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Abstract. Exponential stabilization of fractional-order continuous-time dynamic systems via event-
triggered impulsive control (EIC) approach is investigated in this paper. Nonlinear and linear
fractional-order continuous-time dynamic systems are studied, respectively. The impulsive instants
are determined by some given event-triggering function and event-triggering condition, which
are dependent on the state of the systems. Sufficient conditions on exponential stabilization for
nonlinear and linear cases are presented, respectively. Moreover, the Zeno-behavior of impulsive
instants is excluded. Finally, the validity of theoretical results are also illustrated by some numerical
simulation examples including the synchronization control of fractional-order jerk chaotic system.

Keywords: event-triggered, impulsive control, fractional order, exponential stabilization,
synchronization.

1 Introduction

It is noteworthy that the properties of a number of practical engineering systems, such
as electromagnetic waves, chemical physics, and fluid flow, cannot be adequately rep-
resented by integer-order dynamic systems but can be well embodied via employing
fractional-order models. Due to their wide applications, fractional-order dynamic systems
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have attracted considerably attention from various fields, such as materials science [27],
physics [8], pharmacokinetics [23], mechanics [10], supercapacitors [4], and neural net-
works [1], just to name a few. Please refer to the monograph [19] for more applications
about fractional-order differential systems. Stability analysis [2] is one of the important
and interesting topics for fractional-order dynamic systems. Many valuable methods on
this issue have been reported, such as robust control [11], fractional-order controller
design [28], adaptive control [9], sliding mode control [26], impulsive control [25], and
so on.

Impulsive control only introduces transient control at certain discrete moments, which
can achieve the control target through minimum control amount [20]. Impulsive control
has gradually become a commonly used method in modern control because of its simple
structure, lower control cost, and less information transmission [30]. It also has been
widely used in coupled systems [6], neural network systems [37], chaotic secure commu-
nication [7] and system stabilization [33], etc. In recent years, with the rise of research on
fractional-order control systems, many useful results have been proposed, for examples,
impulsive synchronization of fractional-order complex networks [17], impulsive stabi-
lization of fractional-order neural networks [31], impulsive control of fractional-order
multi-agent systems [18], etc.

It should be noted that most of the results focused on fixed time-triggered impulsive
control, that is, the impulse interval is preset. From the perspective of actual effects,
impulsive control inputs at some moments are unnecessary, which will lead to the waste
of system bandwidth resources [36]. Thanks to the proposal of event-triggered control
theory, event-triggered mechanisms invoke data transmissions if predefined conditions
on the data are satisfied. As a result, network and energy resources are consumed only
when the data is necessary for control, which can achieve the control object with less
information exchange. Thus, the design of certain event-triggered strategies have received
increasing attention in recent years for integer-order dynamic systems [24, 34, 35, 37]
and many references therein. Combining the advantages of impulsive control and event-
triggered control, event-triggered impulsive control (EIC) was proposed in recent years,
where the impulsive instants are determined by some designed event-triggering functions
and event-triggering conditions. Many scholars have carried out a series of fruitful re-
searches in this field, such as applying the event-triggered impulse control method to
synchronization analysis of discrete time-delay complex dynamical networks [12], non-
linear delay systems [15], input-to-state stability for heterogeneous multi-agent systems
[13], discrete-time delayed systems and networks [16], Lyapunov stability problem for
impulsive systems [14], consensus of multi-agent systems [3], neural networks [22], and
so on. Compared with the event-triggered impulsive control for integer-order systems,
there are few works on event-triggered impulsive control for fractional-order systems.

Based on the above discussion and inspired by the research in [16,32], this paper will
study the exponential stabilization of general fractional-order continuous-time dynamic
systems including the nonlinear and linear case via event-triggered impulsive control ap-
proach. The main contributions are as follows: (i) The event-triggered impulsive control
method is applied to fraction-order continuous time dynamic systems. The impulsive
instants are defined by some events depending on the state of the systems. Thus, the
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impulsive instants are not given in advance, which is different with the time-triggered
impulsive control. (ii) The controller does not need to be updated continuously, and the
Zeno-behavior of impulsive instants is excluded. Some unnecessary impulsive samples
can be avoided by the control strategy and the online resources are saved. (iii) Based
on the stability theory and inequality technique, some sufficient conditions on exponen-
tial stabilization of nonlinear and linear fractional-order dynamic systems are presented,
respectively.

The rest of this paper is organized as follows. In Section 2, problem formulation
is introduced. In Section 3, exponential stabilization is studied for nonlinear and linear
fractional-order continuous-time dynamic systems via event-triggered impulsive control,
respectively. The Zeno-behavior of impulsive instants is also excluded. In Section 4,
simulation examples are presented to show the effectiveness of the theoretical results.
Conclusions and future study are made in Section 5.

2 Problem formulation

2.1 Caputo fractional derivative

The Caputo and Riemann–Liouville (RL) fractional-order derivatives are the two broadly
used to model the fractional-order dynamical systems. Since the initial conditions for
fractional-order differential equations with Caputo fractional-order derivative take the
same form as for the traditional integer-order differential equations, in this paper, we
will adopt the Caputo fractional-order derivative to model the continuous time dynamic
systems.

Definition 1. (See [21].) The Caputo fractional-order derivative of x(t) of order α ∈
(0, 1) is defined as follows:

CD
α
t0,tx(t) =

1

Γ(1− α)

t∫
t0

(t− τ)−αx′(τ) dτ ,

where Γ(τ) =
∫∞
0
tτ−1e−t dt is the Gamma function, and x′(τ) denotes the derivative of

x(τ).

For convenience, in the following, CDα
t0,tx(t) will be denoted as Dα

t0x(t) if no con-
fusion arisen, where t0 denotes the initial time.

Note that the differentiability of function is required in the definition of Caputo frac-
tional-order derivative, but a number of function may not be differentiable. The right
upper Dini α-order derivative of x(t) is introduced.

Definition 2. For α ∈ (0, 1), the upper right Dini fractional-order derivative is defined by

Dα+
t0 x(t) =

1

Γ(1− α)

t∫
t0

(t− τ)−αD+x(τ) dτ ,

whereD+x(t)=lim suph→0+(x(t+h)−x(t))/h is the right upper Dini derivative of x(t).
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Definition 3. (See [29].) For a Lebesgue-integrable function ϕ : [a, b]→ R, the fraction-
al-order integral of order α ∈ (0, 1) is defined as follows:

D−αa ϕ(t) =
1

Γ(α)

t∫
a

(t− τ)α−1ϕ(τ) dτ.

Lemma 1. (See [21].) If α > 0, β > 0, u(t), v(t) ∈ C1[a, b], then

(i) Dα
aD
−β
a u(t) = Dα−β

a u(t).
(ii) Dα

a (u(t)± v(t)) = Dα
au(t)±Dα

a v(t).
(iii) D−αa Dα

au(t) = u(t)− u(a).

It is obviously that Lemma 1 also holds for the upper right Dini fractional-order
derivative.

Mittag-Leffler function defined as follows is often used to study the dynamic behavior
of fractional-order dynamic systems [5]:

Eα,β(z) =

∞∑
j=0

zj

Γ(αj + β)
.

Especially, when β = 1, Mittag-Leffler function with one parameter is

Eα(z)=Eα,1(z) =

∞∑
j=0

zj

Γ(αj + 1)
.

Lemma 2. (See [21].) Assume that α > 0, β > 0 and q ∈ R. Then

t∫
t0

Eα,β
[
qνα

]
νβ−1 dν = (t− t0)βEα,β+1

[
q(t− t0)α

]
.

Lemma 3. (See [29].) Let 0 < α < 1. Then Eα[µ(t − t0)α] is nonnegative, and the
following statements are true:

(i) Eα[µ(t− t0)α] is monotonically nonincreasing and 0 6 Eα[µ(t− t0)α] 6 1 for
t > t0 when µ 6 0.

(ii) Eα[µ(t− t0)α] is monotonically nondecreasing and Eα[µ(t− t0)α] > 1 for
t > t0 when µ > 0.

Lemma 4. Let 0 < α < 1, µ ∈ R andDα+
t0 W (t) 6 µW (t)+ϑ(t), where ϑ(t) is a given

continuous function. Then

W (t) 6W (t0)Eα
(
µ(t− t0)α

)
+

t∫
t0

(t− τ)α−1Eα,α
(
µ(t− τ)α

)
ϑ(τ) dτ, t > t0.
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Especially, when ϑ(t) = 0, the following inequality holds:

W (t) 6W (t0)Eα
[
µ(t− t0)α

]
, t > t0.

Proof. Since Dα+
t0 W (t) 6 µW (t) + ϑ(t), there exists a nonnegative function H(t)

satisfying
Dα+
t0 W (t) = µW (t) + ϑ(t)−H(t),

and then

W (t) = W (t0) +
µ

Γ(α)

t∫
t0

(t− τ)α−1W (τ) dτ

+
1

Γ(α)

t∫
t0

(t− τ)α−1
[
ϑ(τ)−H(τ)

]
dτ, t > t0.

Let W (t) = p(t− t0), ϑ(t)−H(t) = q(t− t0). Then

p(t− t0) = p(0) +
1

Γ(α)

t−t0∫
0

(t− t0 − s)α−1
[
µp(s) + q(s)

]
ds.

Denote γ = t− t0, we have

p(γ) = p(0) + µD−α0 p(γ) +D−α0 q(γ), γ > 0.

Taking the Laplace transform on both sides, we can obtain that

P (s) =
p(0)

s
+
µP (s)

sα
+
Q(s)

sα
,

where P (s) and Q(s) are the Laplace transforms of p(γ) and q(γ), respectively. Then

P (s) =
sα−1

sα − µ
p(0) +

1

sα − µ
Q(s).

Thus, by the inverse Laplace transform we have

p(γ) = p(0)Eα
(
µγα

)
+ q(γ) ∗ γα−1Eα,α

(
µγα

)
.

It follows that

W (t) 6W (t0)Eα
(
µ(t− t0)α

)
+

t∫
t0

(t− τ)
α−1

Eα,α
(
µ(t− τ)α

)
ϑ(τ) dτ, t > t0.

The proof is completed.
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2.2 System model and problem statement

Consider the following fractional-order continuous-time dynamic control systems with
α ∈ (0, 1):

Dα
t0x(t) = f

(
x(t), u(t)

)
, t > t0, (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and control input, respectively, f :
Rn × Rm → Rn satisfies f(0, 0) = 0, and there is a positive constant l1 such that∥∥f(x1, y1)− f(x2, y2)

∥∥ 6 l1‖x1 − x2‖+ l1‖y1 − y2‖.

In order to use the benefit of impulsive control and reduce the frequency of the
controller update, the following event-triggered impulsive feedback controller (EIC) is
used:

u(t) = g
(
x(tk)

)
for t ∈ [tk, tk+1),

(2)
x(t) = h

(
x(t−)

)
for t = tk, k = 1, 2, . . . ,

where x(t−k ) denotes the left limit of function x(t) at tk, g : Rn → Rm, h : Rn → Rn
satisfy g(0) = 0, h(0) = 0, and Lipschitz conditions, i.e., there are positive constants
l2, l3 such that‖g(x)− g(y)‖ 6 l2‖x− y‖, ‖h(x)− h(y)‖ 6 l3‖x− y‖. The impulsive
instants tk are defined iteratively by

tk+1 = inf
{
t: t > tk and F (t) > 0

}
(3)

in which F (t) is called to be the triggering function defined as

F (t) =
∥∥e(t)∥∥− β∥∥x(tk)

∥∥, (4)

where β ∈ (0, 1), and e(t) = x(tk)− x(t) represents measurement error.

Definition 4. The fractional-order continuous-time dynamic system (1) with EIC (2) is
said to be event-triggered impulsive exponential stabilization (EIES) if there exit M > 0,
λ > 0 such that ∥∥x(t)

∥∥ 6M
∥∥x(t0)

∥∥e−λ(t−t0).

Definition 5. If there exists a constant θ > 0 such that infk∈N{tk+1 − tk} > θ > 0,
where N = {0, 1, . . . }, then the impulsive instants tk are called to no Zeno-behavior.

3 Exponential stabilization results

In this section, we first discuss that there is no Zeno-behavior for the impulsive instants
determined by (3). Then we prove that system (1) is exponential stabilization under the
EIC (2) with some given conditions. A corollary for linear case is also presented.

Theorem 1. There is no Zeno-behavior for the impulsive instants tk determined by (3).
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Proof. For t ∈ [tk, tk+1), calculating the right upper Dini α-order derivative of ‖e(t)‖,
we have

Dα+
tk

∥∥e(t)∥∥ 6
∥∥Dα

tk
e(t)

∥∥ =
∥∥Dα

tk
x(t)

∥∥
=
∥∥f(x(t), u(t)

)∥∥ =
∥∥f(x(t), u(t)

)
− f(0, 0)

∥∥
6 l1

∥∥x(t)
∥∥+ l1

∥∥u(t)
∥∥ = l1

∥∥x(t)
∥∥+ l1

∥∥g(x(tk)
)∥∥

6 l1
∥∥x(tk)− e(t)

∥∥+ l1l2
∥∥x(tk)

∥∥
6 l1

∥∥e(t)∥∥+ (l1 + l1l2)
∥∥x(tk)

∥∥.
By Lemma 4 one can get∥∥e(t)∥∥ 6 Eα

[
l1(t− tk)α

]∥∥e(tk)
∥∥

+

t∫
tk

(t− τ)
α−1

Eα,α
[
l1(t− τ)

α]
(l1 + l1l2)

∥∥x(tk)
∥∥dτ.

Then it follows from ‖e(tk)‖ = 0 that

∥∥e(t)∥∥ 6 (l1 + l1l2)
∥∥x(tk)

∥∥ t∫
tk

(t− τ)
α−1

Eα,α
[
l1(t− τ)

α]
dτ

= (l1 + l1l2)
∥∥x(tk)

∥∥(t− tk)αEα,α+1

[
l1(t− tk)α

]
.

The next event will not be triggered until F (tk+1)>0, i.e., ‖e(tk+1)‖−β‖x(tk)‖>0.
Thus,

β
∥∥x(tk)

∥∥ 6
∥∥e(tk+1)

∥∥
6 (l1 + l1l2)

∥∥x(tk)
∥∥(tk+1 − tk)αEα,α+1

[
l1(tk+1 − tk)α

]
. (5)

If ‖x(tk)‖ = 0 for some fixed tk, then one can get ‖x(t)‖ = 0 for any t > tk, which
implies the stability of system (1) is reached. Thus, without loss of generality, we assume
that ‖x(tk)‖ > 0. Then by (5) we have

(l1 + l1l2)(tk+1 − tk)αEα,α+1

[
l1(tk+1 − tk)α

]
> β.

Let T > supk∈N{tk+1 − tk}. Then

(tk+1 − tk)α >
β

(l1 + l1l2)Eα,α+1[l1Tα]
.

Therefore, there is a θ = exp{(1/α) ln(β/((l1 + l1l2)Eα,α+1[l1T
α]))} > 0 such that

tk+1 − tk > θ > 0, that is, there is no Zeno-behavior of impulsive instants.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Exponential stabilization of fractional-order CDS via EIC 599

Theorem 2. Assume that the impulsive instants tk, k = 1, 2, . . . , are determined by (3)
and supk∈N{tk+1 − tk} 6 T < ∞, infk∈N{tk+1 − tk} > θ > 0. Then system (1) with
EIC (2) is EIES if the following inequality is satisfied:

ln l3
T

+
lnEα[(l1 + l1l2 + βl1l2

1−β )Tα]

θ
< 0,

where 0 < l3 < 1, β ∈ (0, 1).

Proof. For t ∈ [tk, tk+1), calculating the right upper Dini α-order derivative along the
solution of (1), we have

Dα+
tk

∥∥x(t)
∥∥ 6

∥∥Dα
tk
x(t)

∥∥ =
∥∥f(x(t), u(t)

)∥∥
6 l1

∥∥x(t)
∥∥+ l1

∥∥u(t)
∥∥

6 l1
∥∥x(t)

∥∥+ l1
∥∥g(x(tk)

)∥∥
= l1

∥∥x(t)
∥∥+ l1

∥∥g(x(t) + e(t)
)∥∥

6 l1
∥∥x(t)

∥∥+ l1l2
∥∥x(t) + e(t)

∥∥
6 (l1 + l1l2)

∥∥x(t)
∥∥+ l1l2

∥∥e(t)∥∥. (6)

By the definition of impulsive instants tk and triggering function (4) one can derive that∥∥e(t)∥∥ 6 β
∥∥x(tk)

∥∥ = β
∥∥x(t) + e(t)

∥∥ 6 β
∥∥x(t)

∥∥+ β
∥∥e(t)∥∥,

and then ∥∥e(t)∥∥ < β

1− β
∥∥x(t)

∥∥. (7)

In term of (6) and (7), we have

Dα+
tk

∥∥x(t)
∥∥ 6

(
l1 + l1l2 +

βl1l2
1− β

)∥∥x(t)
∥∥.

It follows from Lemma 4 that∥∥x(t)
∥∥ 6

∥∥x(tk)
∥∥Eα[(l1 + l1l2 +

βl1l2
1− β

)
(t− tk)α

]
, (8)

and then ∥∥x(t−k+1)
∥∥ 6

∥∥x(tk)
∥∥Eα[(l1 + l1l2 +

βl1l2
1− β

)
(tk+1 − tk)α

]
.

Notice that∥∥x(tk)
∥∥ =

∥∥h(x(t−k )
)∥∥ 6 l3

∥∥x(t−k )
∥∥

6 l3
∥∥x(tk−1)

∥∥Eα[(l1 + l1l2 +
βl1l2
1− β

)
(tk − tk−1)α

]

Nonlinear Anal. Model. Control, 27(3):592–608, 2022

https://doi.org/10.15388/namc.2022.27.26638


600 N. Yu, W. Zhu

6 l23
∥∥x(t−k−1)

∥∥Eα[(l1 + l1l2 +
βl1l2
1− β

)
(tk − tk−1)α

]
6 l23

∥∥x(tk−2)
∥∥Eα[(l1 + l1l2 +

βl1l2
1− β

)
(tk−1 − tk−2)α

]
× Eα

[(
l1 + l1l2 +

βl1l2
1− β

)
(tk − tk−1)α

]
6 · · · 6 lk3

∥∥x(t0)
∥∥ k∏
i=1

Eα

[(
l1 + l1l2 +

βl1l2
1− β

)
(ti − ti−1)

α

]
.

Recalling (8), we have

∥∥x(t)
∥∥ 6 lk3

∥∥x(t0)
∥∥{ k∏

i=1

Eα

[(
l1 + l1l2 +

βl1l2
1− β

)
(ti − ti−1)

α

]}

× Eα
[(
l1 + l1l2 +

βl1l2
1− β

)
(t− tk)α

]
.

Since 0 < l3 < 1, T > supk∈N{tk+1 − tk}, and infk∈N{tk+1 − tk} > θ > 0. Then

∥∥x(t)
∥∥

6 lk3
∥∥x(t0)

∥∥{ k∏
i=1

Eα

[(
l1 + l1l2 +

βl1l2
1−β

)
Tα
]}

Eα

[(
l1 + l1l2 +

βl1l2
1−β

)
Tα
]

= lk3
∥∥x(t0)

∥∥{Eα[(l1 + l1l2 +
βl1l2
1−β

)
Tα
]}k

Eα

[(
l1 + l1l2 +

βl1l2
1−β

)
Tα
]

6 lk3
∥∥x(t0)

∥∥{Eα[(l1 + l1l2 +
βl1l2
1− β

)
Tα
]}k+1

6 l
(t−t0)/T−1
3

{
Eα

[(
l1 + l1l2 +

βl1l2
1−β

)
Tα
]}(t−t0)/θ

+ 2
∥∥x(t0)

∥∥
= l−13 exp

{
ln l3
T

(t− t0)

}{
Eα

[(
l1 + l1l2 +

βl1l2
1−β

)
Tα
]}2

× exp

{
lnEα[(l1 + l1l2 + βl1l2

1−β )Tα]

θ
(t− t0)

}
·
∥∥x(t0)

∥∥
=
{Eα[(l1 + l1l2 + βl1l2

1−β )Tα]}2

l3

× exp

{
ln l3
T

+
lnEα[(l1 + l1l2 + βl1l2

1−β )Tα]

θ
(t− t0)

}
·
∥∥x(t0)

∥∥.
https://www.journals.vu.lt/nonlinear-analysis
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Denote

M =
{Eα[(l1 + l1l2 + βl1l2

1−β )Tα]}2

l3
and

λ = −
(

ln l3
T

+
lnEα[(l1 + l1l2 + βl1l2

1−β )Tα]

θ

)
> 0,

we have ∥∥x(t)
∥∥ 6M

∥∥x(t0)
∥∥e−λ(t−t0), t > t0,

which implies that the fractional-order continuous-time dynamic system (1) is event-
triggered impulsive stabilization with the EIC (2).

According to Theorems 1 and 2, consider the following linear system:

Dα
t0x(t) = Ax(t) +Bu(t), t > t0, (9)

where x ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, and u(t) ∈ Rm, and the event-triggered
impulsive feedback controller is designed as follows:

u(t) = Kx(tk) for t ∈ [tk, tk+1),
(10)

x(t) = Ckx(t−) for t = tk, k = 1, 2, . . . .

where K ∈ Rm×n, Ck ∈ Rn×n are the control gain matrices determined later, impulsive
instants tk are also determined by (3). Then we have the following corollary.

Corollary 1. Assume that the impulsive instants tk , k = 1, 2, . . . , are determined by (3).
Then system (9) with EIC (10) is EIES if the following inequality is satisfied:

ln γ

T
+

lnEα[(‖A+BK‖+ β‖BK‖
1−β )Tα]

θ
< 0,

where supk∈N{tk+1 − tk} 6 T < ∞, infk∈N{tk+1 − tk} > θ > 0, γ = supk{‖Ck‖},
and 0 < γ < 1, 0 < β < 1. Furthermore, there is no Zeno-behavior for the impulsive
instants determined by (3).

4 Simulation examples

In this section, numerical examples for linear and nonlinear cases will be presented to
illustrate the theoretical results.

Example 1. Consider the following linear fractional-order continuous-time dynamic sys-
tem:

Dα
0 x(t) = Ax(t) +Bu(t), t > 0, (11)

where α = 0.9, x ∈ R3, A ∈ R3×3, B ∈ R3×3, and u ∈ R3.
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Figure 1. States response without impulse control.

Assume that

A =

−0.3 −0.12 −0.15
0.22 0.3 0.25
−1.2 −0.5 −1

 , B =

0.8 0 0
0 1.2 0
0 0 0.6

 ,
and

K =

 0.8750 0.1000 −0.1875
0.0167 1.0833 0.2083
−2.0000 −0.8333 1.6667

 .
If there is no impulsive control for system (11), that is, the controller (10) is replaced by
u(t) = Kx(t). Then we have

Dα
0 x(t) = (A+BK)x(t), t > 0. (12)

Let the initial condition for system (12) be x(0) = [−0.8, 1, 0.5]T. The state of sys-
tem (12) is depicted in Fig. 1, which shows system (11) with the continuous control
u(t) = Kx(t) is unstable.

Now, we apply the event-triggered impulsive control on system (11). Let

Ck =

−0.1 0 0
0 −0.2 0
0 0 −0.15

 k = 1, 2, . . . .

Assume β = 0.3, T = 0.07, by simple computation we can choose θ = 0.0155 and
γ = 0.2. Thus,

ln γ

T
+

lnEα[(‖A+BK‖+ β‖BK‖
1−β )Tα]

θ
= −0.7810 < 0.

Therefore, by Corollary 1, system (11) is EIES.
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Figure 2. States response with EIC. Figure 3. Impulsive instants.

The simulation results with the same initial condition x(0) = [−0.8, 1, 0.5]T as no
impulsive control is presented in Fig. 2, which shows the fractional-order system (11) is
stable with the event-triggered impulsive control (EIC).

The impulsive instants are depicted in Fig. 3, which implies the Zeno-behavior is
excluded.

Example 2. Synchronization of fractional-order jerk chaotic systems.
Consider the following fractional-order jerk chaotic systems as the master system:

Dαx(t) = Ax(t) + f
(
x(t)

)
, (13)

where α = 0.99, f(x) = [0, 0, |x1|+ 1]T, and

A =

0 1 0
0 0 1
0 −0.95 −0.6

 .
Construct the slave system as follows:

Dαy(t) = Ay(t) + f
(
y(t)

)
− u(t), (14)

where u(t) is the control input and will be designed later.
Denote δ(t) = (x1(t)− y1(t), x2(t)− y2(t), x3(t)− y3(t))T as the synchronization

error. Then by master system (13) and slave system (14) we have

Dαδ(t) = Aδ(t) + f
(
x(t)

)
− f

(
y(t)

)
+ u(t). (15)

In order to avoid continuous update of the controller, the following event-triggered im-
pulsive controller will be used:

u(t) = δ(tk) = x(tk)− y(tk) for t ∈ [tk, tk+1),

δ(t) = Cδ(t−) for t = tk,
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where the impulsive instants tk are defined by (3). x(tk) and e(t) in (4) are replaced by
δ(tk) and δ(tk)− δ(t), respectively. The control gain matrix C is given as follows:

C =

0.2 0 0
0 0.35 0
0 0 0.3

 .
Then one can choose that l1 = 2.5042, l2 = 1, l3 = 0.35. Let β = 0.2, T = 0.07. By
simple computation we have θ = 0.0354. Thus,

ln l3
T

+
lnEα[(l1 + l1l2 + βl1l2

1−β )Tα]

θ
= −3.4885 < 0.

Therefore, by Theorem 2 the zero solution of system (15) is exponential stability, which
implies that the exponential synchronization between the master system (13) and slave
system (14) can be achieved.

Let initial conditions be x0 = [1.3, −2, 1.5]T and y0 = [−0.8, 0, 0.4]T. The sim-
ulation results are depicted in Figs. 4–6, which show that not only the synchronization
between the master and slave system with the event-triggered impulsive controller can be
achieved, but also the Zeno-behavior of the impulsive instants is excluded.
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Figure 4. States of master and slave systems.
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Figure 5. Chaotic phenomenon of master system and slave system.
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Figure 6. ‖e(t)‖ and β‖δ(tk)‖.

5 Conclusions

Combining the advantages of impulsive control and event-triggered control, event-trig-
gered impulsive stabilization of fractional-order continuous-time dynamic system is
discussed. The impulsive instants depend on the states of the system and are not given
in advance. Based on the stability theory and inequality technique, some sufficient con-
ditions on exponential stabilization of nonlinear and linear fractional-order dynamic sys-
tems are presented, respectively. It proves that there is no Zeno-behavior for the impulsive
instants determined by some designed events. As an application of the obtained theoretical
results, the synchronization of fractional-order jerk chaotic systems is also presented
in the simulation example. More general fractional-order dynamic systems and event-
triggered impulsive control problem of multi-agent systems will be considered in future
study.
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