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Abstract. This article aims to inspect the pulsating hydromagnetic slip flow of Casson fluid in
a vertical porous channel with heat and mass transfer. The fluid is injected into the channel from
the left wall and removed at the opposite wall with the same velocity. The impact of non-Darcy,
Soret, and Dufour effects are taken under consideration. The governing partial differential equations
(PDEs) are converted to ordinary differential equations (ODEs) using perturbation method and
solved by utilizing 4th-order Runge–Kutta (R–K) technique together with shooting method. The
impact of dissimilar parameters on flow, heat and mass transfer characteristics are displayed and
discussed.

Keywords: Casson fluid, slip parameter, pulsatile flow, convective boundary, Dufour and Soret
effects.

1 Introduction

Studies pertaining to the MHD flows of non-Newtonian fluids in a porous medium are
important because of its applications in irrigation problems, process of petroleum, heat-
storage beds, paper, textile, and polymer composite industries. The most famous among
these fluids is Casson fluid. Casson fluid model was introduced by Casson [4] for predic-
tion of the flow behaviour of pigment-oil suspensions in lithographic varnishes. We can
characterize Casson fluid as a shear thinning liquid which is considered to have an infinite
viscosity at zero rate of shear, a yield stress below which no flow occurs, and a zero viscos-
ity at an infinite rate of shear. The examples of Casson fluid are concentrated fruit juices,
honey, tomato sauce, jelly, and human blood [8, 10, 14, 17]. Chamkha [7] investigated
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the hydromagnetic fully developed laminar mixed convection flow in a vertical channel
with symmetric and asymmetric wall heating conditions in the presence or absence of
heat generation or absorption effects. Loganathan and Deepa [21] researched the EMHD
flow of the Casson fluid on a permeable Riga-plate. Pantokratoras [25] investigated the
natural convection of non-Newtonian power-law fluids over a vertical plate. Walawender
et al. [33] employed Casson model for portraying blood flow curves.

Pulsatile flow in a porous pipe or a channel is an important study due to its application
in both engineering systems (microelectromechanical systems or MEMS, pulse combus-
tors, IC engines, and reciprocating pumps) and natural systems (vascular diseases, respi-
ratory systems, circulatory systems). Especially, the pulsatile flow in a porous channel is
significant in the dialysis of blood in artificial kidneys [1, 3, 16, 19, 26]. Chamkha [6] ex-
amined the problem of flow and heat transfer of two electrically conducting and heat gen-
erating or absorbing immiscible fluids in a vertical infinitely long channel in the presence
or absence of a porous medium and applied magnetic field. Kumar et al. [20] analyzed
the problem of fully-developed convective flow of a micropolar and viscous fluid between
parallel plate vertical channels with asymmetric wall temperature distribution. Celli and
Kuznetsov [5] investigated the pulsatile viscous flow inside a horizontal infinitely wide
channel. Haddad et al. [12] examined the pulsating laminar and incompressible fully
developed pipe flows. Srinivas et al. [30] studied the pulsatile flow of hydromagnetic
Casson fluid in a porous channel. Wang [34] illustrated the pulsating flow in a porous
channel.

The fluids displaying boundary slip are significant in technological applications like
inertial cavities and polishing of artificial heart valves [22,27,35]. The study of convective
boundary condition is of extraordinary significance due to its application in engineering
and industrial processes like material drying and transpiration cooling process [9, 31].
Malathy et al. [23] have elucidated the influences of slip and thermal radiation on MHD
pulsatile flow of an Oldroyd-B fluid in a porous space with convective boundary condition.
Sayed et al. [28] studied the peristaltic transport of nanofluid in an inclined asymmetric
channel in the presence of slip and convective boundary conditions.

The energy flux caused by a concentration gradient was found in 1873 by Dufour and
was correspondingly named the Dufour effect. It is additionally known as the diffusion-
thermo effect. Then again, mass flux is able to be made by a temperature gradient as
was recognized by Soret. This is the thermal-diffusion effect. Dufour and Soret effects
assume a significant role when large density contrasts exist in the flow regime. Radiation,
Dufour, and Soret effects on MHD flows emerge in applied physics and numerous areas of
engineering like catalytic reactors, heat insulation, geothermal systems, MHD generators,
and drying technology [13,24,29]. Dzulkifli et al. [11] numerically discussed the Dufour
and Soret parameters on the boundary layer flow in nanofluid through shrinking/stretching
sheet. Khan et al. [15] discussed the cross diffusion effects on Carreau–Yasuda fluid flow
over a porous stretchable surface. Umavathi and Chamkha [32] examined the stability
analysis of cross diffusion when a nanofluid saturated with porous space was filled in
a horizontal channel. Recently, Kumar and Srinivas [18] performed the simulation for
pulsation flow of hydromagnetic Casson fluid in a vertical channel with Dufour and Soret
effects.
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The literature reveals that no study related to hydromagnetic pulsatile Casson fluid in
a vertical permeable channel has been explored so far. Inspired by the past investigations
[1,23,26,34] and keeping in the perspective on wide applications, we made an endeavour
to portray the cross diffusion impacts on pulsating hydromagnetic slip flow of Casson fluid
in a vertical porous channel with convective boundary. The coupled PDEs are converted
to ODEs using perturbation method and solved by utilizing 4th-order R–K technique
together with shooting method.

2 Formulation of the model

Consider the laminar and incompressible pulsating flow of Casson fluid between two
vertical parallel walls at a distance h. The strength B0 of a uniform magnetic field is
applied opposite to the flow direction. We assume that the plates are very wide and very
long, so that the flow is essentially axial. So that only x̂-component of û of the velocity
does not vanish. The condition of fully developed flow implies that ∂û/∂x̂ = 0. Since the
velocity is solenoidal, we obtain ∂v̂/∂ŷ = 0. As a consequence, the velocity component
v̂ is constant in any channel section and is equal to zero at the channel walls, so v̂ must
be vanishing at any position. The ŷ-momentum balance equation can be expressed as
∂p̂/∂ŷ = 0 (see [2, 12, 19]). The slip parameter, Joule heating, convective boundary,
Dufour and Soret effects are considered. A Cartesian coordinate system is taken so that
the x̂-axis is taken along the flow direction (vertical), and ŷ-axis is orthogonal to the walls
(see Fig. 1). The channel walls possess the characteristics of convective-type boundary
condition. The left and right walls maintain temperatures are T0, T1 (> T0), and con-
centrations are C0, C1 (> C0), respectively. The convective boundary conditions at the
left wall and the right wall are −κ∂T̂ /∂ŷ = hf (T̂ − T0) and −κ∂T̂ /∂ŷ = hf (T̂ − T1),
respectively. The fluid is injected into the channel from the left wall with a velocity v0 and
removed at the opposite wall with the same velocity. The stress and strain relationship is
designed as (Kumar et al. [19], Loganathan and Deepa [21]):

τab =

{
(µB + Pŷ/

√
2πc)2eab, πc > π,

(µB + Pŷ/
√
2π)2eab, πc < π.

Figure 1. Schematic diagram of vertical porous channel.
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The (a, b)th component of the deformation rate and shear stress tensor are eab and τab,
respectively. Pŷ is yield stress, π ( = e2ab) is the product of shear rate components, πc is
the critical value of π, µB is the plastic dynamic viscisity. The governing equations are
(Adesanya et al. [1], Radhakrishnamacharya and Maiti [26])

∂û

∂t̂
+ v0

∂û

∂ŷ
= −1

ρ

∂p̂

∂x̂
+ ν

(
1 +

1

β

)
∂2û

∂ŷ2
+ gβT̂ (T̂ − T0) + gβĈ(Ĉ − C0)

− σB2
0

ρ
û− µΦ

ρk
û− Cb√

k
û2, (1)

∂T̂

∂t̂
+ v0

∂T̂

∂ŷ
=

κ

ρCp

∂2T̂

∂ŷ2
+

µ

ρCp

(
1 +

1

β

)(
∂û

∂ŷ

)2

− 1

ρCp

∂qr
∂ŷ

+
σB2

0

ρCp
û2

+
Q0

ρCp
(T̂ − T0) +

DkT
CsCp

∂2Ĉ

∂ŷ2
, (2)

∂Ĉ

∂t̂
+ v0

∂Ĉ

∂ŷ
= D

∂2Ĉ

∂ŷ2
+
DkT
Tm

∂2T̂

∂ŷ2
− k1Ĉ, (3)

where κ is the thermal conductivity, µ is the dynamic viscosity, σ is the electrical conduc-
tivity, ω is the frequency, ν is the kinematic viscosity, ρ is the density of the fluid, T̂ , Ĉ are
the temperature and concentration of the fluid, p̂ is pressure, Φ and k are the porosity and
permeability of porous medium, βĈ is the coefficient of concentration expansion,D is the
coefficient of mass diffusivity, k1 is the 1st-order chemical reaction rate, t̂ is time, βT̂ is
the coefficient of thermal expansion, g is the acceleration due to gravity, β = µB

√
2πc/Pŷ

is the Casson fluid parameter, Tm is the mean temperature of the fluid, kT is the thermal
diffusion ratio,Cs is the concentration susceptibility, qr is the radiative heat flux,Q0 is the
coefficient of heat source/sink, Cb is the form of drag coefficient, Cp is the specific heat at
constant pressure. Thermal radiation is simulated utilizing the Rosseland approximation
(Makinde et al. [22]), and as per this, qr is specified by

qr = −
(
4σ̂

3χ

)
∂T̂ 4

∂ŷ
,

where χ and σ̂ are the Rosseland mean absorption coefficient and Stefan–Boltzmann
constant. Assuming an adequately small temperature difference in the flow and expanding
T̂ 4 by Taylor’s series about T0, we get T̂ 4 ∼= 4T 3

0 T̂ − 3T 4
0 (higher-order terms are

neglected). In view of qr and T̂ 4, Eq. (2) becomes

∂T̂

∂t̂
+ v0

∂T̂

∂ŷ
=

κ

ρCp

∂2T̂

∂ŷ2
+

µ

ρCp

(
1 +

1

β

)(
∂û

∂ŷ

)2

+
1

ρCp

16σ̂T 3
0

3χ

∂2T̂

∂ŷ2

+
σB2

0

ρCp
û2 +

Q0

ρCp
(T̂ − T0) +

DkT
CsCp

∂2Ĉ

∂ŷ2
. (4)
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The boundary conditions are (Malathy et al. [23], Xinhui et al. [35])

û =

√
k

α

(
1 +

1

β

)(
∂û

∂ŷ

)
, −κ∂T̂

∂ŷ
= hf (T̂ − T0), Ĉ = C0 at ŷ = 0,

û = −
√
k

α

(
1 +

1

β

)(
∂û

∂ŷ

)
, −κ∂T̂

∂ŷ
= hf (T̂ − T1), Ĉ = C1 at ŷ = h,

where α and hf are slip coefficient at the surface of the porous walls and heat coefficient,
respectively.

The following dimensionless quantities are invoked:

x =
x̂

h
, y =

ŷ

h
, u =

û

U
, p =

hp̂

µU
,

θ =
T̂ − T0
T1 − T0

, φ =
Ĉ − C0

C1 − C0
, t = ωt̂.

(5)

Using Eq. (5), Eqs. (1), (4), and (3) transformed to

H2 ∂u

∂t
+R

∂u

∂y
= −∂p

∂x
+

(
1 +

1

β

)(
∂2u

∂y2

)
+

Gr

Re
θ +

Gc

Re
φ

−
(
M2 +

1

Da

)
u− FsReu2, (6)

H2 ∂θ

∂t
+R

∂θ

∂y
=

1

Pr

(
1 +

4

3
Rd

)
∂2θ

∂y2
+

(
1 +

1

β

)
Ec

(
∂u

∂y

)2

+M2Ecu2 +Qθ +Du
∂2φ

∂y2
, (7)

H2 ∂φ

∂t
+R

∂φ

∂y
=

1

Sc

∂2φ

∂y2
+ Sr

∂2θ

∂y2
− γφ−K1, (8)

where U is the characteristic velocity, θ, φ are dimensionless temperature and concen-
tration, H = h

√
ω/
√
ν is frequency parameter, Gr = gβT̂ (T1 − T0)h3/ν2 is Grashof

number, Gc = gβĈ(C1 − C0)h
3/ν2 is solutal Grashof number, Rd = 4σ̂T 3

0 /(κχ) is
the radiation parameter, Re = Uh/ν is Reynolds number, Pr = µCp/κ is the Prandtl
number, M = B0h

√
σ/
√
µ is the Hartmann number, Fs = Cbh/

√
k is the Forchheimer

number, Da = k/(Φh2) is the Darcy number of the porous media, Ec=U2/[Cp(T1−T0)]
is the Eckert number, Q = Q0h

2/[(ρCp)ν] is heat source/sink parameter, R = v0h/ν
is cross flow Reynolds number, Sr = DkT (T1 − T0)/[Tmν(C1 − C0)] is the Soret
number, γ = k1h

2/ν is the chemical reaction parameter, Sc = ν/D is the Schmidt
number, Du = DkT (C1 − C0)/[CsCpν(T1 − T0)] is the Dufour number, and K1 =
k1C0h

2/[ν(C1 − C0)].
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The corresponding boundary conditions are

u = L

(
1 +

1

β

)(
∂u

∂y

)
,

∂θ

∂y
= −Biθ, φ = 0 at y = 0,

u = −L
(
1 +

1

β

)(
∂u

∂y

)
,

∂θ

∂y
= −Bi(θ − 1), φ = 1 at y = 1,

where Bi = hfh/κ is the heat transfer Biot number, and L =
√
k/(αh) is the slip

parameter.

3 Solution of the problem

To acquire the solution of Eqs. (6)–(8), a perturbative solution has been assumed in the
following form:

−∂p
∂x

= A0 + εA1e
it, θ(y, t) = θ0(y) + εθ1(y)e

it,
(9)

u(y, t) = u0(y) + εu1(y)e
it, φ(y, t) = φ0(y) + εφ1(y)e

it

and neglecting higher orders. Here ε is the suitably chosen positive quantity, φ1(y) is
unsteady concentration profile, θ1(y) is unsteady temperature profile, u1(y) is unsteady
velocity profile, φ0(y) is steady concentration profile, θ0(y) is steady temperature profile,
u0(y) is steady velocity profile, u is nondimensional velocity, and A0, A1 are positive
constants.

Substituting Eq. (9) into Eqs. (6)–(8) and comparing the coefficients of various powers
of ε, we obtain(

1 +
1

β

)
u′′0 −Ru′0 −

(
M2 +

1

Da

)
u0

= −A0 −
Gr

Re
θ0 −

Gc

Re
φ0 + FsReu20, (10)(

1 +
1

β

)
u′′1 −Ru′1 −

(
M2 +

1

Da
+ iH2

)
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= −A1 −
Gr

Re
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Gc

Re
φ1 + 2FsReu0u1, (11)(

1 +
4

3
Rd

)
θ′′0 −RPr θ′0 +QPr θ0

= −
(
1 +

1

β

)
EcPr u′20 −M2EcPr u20 −DuPr φ′′0 , (12)(

1 +
4

3
Rd

)
θ′′1 −RPr θ′1 +

(
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)
θ1

= −2
(
1 +

1

β

)
EcPr u′0u

′
1 − 2M2EcPr u0u1 −DuPr φ′′1 , (13)
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φ′′0 −RScφ′0 − γScφ0 = −ScSr θ′′0 +K1Sc, (14)

φ′′1 −RScφ′1 −
(
iH2Sc + γSc

)
φ1 = −ScSr θ′′1 . (15)

The corresponding boundary conditions are

u0(0) = L

(
1 +

1

β

)
u′0(0), u0(1) = −L

(
1 +

1

β

)
u′0(1),

u1(0) = L

(
1 +

1

β

)
u′1(0), u1(1) = −L

(
1 +

1

β

)
u′1(1);

θ′0(0) = −Bi

[
θ0(0)− 1

]
, θ′0(1) = −Biθ0(1), (16)

θ′1(0) = −Biθ1(0), θ′1(1) = −Biθ1(1);

φ0(0) = 0, φ0(1) = 1, φ1(0) = 0, φ1(1) = 0.

Further, the dimensionless Nusselt and Sherwood numbers at the walls are given by

Nu = −∂θ
∂y

∣∣∣∣
y=0,1

and Sh = −∂φ
∂y

∣∣∣∣
y=0,1

.

It is noted that the system of ODEs (10)–(15) along with associated boundary condi-
tions (16) is nonlinear and coupled. We have employed the 4th-order Runge–Kutta tech-
nique together with shooting method for finding the numerical solution. Throughout the
calculations, the employed parametric values Du = 0.03, A0 = 1, Sr = 2, β = 2,
Bi = 1, A1 = 1, γ = 1, Gr = 7, Rd = 2, Q = −1, Da = 0.5, L = 0.06, R = 1,
t = π/4, H = 2, Sc = 0.65, ε = 0.01, Gc = 7, Re = 3, Pr = 21, Ec = 0.5,
K1 = 0.001, M = 2, Fs = 0.5, unless otherwise stated.

4 Results and discussion

The influences of various physical parameters on velocity, temperature, concentration
profiles are elucidated graphically in Figs. 2–5. Figures 2(a)–2(f) describe the impact of
the slip parameter (L), Darcy number of the porous media (Da), Casson fluid parameter
(β), Hartmann number (M ), Forchheimer number (Fs), and Grashof number (Gr ) on
the velocity profile. Figure 2(a) reveals that an increase in L results in rise of velocity
profile. Figure 2(b) elucidates that the velocity increases with an enhancing Darcy number.
Figures 2(c) and 2(f) depict that there is an enhancement in velocity with an enhancing
Casson fluid parameter and Grashof number. Figure 2(d) depicts that for a rise inM , there
is a decrease in velocity. This can be because of Lorentz forces created by the applied
magnetic field act as resistive drag forces opposite to the flow direction. Hence there is
a decrease in velocity. Figure 2(e) delineates that a rise in Forchheimer number creates
a resistance in fluid flow which results an abatement in velocity.

The variation of temperature distribution (θ) for various values ofBi, Rd , Du , and Sr
are shown in Figs. 3(a)–3(d). Figure 3(a) illustrates the influence ofBi on θ. It is observed
that for a given rise Biot number, there is a decrease in the temperature. A superior value
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(a) Influence of L (b) Influence of Da

(c) Influence of β (d) Influence of M

(e) Influence of Fs (f) Influence of Gr

Figure 2. Velocity distributions.

of Bi includes a higher degree of convective cooling at the channel walls, subsequently
inflicting lower temperature at the channel walls and additionally within the bulk fluid.
It is predictable that as Bi → ∞, the convective boundary conditions will turn into the
prescribed wall temperatures. Figure 3(b) depicts the effect of thermal radiation parameter
on θ. It is observed that θ increases with an enhancement of Rd . This phenomenon can
be ascribed to the physical fact that the thermal boundary layer thickness rises with an
enhancing Rd . The variation of temperature with respect to the Dufour number is shown
in Fig. 3(c). It is seen that there is an enhancement in temperature with an enhancing
of Du . Actually, Du is associated in energy flux caused by a concentration gradient.
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(a) Influence of Bi (b) Influence of Rd

(c) Influence of Du (d) Influence of Sr

Figure 3. Temperature distributions.

Subsequently, bigger concentration gradient cause to rise the temperature. Figure 3(d)
reveals that an increase in Sr results in decrease of temperature distribution.

Figure 4 illustrates the influences of Sc, Sr , and γ on concentration distribution.
Figure 4(a) exhibits that the concentration profile decreases for given rise in Schmidt
number. This is observed due to a rise in Sc that it turn makes the concentration boundary
layer thinner than momentum boundary layer. Figure 4(b) depicts the influence of Soret
number on φ. One can infer that φ is enhanced with increasing Sr . Figure 4(c) depicts γ
effect on concentration. It is seen that the concentration falls with a rise in the destructive
chemical reaction (γ > 0). The contrary pattern can be noticed for the case of generative
chemical reaction (γ < 0). The effect of Du and Sr on the temperature and concentration
distributions is shown in Figs. 5(a)–5(b). Figure 5(a) elucidates that a rise in Du with
a decrease in Sr rises the thermal boundary layer growth. It is noticed from Fig. 5(b)
that a decrease in Sr with a rise in Du has the tendency to decrease the concentration
distribution. Physically, Soret effect reports that mass flux is made once a system is
underneath a temperature gradient. Further, a rise in Du improves the convention velocity
over combined influences of thermal and solutal buoyancy forces that leads to enhance the
heat transfer but fall the mass transfer of the fluid.

The present numerical values corresponding to the Nusselt number compared with
the previously published numerical results of Kumar et al. [19] are shown in Table 1. This
comparison shows that the present results in limiting case are in good agrement with the
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(a) Influence of Sc (b) Influence of Sr

(c) Influence of γ.

Figure 4. Concentration distributions.

(a) Temperature (b) Concentration

Figure 5. Effect of Du and Sr on the temperature and concentration distributions.

published results. Table 2 compares the findings obtained by an analytical method (double
perturbation) with the results obtained by a numerical method (4th-order R–K method
together with shooting technique) to verify the validity of the current model. Table 3
shows the variations in Nu and Sh for different values of Fs , β, Bi, Du , Sr , and Sc. The
Nusselt and Sherwood numbers at the left and right walls are denoted by Nu0, Nu1, and
Sh0, Sh1, respectively. It is noticed that Nu falls with a rise in Forchheimer number at
the left wall, while it rises at the right wall. The Nusselt number rises at both walls by
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Table 1. Comparison of results of Nusselt number for several values of Casson fluid
parameter in the absence of Brownian motion parameter, thermophoresis parameter,
Lewis number, Dufour number, cross flow Reynolds number, Forchheimer number, slip
parameter, and the heat transfer Biot number.

β Kumar et al. [19] Present
Nu0 Nu1 Nu0 Nu1

2 6.00734 −5.80169 6.00734 −5.80169
3 5.37199 −5.13925 5.37199 −5.13925

Table 2. Comparison of the analytical results with the numerical results by taking R =
Fs = Du = Bi = Ec = 0.

S. No. y Analytical method Numerical method
u(y) θ(y) φ(y) u(y) θ(y) φ(y)

1 0.1 0.2096 0.0648 0.1112 0.2095 0.0648 0.1112
2 0.3 0.4045 0.2019 0.3317 0.4045 0.2019 0.3317
3 0.5 0.5366 0.3624 0.5456 0.5367 0.3624 0.5456
4 0.7 0.5562 0.5647 0.7465 0.5561 0.5647 0.7465
5 0.9 0.3901 0.8324 0.9243 0.3901 0.8324 0.9243

Table 3. Effect of Fs , β, Bi, Du , Sr , Sc on Nusselt and Sherwood number distributions
when A0 = 1, A1 = 1, γ = 1, Gr = 7, Rd = 2, Q = −1, Da = 0.5, L = 0.06,
R = 1, t = π/4, H = 2, ε = 0.01, Gc = 7, Re = 3, Pr = 21, Ec = 0.5,
K1 = 0.001, M = 2.

Parameter Values Nu0 Nu1 Sh0 Sh1

Fs 0 0.75329 −0.83727 0.43837 3.42651
2 0.69289 −0.82247 0.41899 3.30946
4 0.64031 −0.81183 0.40492 3.21333
6 0.59371 −0.80410 0.39459 3.13252

β 1 0.65735 −0.75266 0.33749 3.08491
2 0.73733 −0.83309 0.43291 3.39487
3 0.77105 −0.88217 0.49110 3.56435
4 0.79022 −0.91441 0.52927 3.67176

Bi 1 −1.29919 −1.24512 0.87477 1.78748
2 −0.89213 −1.37839 0.78766 2.36379
3 −0.79586 −1.63896 0.73488 2.75861
4 −0.75594 −1.87780 0.69815 3.07305

Du 0.2 2.01968 0.35629 −1.05216 1.98978
0.3 1.13861 0.00978 −0.61865 1.74097
0.4 −0.47402 −0.45283 0.14213 0.63832
0.6 −1.94072 −1.16345 0.77237 0.74398

Sr 0 −1.41501 −1.28365 0.63868 1.56538
1 −1.36021 −1.26557 0.77031 1.66325
2 −1.29919 −1.24512 0.87477 1.78748
3 −1.23228 −1.22238 0.94845 1.94132

Sc 0.22 −1.36315 −1.26158 0.91487 1.22006
0.60 −1.36069 −1.26512 0.78584 1.61082
0.96 −1.35638 −1.26838 0.68012 1.99382
2.00 −1.33341 −1.27630 0.42877 3.17415
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rising Sr , whereas it falls at both walls by rising Du . One can observe that at the left wall,
Nu enhances with a rise in the β, Bi, and Sc, while it falls at the right wall. One can infer
that at both walls, Sh rises by rising β and Sr , while it falls at both walls by increasing
Fs . It can be noticed that Sh decreases with an increase in Bi and Sc at the left wall,
whereas it rises at the right wall. The reverse trend can be seen for the case of Dufour
number.

5 Conclusions

An analysis is made on pulsating MHD slip flow of Casson fluid in a vertical non-
Darcian porous space with convective boundary condition. The considered investigation
is significant as flow of Casson fluids (drilling muds, greases, clay coating, certain oils,
numerous impulsions, and blood) in porous channel are utilized in modelling biological
and science research. The analytical and numerical solutions are constructed for flow
variables. The salient points of this investigation are as follows:

• The velocity increases with an increasing slip and Casson fluid parameter, while it
falls with an enhancing Forchheimer number.

• It is noticed that the temperature rises with an enhancing Dufour number and radi-
ation parameter, while it falls with an enhancing Soret number.

• Temperature enhances for a given rise in Dufour number with a decrease in Soret
number.

• Concentration falls by enhancing Schmidt number and rises by rising the Soret
number.

• Nusselt number escalates with the increase in Casson fluid parameter and heat
transfer Biot number at the left wall, while it is a decreasing function at right wall.

• Sherwood number rises at the both walls for a given increase in Casson fluid pa-
rameter and Soret number.
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