}
.

Similarly, there exists β̃ > 0 such that

aβ̃2

2
A2 +

bβ̃4

4
A2

2 −
max{β̃q, β̃q}

q
B2

= max
s>0

{
aβ2

2
A2 +

bβ4

4
A2

2 −
max{βq, βq}

q
B2

}
.

Since [0, α̃]× [0, β̃] is compact and σ is continuous, there exists (αu, βu) ∈ [0, α̃]× [0, β̃]
such that

σ(αu, βu) = max
(α,β)∈[0,α̃]×[0,β̃]

σ(α, β).

Now, we prove that (αu, βu) ∈ (0, α̃) × (0, β̃). Note that if β is small enough, we
obtain

σ(α, 0) = Ib,λ
(
αu+

)
< Ib,λ

(
αu+

)
+ Ib,λ

(
βu−

)
6 Ib,λ

(
αu+ + βu−

)
= σ(α, β)
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for all α ∈ [0, α̃]. Hence, there exists β0 ∈ [0, β̃] such that

σ(α, 0) 6 σ(α, β0) for all α ∈ [0, α̃].

That is, any point of (α, 0) with 0 6 α 6 α̃ is not the maximizer of σ. This yields that
(αu, βu) /∈ [0, α̃]× {0}. Similarly, we obtain (αu, βu) /∈ {0} × [0, α̃].

On the other hand, it is easy to see that

aα2

2
A1 +

bα4

2
A1

∥∥u+
∥∥2

+
bα4

4
A2

1 −
max{αq, αq}

q
B1 > 0 (16)

and
aβ2

2
A2 +

bβ4

2
A2

∥∥u−∥∥2
+
bβ4

4
A2

2 −
max{βq, βq}

q
B2 > 0 (17)

for α ∈ (0, α̃], β ∈ (0, β̃].
Then we have

Λ 6
aα̃2

2
A1 +

bα̃4

4
A2

1 −
max{αq, αq}

q
B1 +

bα̃4

2
A1

∥∥u+
∥∥2

+
aβ2

2
A2 +

bβ4

2
A2

∥∥u−∥∥2
+
bβ4

4
A2

2 −
max{βq, βq}

q
B2

and

Λ 6
aβ̃2

2
A2 +

bβ̃4

4
A2

2 −
max{βq, βq}

q
B2 +

bβ̃4

2
A2

∥∥u−∥∥2

+
aα2

2
A1 +

bα4

2
A1

∥∥u+
∥∥2

+
bα4

4
A2

1 −
max{αq, αq}

q
B1

for all α∈ [0, α̃] and all β∈ [0, β̃]. Therefore, according to (14), we conclude σ(α, β̃)60,
σ(α̃, β) 6 0 for all α ∈ [0, α̃] and all β ∈ [0, β̃]. Thus, (αu, βu) /∈ {α̃} × [0, β̃] and
(αu, βu) /∈ [0, α̃]×{β̃}. Finally, we get that (αu, βu) ∈ (0, α̃)× (0, β̃). Hence, it follows
that (αu, βu) is a critical point of σ. This implies that αuu++βuu

− ∈Mb,λ. From (14),
(16), and (17) we have

cb,λ > Ib,λ
(
αuu

+ + βuu
−)

+
aα2

u

2
A1 +

bα4
u

2
A1

∥∥u+
∥∥2

+
bα4

u

4
A2

1 −
max{αq, αq}

q
B1

+
aβ2

u

2
A2 +

bβ4
u

2
A2

∥∥u−∥∥2
+
bβ4
u

4
A2

2 −
max{βq, βq}

q
B2

> Ib,λ
(
αuu

+ + βuu
−) > cb,λ,

which is a contradiction.
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Case 2: B2 = 0.
In this case, we can maximize in [0, α̃]×R+

0 . Indeed, it is possible to show that there
exist β0 ∈ R+

0 such that

Ib,λ
(
αuu

+ + βuu
−) 6 0 for all (α, β) ∈ [0, α̃]× [β0,∞).

Hence, there is (αu, βu) ∈ [0, α̃]× [0,∞) such that

σ(αu, βu) = max
(α,β)∈[0,α̃]×[0,∞)

σ(α, β).

In the following, we prove that (αu, βu) ∈ (0, α̃) × R+. It is noted that σ(α, 0) <
σ(α, β) for α ∈ [0, α̃] and β small enough, so we have (αu, βu) /∈ [0, α̃] × {0}. Mean-
while, σ(0, β) < σ(α, β) for β ∈ [0,∞) and α small enough, then we have (αu, βu) /∈
{0} × R+

0 .
On the other hand, it is obvious that

Λ 6
aα̃2

2
A1 +

bα̃4

4
A2

1 −
max{αq, αq}

q
B1 +

bα̃4

2
A2

∥∥u+
∥∥2

+
aβ2

2
A2 +

bβ4

2
A2

∥∥u−∥∥2
+
bβ4

4
A2

2 for all β ∈ [0,∞).

Hence, we obtain that σ(α̃, β) 6 0 for all β ∈ R+
0 . Thus, (αu, βu) /∈ {α̃} × R+

0 . Hence,
(αu, βu) ∈ (0, α̃) × R+. That is, (αu, βu) is an inner maximizer of σ in [0, α̃) × R+

0 .
Hence, αuu+ + βuu

− ∈Mb,λ. Then it follows from (16) that

cb,λ > Ib,λ
(
αuu

+ + βuu
−)

+
aα2

u

2
A1 +

bα4
u

2
A1

∥∥u+
∥∥2

+
bα4

u

4
A2

1 −
max{αq, αq}

q
B1

+
aβ2

u

2
A2 +

bβ4
u

2
A2

∥∥u−∥∥2
+
bβ4
u

4
A2

2

> Ib,λ
(
αuu

+ + βuu
−) > cb,λ,

which is absurd.
Therefore, from the above arguments we have that B1 = B2 = 0.
Finally, we prove that cb,λ is achieved. Since u± 6= 0, by Lemma 1, there exist

αu, βu > 0 such that
û := αuu

+ + βuu
− ∈Mb,λ.

Furthermore, it is easy to see that 〈(Ib,λ)′(u), u±〉 6 0. By Lemma 3 we obtain 0 <
αu, βu < 1. Since un ∈Mb,λ, according to Lemma 4, we get

Ib,λ
(
αuu

+
n + βuu

−
n

)
6 Ib,λ

(
u+
n + u−n

)
= Ib,λ(un).
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Thanks to (f3), B1 = B2 = 0 and the norm in Hs(·)
0 (Ω) is lower semicontinuous, we

have

cb,λ 6 Ib,λ(û)− 1

4

〈
(Ib,λ)′(û), û

〉
6
a

4
‖û‖2 +

∫
Ω

(
1

4
− 1

q(x)

)
|û|q(x) dx+

λ

4

∫
Ω

[
f(x, û)ū− 4F (x, û)

]
dx

6
a

4
‖u‖2 +

∫
Ω

(
1

4
− 1

q(x)

)
|u|q(x) dx+

λ

4

∫
Ω

[
f(x, u)u− 4F (x, u)

]
dx

6 lim inf
n→∞

[
Ib,λ(un)− 1

4

〈
(Ib,λ)′(un), un

〉]
6 cb,λ.

Therefore, αu = βu = 1, and cb,λ is achieved by ub := u+ + u− ∈Mb,λ.

4 Proof of main results

In this section, we prove our main results. First, we prove Theorem 1. In fact, thanks to
Lemma 5, we just prove that the minimizer ub for cb,λ is indeed a sign-changing solution
of problem (1).

Proof of Theorem 1. Since ub ∈Mb,λ, we have〈
(Ib,λ)′(ub), u

+
b

〉
=
〈
(Ib,λ)′(ub), u

−
b

〉
= 0.

By Lemma 3 and Lemma 4, for (α, β) ∈ (R+ × R+) \ (1, 1), we have

Ib,λ
(
αu+

b + βu−b
)
< Ib,λ

(
u+
b + u−b

)
= cb,λ. (18)

If (Ib,λ)′(ub) 6= 0, then there exist δ > 0 and θ > 0 such that∥∥(Ib,λ)′(v)
∥∥ > θ for all ‖v − ub‖ > 3δ.

Choose τ ∈ (0,min{1/2, δ/(
√

2‖ub‖)}). Let

D := (1− τ, 1 + τ)× (1− τ, 1 + τ)

and
g(α, β) = αu+

b + βu−b for all (α, β) ∈ D.

In view of (18), it is easy to see that

c̄λ := max
∂Ω

Ib,λ ◦ g < cb,λ.

Let ε := min{(cb,λ − c̄λ)/2, θδ/8} and Sδ := B(ub, δ), by Lemma 2.3 in [23] there
exists a deformation η ∈ C([0, 1]×D,D) such that
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(a) η(1, v) = v if v /∈ (Ib,λ)−1([cb,λ − 2ε, cb,λ + 2ε] ∩ S2δ);
(b) η(1, (Ib,λ)cb,λ+ε ∩ Sδ) ⊂ (Ib,λ)cb,λ−ε;

(c) Ib,λ(η(1, v)) 6 Ib,λ(v) for all v ∈ Hs(·)
0 (Ω).

First, we need to prove that

max
(α,β)∈D̄

Ib,λ
(
η
(
1, g(α, β)

))
< cb,λ. (19)

In fact, it follows from Lemma 1 that Ib,λ(g(α, β)) 6 cb,λ < cb,λ + ε. That is,

g(α, β) ∈ (Ib,λ)cb,λ+ε.

On the other hand, we have∥∥g(α, β)− ub
∥∥2

=
∥∥(α− 1)u+

b + (β − 1)u−b
∥∥2

6 2
(
(α− 1)2

∥∥u+
b

∥∥2
+ (β − 1)2

∥∥u−b ∥∥2)
6 2τ‖ub‖2 < δ2,

which shows that g(α, β) ∈ Sδ for all (α, β) ∈ D̄.
Therefore, by (b) we have Ib,λ(η(1, g(s, t))) < cb,λ − ε. Hence, (19) holds.
In the following, we prove that η(1, g(D)) ∩ Mb,λ 6= ∅, which contradicts the

definition of cb,λ.
Let h(α, β) := η(1, g(α, β)),

Ψ0(α, β) :=
(〈

(Ib,λ)′
(
g(α, β)

)
, u+
b

〉
,
〈
(Ib,λ)′

(
g(α, β)

)
, u−b

〉)
=
(〈

(Ib,λ)′
(
αu+

b + βu−b
)
, u+
b

〉
,
〈
(Ib,λ)′

(
αu+

b + βu−b
)
, u−b

〉)
:=
(
ϕ1
u(α, β), ϕ2

u(α, β)
)
,

and

Ψ1(α, β) :=

(
1

α

〈
(Ib,λ)′

(
h(α, β)

)
,
(
h(α, β)

)+〉
,

1

β

〈
(Ib,λ)′

(
h(α, β)

)
,
(
h(α, β)

)−〉)
.

By the direct calculation we have

ϕ1
u(α, β)

∂α

∣∣∣∣
(1,1)

= a
∥∥u+

b

∥∥2
+ 3b

∥∥u+
b

∥∥4
+ b
∥∥u+

b

∥∥2∥∥u−b ∥∥2

−
∫
Ω

(
q(x)− 1

)∣∣u+
b

∣∣q(x)
dx− λ

∫
Ω

∂αf
(
x, u+

b

)(
u+
b

)2
dx,

ϕ1
u(α, β)

∂β

∣∣∣∣
(1,1)

= 2b
∥∥u+

b

∥∥2∥∥u−b ∥∥2
,

ϕ2
u(α, β)

∂α

∣∣∣∣
(1,1)

= 2b
∥∥u+

b

∥∥2∥∥u−b ∥∥2
,

ϕ2
u(α, β)

∂β

∣∣∣∣
(1,1)

= a
∥∥u−b ∥∥2

+ 3b
∥∥u−b ∥∥4

+ b
∥∥u+

b

∥∥2∥∥u−b ∥∥2

−
∫
Ω

(
q(x)− 1

)∣∣u−b ∣∣q(x)
dx− λ

∫
Ω

∂βf
(
x, u−b

)(
u−b
)2

dx.
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Let

M =

ϕ1
u(α,β)
∂α

∣∣
(1,1)

ϕ2
u(α,β)
∂α

∣∣
(1,1)

ϕ1
u(α,β)
∂β

∣∣
(1,1)

ϕ2
u(α,β)
∂β

∣∣
(1,1)

 .
By (f3), for t 6= 0, we have

∂tf(x, t)t2 − 3f(x, t)t > 0 for a.e. x ∈ Ω.

Then, since ub ∈Mb,λ, we have

detM =
ϕ1
u(α, β)

∂α

∣∣∣∣
(1,1)

· ϕ
2
u(α, β)

∂β

∣∣∣∣
(1,1)

− ϕ1
u(α, β)

∂β

∣∣∣∣
(1,1)

· ϕ
2
u(α, β)

∂α

∣∣∣∣
(1,1)

> 0.

Since Ψ0(α, β) is aC1 function and (1, 1) is the unique isolated zero point of Ψ0, by using
the degree theory we deduce that deg(Ψ0, D, 0) = 1.

Hence, combining (19) with (a), we obtain

g(α, β) = h(α, β) on ∂D.

Consequently, we obtain deg(Ψ1, D, 0) = 1. Therefore, Ψ1(α0, β0) = 0 for some
(α0, β0) ∈ D so that

η
(
1, g(α0, β0)

)
= h(α0, β0) ∈Mb,λ,

which contradicts (19).
From the above discussions we deduce that ub is a sign-changing solution for prob-

lem (1).
Finally, we prove that u has exactly two nodal domains. To this end, we assume by

contradiction that

ub = u1 + u2 + u3 with ui 6= 0, u1 > 0, u2 6 0

and
suppt(ui) ∩ suppt(uj) = ∅ for i 6= j, i, j = 1, 2, 3,

and 〈
(Ib,λ)′(u), ui

〉
= 0 for i = 1, 2, 3.

Setting v := u1 + u2, we see that v+ = u1 and v− = u2, i.e., v± 6= 0. Then there
exist a unique pair (αv, βv) of positive numbers such that αvu1 + βvu2 ∈Mb,λ. Hence,

Ib,λ(αvu1 + βvu2) > cλb .

Moreover, using the fact that 〈(Ib,λ)′(u), ui〉 = 0, we obtain 〈(Ib,λ)′(v), v±〉 < 0.
From Lemma 3(ii) we have that

(αv, βv) ∈ (0, 1]× (0, 1].

On the other hand, we have

0 =
1

4

〈
(Ib,λ)′(u), u3

〉
< Ib,λ(u3) +

b

4
‖u1‖2‖u3‖2 +

b

4
‖u2‖2‖u3‖2.
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Hence, by (12) we obtain

cb,λ 6 Ib,λ(αvu1 + βvu2)

= Ib,λ(αvu1 + βvu2)− 1

4

〈
(Ib,λ)′(αvu1 + βvu2), (αvu1 + βvu2)

〉
=
a

4

(
‖αvu1‖2 + ‖βvu2‖2

)
+
λ

4

∫
Ω

[
f(x, αvu1)(αvu1)− 4F (x, αvu1)

]
dx

+
λ

4

∫
Ω

[
f(x, βvu2)(βvu2)− 4F (x, βvu2)

]
dx

+

∫
Ω

(
1

4
− 1

q(x)

)
αq(x)
v |u1|q(x) dx+

∫
Ω

(
1

4
− 1

q(x)

)
βq(x)
v |u2|q(x) dx

6 Ib,λ(u1 + u2)− 1

4

〈
(Ib,λ)′(u1 + u2), (u1 + u2)

〉
= Ib,λ(u1 + u2) +

1

4

〈
(Ib,λ)′(u), u3

〉
+
b

4
‖u1‖2‖u3‖2 +

b

4
‖u2‖2‖u3‖2

< Ib,λ(u1) + Ib,λ(u2) + Ib,λ(u3) +
b

4

(
‖u2‖2 + ‖u3‖2

)
‖u1‖2

+
b

4

(
‖u1‖2 + ‖u3‖2

)
‖u2‖2 +

b

4

(
‖u1‖2 + ‖u2‖2

)
‖u3‖2

= Ib,λ(u) = cb,λ,

which is a contradiction, that is, u3 = 0 and ub has exactly two nodal domains.

By Theorem 1 we obtain a least energy sign-changing solution ub of problem (1).
Next, we prove that the energy of ub is strictly larger than two times the ground state
energy.

Proof of Theorem 2. Similar to the proof of Lemma 5, there exists λ∗1 > 0 such that for
all λ > λ∗1 and for each b > 0, there exists vb ∈ Nb,λ such that Ib,λ(vb) = c∗ > 0.
By standard arguments (see [10, Cor. 2.13]) the critical points of the functional Ib,λ on
Nb,λ are critical points of Ib,λ in Hs(·)

0 (Ω), and we obtain (Ib,λ)′(vb) = 0. That is, vb is
a ground state solution of (1).

According to Theorem 1, we know that problem (1) has a least energy sign-changing
solution ub, which changes sign only once when λ > λ∗.

Let λ∗∗ = max{λ∗, λ∗1}. Suppose that ub = u+
b + u−b . As in the proof of Lemma 3,

there exist αu+
b
> 0 and βu−b > 0 such that αu+

b
u+
b ∈ Nb,λ, βu−b u

−
b ∈ Nb,λ. Furthermore,

Lemma 3 implies that αu+
b
, βu−b

∈ (0, 1). Therefore, in view of Lemma 3, we have

2c∗ 6 Ib,λ
(
αu+

b
u+
b

)
+ Ib,λ

(
βu−b

u−b
)
6 Ib,λ

(
αu+

b
u+
b + βu−b

u−b
)

< Ib,λ
(
u+
b + u−b

)
= cb,λ.

Hence, it follows that c∗ > 0 cannot be achieved by a sign-changing function.
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