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Abstract. This article involves a kind of shunting inhibitory cellular neural networks incorporating
D operator and mixed delays. First of all, we demonstrate that, under appropriate external input
conditions, some positive solutions of the addressed system exist globally. Secondly, with the
help of the differential inequality techniques and exploiting Lyapunov functional approach, some
criteria are established to evidence the globally exponential stability on the positive almost periodic
solutions. Eventually, a numerical case is provided to test and verify the correctness and reliability
of the proposed findings.
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1 Introduction

In the early 1990s, Bouzerdout and Pinter first established the shunt inhibitory cellular
neural networks (SICNNs) system [2], which has attracted extensive attention because
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the lateral inhibition of shunting not only can greatly enhance the edge and contrast,
but also be of significant influence in vision. With the increasing improvement of neu-
ral networks, the above systems and their variants are widespread used in the fields of
pronunciation, robotics, associative memories, psychophysics and optimization [1]. It
has been discovered that time delay is inevitable and it may be one of the important
reasons leading to the instability and terrible efficiency of the system [7, 10, 17, 28].
Hence, numerous scholars focus on the dynamic researches of cellular neural networks
and biomathematical models accompanying bounded time-varying delays, and many in-
teresting findings have been published in [8, 9, 11, 18]. In addition, in the large-scale
networks models, since the occurrence of many parallel ways containing a various of
axon lengths and sizes, it is meaningful to reveal the dynamical characteristics of neural
networks incorporating continuously distributed delays [3,30]. Because neural cells have
complex dynamic characteristics in the real world, in order to further simulate the dy-
namics of this complex neural reactions, the neural networks system should contain some
messages on derivatives of past states [13, 14], which inspired people to study the neutral-
type systems. Generally speaking, neutral-type neural network systems can be expressed
as non-D operator and D operator, and the cellular neural networks accompanying D
operator are more practical than those ones touching non-D operator [23, 24]. Usually,
letij € J ={11,12,...,1n,...,ml,m2,...,mn}, and mn be the units amount, the
neutral-type SICNNs incorporating D operators, continuously distributed delays and time-
varying delays are often modelled as the neutral-type functional differential equations

(i (t) — pij (£)i; (t — i5(2))]

= —a;(Ozi(t) = > BE@Of (it — (1)) (2)

CklENr(iJ)

— Okl / mkl (t— u)) duxij(t) + Iij(t). (1)

CszN

Here C;; labels the cell at lattice (¢, j), Ny-(i,7) = {Cr: max(|k —i[, [l —j]) <7, 1<
k< m, 1< 1< n}isdesignated as the r neighborhood. N, (3, §) is identically declared.
x,;;(t) designates the ijth neuron state, a;; is the decay rate, p;;, ij’ and C’fjl denote the
jointing or coupling intensity of postsynaptic action of the cell C; conveyed to the cell
Cij.rij(t), T (t) and K;;(u) are transfer delay functions. f and g stand for the activation
functions substituting the firing rate or output of the cell Cy;, I;;(t) is correlating to the
external input, and one can consult [16, 26] for more detailed biological explanations.
Furthermore, the initial value conditions of SICNNs (1) are denoted as

:EZJ(S) = QOij(S), s € (—O0,0], Zj € Jv ()

where @;; () € C((—o0,0],R) is bounded.

During recent decades, great efforts have been put into the periodicity and almost
periodicity of the population and ecology models [25,29]. More precisely, many biolog-
ical and cognitive activities need to be repeated, for example, oscillators [20], which are
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essential in many electronic circuits, usually generate almost periodic signals. Meanwhile,
almost periodicity can better describe the changes in the natural environment and has
a significant impact in illustrating the behavior of nonlinear dynamic systems [15,17,21,
22,28]. It is worth pointing out that, in neural networks dynamics involving the field of
biomathematics, the relevant state variables are currently treated as light intensity levels,
proteins and electric or molecules charge, and they are surely positive restraints [19].
Such biological systems are often handled as positive systems [4]. However, the positive
almost periodic stability for neutral-type SICNNs incorporating D operator has not been
involved, which needs further research.

Inspired by the above considerations, in this article, we focus on the positive al-
most periodic stability on SICNNs system. Briefly speaking, the main contributions and
highlights of this article can be summarized as below. (i) The positiveness of bounded
solutions of SICNNs (1) are demonstrated with the help of some differential inequality
methods; (ii) Under certain hypothesises, by exploiting the fixed point theory and Lya-
punov functional approach, the positiveness and global exponential stability for the almost
periodic solutions of SICNNs (1) are proved for the first time; (iii) Numerical simulations
accompanying comparison discussions are supplied to validate the effectiveness of our
theoretical findings.

The rest framework of this article is outlined as below. In Section 2, we shall present
some definitions and preliminary results. In Section 3, we afford the main theorems
and their comprehensive proofs. Section 4 furnishes a numerical example to check the
advantage and validity of our results. We terminate this article by a concise conclusion in
Section 5.

2 Preliminaries

In what follows, a few definitions, lemmas and presumptions are provided, which are
advantageous in the following verification process of the main findings.

Notations. For convenience and simplicity, the n-dimensional real vectors assemble is
denoted by R™ (R = R'). For each z = {z;;} € R™", label |z| = {|zi;|}, and ||z| =
max; e |¢;;(t)|. For areal function ¢, define

+_ - _
9 —igﬂg|19(t)f7 9 —tlgﬂf{’ﬁ(t)‘.

Letting the supremum norm ||z||oc = sup,cp [|2(¢)], the bounded and continuous func-
tions collection BC'(R,R™) is a Banach space.

Definition 1. (See [5].) Let g € C(R,R™"), and the assemble T'(g, ) = {0: ||g(t+0) —
g(t)]| < e Vt € R} be relative density, that is to say, for each ¢ > 0, one can find
a constant [ = [(e€) > 0 agreeing that every interval of length (¢) contains a § such that

llg(t + ) — g(t)]| < e for arbitrary ¢ € R. Then g is said as an almost periodic function
in R.
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Denote AP(Jq,J2) as the assemble of the almost periodic functions from J; to Js.

For all ij € J, we also presume that a;;,7;; € AP(R, (0,+00)), a;; > 0, C’{“JZ,BM
APR,R), pij, 7ij, Lij € AP(R,RT), r = min; ;e r;; > 0and R+ = [O +00).
The following hypotheses will be adopted later.

(S0) For arbitrary u,v € R, we can take constants My, M, i and +y satisfying
[f(w) = f(0)] < plu— o], sup |f(a)| = My < +oo,

l9(u) = g(v)| <Alu—v],  sup|g(x)| = M, < +oo.
z€R

(S1) K;; € C(R*,R), and f0+oo | K (t)|e*t dt < +oo for a positive number cv.
(S2) There are positive numbers I, w, A;; and J;; obeying that

t
e R B

— 00

A;; = sup % [aij (t)pi; () + My Z |ij(t)|

.
teR By Cri€N,(1,5)

+oo
w
wv, Y (el | |Kij<u>\du] -
0

CklENq(i,j)

1
Jij =sup —— lai;(Opi; () + > |BE®)](ulw+I) + My)
ter Gij(t) CueN (i)

+
— DPij»

+ Y CHe |/ i ()| du(y(w + 1) + M) | <

Cri€Ng(i,5)

and

Sup{aij (t) + Qij (t)pij (t)% + Z ’ijl(t)| <Mf _1 T

1 T
tek ) Cri€N.(4,5)

1
—l—,u(w—i—[)lJr)—&— Ckl |/’K7,j
~ Pri Cri€Ng(i,5)

1 1
X | My—— I d <0, el
( gl_p;;‘i"}/(w‘i‘ )1_pzl> u} )

First, on account of 7 = min;je s 7;; > 0, employing a discussion similar to that used
in Lemma 2.2 of [26], one can reveal the global existence and uniqueness on all solutions
of the initial-value problem (1)—(2).

https://www.journals.vu.lt/nonlinear-analysis
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Lemma 1. Suppose that (S0)—(S2) are obeyed. Then every solution for system (1) involv-
ing initial values (2) possesses global existence and uniqueness on [0, +00).

Hereafter, to show the positiveness of bounded solutions on SICNNs (1), we make the
following hypotheses:

. Kl pi'(t)
Nij = ggﬂg{aij(t) - Y. [BH®|M; <1 + 1jp+>

Cri€ENL(i,5) ij
+o0 ;
D (0] |/|K” )| duM, (1+ p”())}>o 3)
Cri €N, (irg) 0 P
and
inf (t)—a“(t)p--(t)i— Z |Bkll(t)|p~(t)MfL
teR J J J mj(l—p;-;) i ij J Uij(l—p;;)
It
D DR (¢C |/|Kw dup”()Mgler}>0 VijeJ @)
Cri€NG(i,5) 77ij( 7pij)

Then, for all ¢ € R, 45 € J, one can select a constant 0 < k < (I$ + k) /mj agreeing
with
+
IU + K

_aij(t),«; — Q45 (t)p” (t)ﬁ — Z |Blkjl(t)’MfI€
735 ( _pij) CriEN(i,5)

I + &
- X B0k s Y (el |/|K” )| du M,x
CLiEN, (i.j) i \L " Pij cklezvq(m)
—+o00
IF + K
CriENG(4,5) o i DPij

Adopting the above assumptions of external inputs, some positive solutions of the
addressed system can be presented as follows.

Lemma 2. Ler (S0)—(S2), (3) and (4) be satisfied. In addition, mark &(t) = {Z;;(t)} as
the solution of (1) with

Z:5(0) = @i;(0), 0 € (—00,0], $;; € C((—00,0],(0,+00)), (6)
. - I; + K
K < @ij(0) = pij(0)@i; (0 —745(0)) < — 0 € (—o0,0]. 7)
i
Then
- - If- + K
k< Zij(t) — pij (0T (¢ — ri5(8)) < Jni YVt >0, ij € J. (8)
ij
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Proof. Striving for a contradiction, suppose that (8) is not true. We shall deal with two
scenarios as follows.

Case 1. There arise ij € J and T' > 0 obeying that
T5(T) — p (1) 35 (T—r:(T)) =k

ij ij ij
and
+
I R
Mij

K < Zi;(s) — pij(s)Tij (s — rij(s)) < Vs € (—o00,T), ij € J. 9)

Case 2. There are ij € J and T' > 0 agreeing with (9), and
I;. + K
Z35(T) = pi5(T)35(T = ri5(T)) = J??T
If Case 1 holds, one can assert that for arbitrary ij € J,
0 < Z;5(t) Vte (—oo,T). (10)
On the contrary, suppose that (10) is false. Then there are % € J and T° € (0,T)
satisfying that for ¢j € J,
Z050(T°) =0 with 0<F;(t) Vte (—o0,T7).
Hence it follows that
k< Zi0jo (T°) = piojo (T°) 0o (T = riojo (T))
= —piojo (T°)Fs050 (T° = 1i050 (T7)) <0,
which contradicts the positiveness of x and proves (10). Consequently,
315 (0) = 34;(9) — pij ()& (9 — 735 (9)) + pi (934 (9 — 73 (9))
> K+ _o?gi?@p;ff”(s)

> Kk+p; min_ F(s) VI € (—o0,t] C (—00,T)
—oco<s<t

and
By(t) > min_ Fy(s) > 5 _”pi_j Vt € (—o00,T). (11)
Meanwhile,
%15 (9) = 34;(9) — pij ()5 (9 — 35 (9)) + pi (9)F4; (9 — 745(9))
< I;Jrnjj_ " + _Imax  pijTis (s)
< I:erjn + 13 _£g§<ti‘i]‘(8) VY € (—o0,t] C (—o0,T)

https://www.journals.vu.lt/nonlinear-analysis
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and
7 (t) < bo(s) < e o) (12)
T;i(t) € max T;(s) < ——— € (—o0,T).
! —oos<t” ni5(1 — p{;)

In view of (1), (5), (11), (12) and (S0), we gain
0> [55(t) — py ()55 (t = r50)] ],
= —a;; (T) [i'ij (T) — p;; (T):i‘;j (T — 7“;3 (T))] — (],~~ (T)pu (T):B;j (T — 7“;3 (T))

- Y B f (i (T — ma(T)))

Cri €N, (3,5)

X [i‘;} (T) — pg; (T):Ij‘;; (T — T‘;j (T)) + pg; (T).’L‘~~ (T — (T))]

ij ij
—+o0
- Y / K (w)g(3(T — w) du
Cri €Ny (i,) 0
X [235(T) = pi5(T)a35 (T — r35(T)) + py5(T)az; (T — r35(T))] + L;(T)
(T = ay (T (1) —
2 —a;:(T)k — a;:(T)p; (T ‘
! ’ (1= p)
kl kl I;: TR
- Z |B~~ )|Mf’<5_ Z }ng (T)|p23(T)Mf]7+
C ~ = 77,;5(1 7p‘7‘i)
€N (,7) Cri€Ny(1,7) ]

— C’kl ’ / |Kg3(u)‘duMg/<;
CklENq(ZJ)
I{f, + K
- ckl T)| / | K55 ()] dups; (T) My ——— + I;5(T)
CleN (i,3)
> 0,
which is absurd.
If Case 2 holds, we can also deduce (11) and (12), which, together with (1), (3) and
(80), results in
~ ~ A
0 < [&5(t) = pi3 (O35 (t = 1550)] | ,_p
= —a;* (T) [CZT (T) — pg; (T)@;* (T — 7“;3 (T))} — a;; (T)pg; (T)@;j (T — 7“53 (T))
- Y, BEMf(#a(T —m(T)))
Cr1ENL(3,7)
X [235(T) = pi5(T) 35 (T — 155(T)) + p35(T) 7355 (T — r3(T))]

) ]
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- ) CE / K35(u)g(Z3(T — u)) du
Cri€Ny(3.9) 0
X [.13;5 (T) p;g(T)xﬁ (T TE(T)) —|—p;5(T)1‘;5 (T T‘g;(T))] + 155(T)
It 4k It +
<-ap(M)—+ > [BED)|M;—
Tij Cri€EN.(7,) Tij
» I;.'g + K
v BE@OM s
CriEN(1,7) i pij
It +k
T k()] / K ()|l My 2
CMGN (Z,] 77”
I%. + K
" 7)| / 15 00 My (7)1 ()
CWNW Mgt~ Py
pi;(T)
=|-az(M)+ > |Bgawmq<1 1J i)
Cri€N,.(i7) pl]
- (T I+ &
- |CE(T |/|K;3(u)|duMg<l+p”( +)> u + I=:(T)
1—p- U ’
CkleN (Zj 1] 13

<0,
which produces a conflict and demonstrates that (8) is correct. This verifies Lemma 2. [J
Remark 1. When the hypotheses adopted in Lemma 2 are obeyed, (8), (11) and (12)

entail that for any solution of (1) incorporating assumptions (6), (7),

0< Yt € [0, +00). (13)

I+
= <yl < —
— Py 77ij( _pij)

3 Main result
Proposition 1. (See [28, Prop. 3.1].) For §(t) € AP(R,R),

limsup6(t) =sup@(t) and liminf@(t) = inf 6(¢).

t—>-+o00 teR t—r+o0 teR

Theorem 1. Under the presumptions of (S0)—(S2), (3) and (4), SICNNs (1) possesses just
one almost periodic solution x*(t), which is positive and globally exponentially stable.
Moreover, for arbitrary solution x(t) of (1) incorporating the initial values (2), it can be

https://www.journals.vu.lt/nonlinear-analysis
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discovered two constants \ and B%x* satisfying

|z(t) — 2*(t)|| < Bpp-e™ (14)
and
It +k
0< —— <) < —L—— Vie[0,4x), ij € J,
1 —p; ! *Pij)

where k can be found in (7).

Proof. Firstly, we evidence that the possible existing almost periodic solution has even-
tual positiveness. To do this, assume that the SICNNs (1) possesses a globally exponen-
tially stable almost periodic solution z*(¢) and denote by v(t) = {v;;(t)} an arbitrary
solution of (1) incorporating assumptions (6), (7). It follows from (13) and (14) that

< liminf v;;(t) = lim inf 275 () < limsup 27 (¢)

L—p; = t=+ t—4oo Y t—s+00
. I; + K N
= limsupv;(t) < ———, ij€J.
t—+oo mi(1— pij)

By Proposition 1, one can acquire

K I;—f—

0< —— <af(t) < -

< ——— Vte0,+), ij € J,
L —py; e — Dy

which reveals that 2*(¢) is positive on [0, +00).
Secondly, we shall verify that SICNNs (1) possesses an almost periodic solution.
Denote Hij (t) = T (t) — Dij (t)xij (t —Tij (t)), we gain

Hj(t) = [23(t) — pij (t)zi; (£ — r45(2))]’
= —aij(t)Hij(t) = aij(t)pij(t)xi; (t — i (1))
— Z ijl (t)f(xkl (t — Tkl(t))>xij (t)

Cri€Ny(1,5)

— Ckl / K;j(u :z:kl (t— u)) du z;(t)
ClcleN (4,5)

Given ¢ € AP(R,R™"), from r;;, 7;; € AP(R,R) and Lemma 2.2 in [12] we acquire
Pij (t — Tij (t))a Pij (t — Tij (t)) € AP(R7R)3 Z] € Ja

which, combined with (S0) and the argument process of Lemma 2.3 in [15], indicates that

Z B () f(eri(t — Ta(t) ) pis(t) € AP(R,R)

Cri€N,(i,5)

Nonlinear Anal. Model. Control, 27(4):719-739, 2022


https://doi.org/10.15388/namc.2022.27.27417

728 C. Huang et al.

and
+o00
Z ijl(t) / Kij(w)g(pr(t —u)) dup;(t) € AP(R,R), ij € J.
Cri€ENG(i,j) 0

Now, we take into consideration the following auxiliary equations:
H{;(t) = —ai;(t)Hyj(t) — aij(£)pi; (t)@i; (t — ri;(t))
- Z BE ) f (era(t — (1)) )i (2)

Cri€ENL(i,5)

+oo
- X 0 [ Kyglontt - ) dups (o)
Cri€Ng(i,7) 0
+I¢j(t), 17 € J. (15)

Combining Ma;;] = limy_ 400 fttJrT a;;(s)ds/T > 0 and Theorem 2.3 in [27], we
know that (15) possesses a sole almost periodic solution:

= {H5(0)}

t

_ { / o JEai;(u)du [aij(s)pij(5)¢ij (s — Tij(S))

— 00

— Y BE$)f(pwi(s = mi(9)))pis(s)

Cri€N(1,)
_ Cvk:l /K” Sakl s — u)) du goij(s) + IZJ(S)‘| dS} (16)
CMEN (1,5)
Manifestly,
{Pij(®)i; (t =73 (1) } + H?(t) € AP(R,R™),

and Q(t) = {Qi;(1)} = {[' e Jraudur (s)ds} € AP(R,R™) is the sole
almost periodic solution of

Hj(t) = —ay(t)Hy(t) + I (t), ij € J.

We set
2= {<p: pE AP(R, R’””), lle — Qlloo < w}.
If o € 2, then

[elloo < [lp = Qlloe + 1Qfloc Sw +1, (17)

https://www.journals.vu.lt/nonlinear-analysis
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here I = ||@Q||cc. In addition, we set a mapping II : 2 — {2:
() (t) = {pij(t)ij (t —73;(1)) } + H?(t) Vo € L.

Next, it will be proven that for any ¢ € (2, [T € 2. Indeed, with the help of (S0),
(S2), (16) and (17), one can discover that

|(ITe)(t) — Q(t)]
P ()i (t — i (1)) + / e i aiy(w)du [_aij(s)pij(s)@ij (s —7ri;(s))

:{ I

- Z szjl(S)f(@kl (8 — Tkl(S)))%j(S)

Cri€N.(1,7)

t

+oo
- > CZI(S)/KM(U)Q(S%U—U)) d“%‘j(S)] dS}
CkLENq(i,j) 0

<{p$llso|oo+ / e~ Jo e du [aij(s>pij<s>+Mf > |BHG)]

CriENL(i,5)

— 0o

+oo
wM, Y el [ !KiJ-(u)rdu]dww}
Cra€Ng (i,5) 0
t
<{p$’+ / e Jr et laz‘.j(s)mj(S)Jer >, B

Cri€Ny(1,5)

— 00

+oo
+ M, Z |Cikjl(5)|/’Kij(u)|du]ds}(w+l)
Cri€Ng(4,5) 0
t

< {pfg + / e J5 @i (w) du (wi[ _pz_j)aij(é’) ds}(w +1I) <{w} VLER,

— 00

which indicates that ITp € (2.
Moreover, we show that 7 is a contractive mapping. In fact, (S0), (S2), (16) and (17)

yield
|(IT)(t) — (IT)(2)]

{t

+ / e~ Jz () du [—aij(S)Pij(S) (i3 (s = i3 (5)) = ij (s = 7i;(5)))

— 00

Pij () (ij (t = 735 () — iz (t = ri5(t)))

Nonlinear Anal. Model. Control, 27(4):719-739, 2022
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- Z B (s) (f (oni(s — mre(9)))pij () = f (vnr (t — Tra(s)) )iz (s))

CriENy(1,5)

- Ckl < / Kij(u)g(pri(s — ) dupij(s)
/ K;;(u ¢kl 5 — u)) duz/)ij(s))] ds

CmGN
t

< {p;@@ — Ylloo + / e Js ais(u) du [aij(S)pij(S)llw — Yl

—0o0

+ ) BEG|(fCemls = mra(s))) = £ (ke (s — rals))) |0 ()]

Cri€Nr(3,5)

+ | f (na (s = ()| 0i () = s (5)])

+ Z |CE (s) (/ | Kij(w)| g (eni(s — ) — g(¢ni(s — )| du |i;(s)]

Cri€Ng(i,5)

“+o00
o [ utoltouts = auleu - )|}
0

t

< {pfjso—wuoo o [aij(S)pij(S)llw—d)llm
—00

+ ) BEG)| (el + Me)lle = ¥l
Cri€Ny(3,5)

+oo
© X el [ IRl s )l - ol ]
CMEN,I('L',j) 0
t
<{p$+ /e_f:““(“)d“ [aij(S)Pig‘(S)Jr > BE )| (ww+ 1) + My)

Cri€NL(i,5)

— 0o

+oo
. |c;gl(3)|/|Kij(u)|du(v(w+1)+Mg)
Cri€Ng(i,7) 0
t

<{p2‘§+ /eff:“ IRAATHC )dS}Ilwzblloo,

— 00

dS}II@@ZJoo

<{ph+ Tl — vl VER, ¢ € 2.
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This leads to
1126 = 113 e < max(v; + Ji) o = o

Therefore, in view of Theorem 0.3.1 of [6] and max;;c J(pij + Ji;) < 1, we know that
IT owns a sole fixed point z* = {z};} € {2 satisfying that

{xf](t)} =x"(t) = ({Iz")( {pu ( TU )} + { }
and

zyi(t) = piy (t)xg; (¢ — iy () + H (1)

t

= pij(t)af; (t —ri(8) + / e Jian(wdu [%(S)pij(S)xfj (s —7ij(s))

— 00

= >0 BEGf(h(s = mu(s))zy(s)

Cr1€N(1,7)
_ Ckl / Kl] xkl S — u)) duxfj(s) + IZ](S)] ds,
CklEN (4,9)
which, together with (16), results in
% /
[24(t) — pij (t)ai; (¢ — ri5(1)) ]
= —a;(a;(t)— > B (et —ma(t))a; ()
CriEN(1,7)
_ CH(t /K” Vg (2 (t — w)) duxf;(t) + L (t).
CMEN (4,5)

This entails that z*(¢) is the almost periodic solution of SICNNS (1).
Eventually, we verify the globally exponential stability of z*(¢).
Denote by x(t) = {z;;(t)} a solution of SICNNs (1) incorporating (2), and let

2ij(t) = wij(t) —af;(t),  Zig(t) = zi5(t) — pij()ziz (t —ri; (1)), ij € J.
Then, forij € J,
Zi;(t) = [2i(t) — pij(t)ziz (t — ri; (1))]
= —a;j(t) Zij (t) — aij(t)pis(t) 25 (t — ri5(t))
= Y BEM[f(zmlt — )i (8) — f(arg (t = maa(t))) 25 (1)]

Cri€ENL(i,5)

/
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+oo

/ Kij(w)g(wu(t —u)) duz;(t)

0

-2 G

Cri€Ng(i,5)

/ Kij(wg(zp(t —w) du T (t)]

From (S1) and (S2) one can discover a positive number

A< mm(a min a;; )
ijedJ J

+)\r

satisfying that for all 7j € J, there holds p;;e™# < 1 and

e)\r:'j
a3 (i (1) —— o3

1-p;;

Sup{)\ —a;;(t) +
teRr

+
e)\Tkl

1
+ Z |ijl(t)|(MfM +p(w+])+>

+ AT
Cri€N,(i,5) 1 L=ppe™s

kl 1 e)\u
Y ek ’/‘KU ( o e +Ar;>d“H

Cri1€Nq (i) Y —Ppi®
< 0. (18)
Set
Ille = supmax {1 (8) = pig () (t = 745 (1)]
= [0 = pis (02, (2 = ris ()]
For arbitrary € > 0, one can obtain
12O < (lelle +€), (19)
thus, one can take a sufficiently large constant M/ > 1 satisfying that
12 < (Ille + e < M(Jlglle +e)e™ ¥t € (~o0,0].
Hereafter, we validate
1Z@)|| < M(|l¢lle +€)e™ vt >o0. (20)
By way of contradiction, there must be ¢j € J and p > 0 obeying that

Zi ()| = |Z(p)|| = M (ll¢lle + €)™ 1)
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and
1Z(s)]| < M(llelle +e)e™ Vs € (=00, p).
Moreover,
Mz ()] < |25 (v) = i (V) zi (v — 135 (V)| + X |pij (V) zi5 (v = 73 (V) |
< M| Zyj (v)] + plie s e} T 2 (1 — iy (v)
< AI(H¢H54-€)4-p$eA”fS€?g£%ﬂeAﬂ2m(S)7 (22)

where v € (—00,t],t € (—0, p), ij € J, which indicates that

M0l < M| < AUASD

sE(—00,t] 1-— pz

Vt € (—00,p), ij €J.  (23)

Note that
Zii(s) + aij(s)Ziz(s)
= —aij(s)pij(s)2i; (s — 14;(s))
— > BYO S (@ls —mrls)))wi(s) = f (s — ma(s))) x5 (s)]

Cri€N.(1,5)

_ Okl
C'szN (4,9)

/ K;j(u xkl 5 — u)) duz;;(s)

/ Kij(w)g(zg(s — u)) duxfj(s)l, s €[0,t], t €10, p],

which means that

t

0
= Y BES)[f(am(s = ma(s))zii(s) = f (i (s — mai(s)))25;(s)]
Cri€Ny(i,5)
— Ckl K;j(u m s—u)) duz;(s)
CkleNq (4,9) / kl )

/ Kij(u)g(zf(s —w)) du xfj(s)] }ds7 t €[0,p].
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Consequently, owing to (S0), (S2), (17), (18), (19) and (23), we obtain

| Zij(p)|

Zij(0)e™ I e () d“+/e JE “)d“{—aij(S)pij(S)zn (s —7ij(5))

0

- Z ijl(s) [f(zkl (s - Tkl(s)))zij(s) - f(le (s - Tkl(S)))I:}(S)}

CriEN,(i,5)

-2 G

Cri€Ng(i,5)

—+oo

/ Kij(u)g(zri(s — u)) duzi;(s)

0

/ Kij(u)g(zy (s —u)) duz]; (3)1 } ds

P
<[ Zi(0)]e” S5 st / o= I au(@ { |aij ()P (5)] 235 (s = 73 (9))
0

+ Z |ijl(s)| [|f(xkl (s - Tkl(S)))LEij (s) — f(:vkl (5 — Tkl(s)))z:‘j(s)|

CriENL(i,5)

+ [ f (e (s = mals ))) 2'}(5) F@i(s = mals)))ai;(s)|]
+ Z ’Ckl | / ‘Kz] |g xkl s — u))xw (5) - g(xkl(s - U’))x;(s)’

Cri€Ny(i,7)

+ ’g(Ikz(S - U))IZ(S) —g(ah(s - U))IZ}(S)I] d“} ds

< (”@”& +€)ef/\pe* J$ (aij(w)=A) du
p

/\r;r,.
+/e*ff(aij(u)*>\)du aij (5)pi; () ¢
1— p+e)\r
0
Kl 1 AT
+ Z |Bij (S)‘ Mfi_"_ Ve +M(W+I)7M
CriEN(i,5) 1= pije™s 1= pyeti
kl 1 e)\u
+ Y |CH( | IK“ v + (W) ———— | du pds
Cri€N4(i,7) —p;e L—pge™s

x M ([lglle + €

1
M(”SD”&JFG)QAP{(M >e fo a;j(u) )\)du+1:| <M(||90H£+6)
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This causes a conflict with (21). Consequently, (20) holds. Letting ¢ — 0T, we have
1Z(@)|| < Mjpllee Vvt >o0. (24)

Then, using a similar discussion with (22) and (23), we get from (24) that

s M|l
eM”zij(t)’ < sup e |2i;(s)| < ﬁ
sE(—00,t] 1 —pije ij
and
|2ij(t)] < Bpare ™™ VE>0,ij € J,
where By, .« = M||¢ll¢/(1 - p;;»e)‘rri). This assures Theorem 1. O

Remark 2. In Theorem 1, we firstly set up the positive stability of delayed almost
periodic SICNNs with D operator. So far, many achievements on the exponential con-
vergence or stability of delayed cellular neural network models have been revealed, see,
e.g., [16,23,24,26] and the related references. However, as far as we know, there is
no result exploring the positive almost periodicity of SICNNs with D operator. Our
results complement and improve some corresponding ones of the existing publications
in [23,24,26].

4 Numerical example

Regard the neutral-type SICNNs incorporating D operator:

sin(? 4 7)t o !
[%‘(t) - %%’ (t = |sin(i +5)t| = 0.1)g
1 . .
= —a;;(t)x(t) — Z ijli arctan (zp (t — | cos(i + j)t|))ws; (1)
Cri€N(i,7)
+00o 1
— Z Clkjl(t) / e_“5 arctan (zp (t — w)) dui;(t) + Li;(t),  (25)
CriENL(ir]) 0

where 7,7 = 1,2,

[all am] _ { 1 +2|cos100t| 0.8+ |sin100t|}

a1 a9 1+ 1.3|cos100¢| 1+ 1.2|sin 100¢|

B11 Blg . 011 012 o 0.01|C08\/§t‘ 0.02|C08\/§t|
Byy Baa|  |C21 Caz|  \0.02|cosv/3t|  0.01] cos 2t|

and

Iy Iip] 1 [|sindt|+1/2 |sin3t|+1/3
121 122 _e1/25 |sm2t|—|—1/3 |smt|+1/2 ’

Nonlinear Anal. Model. Control, 27(4):719-739, 2022


https://doi.org/10.15388/namc.2022.27.27417

736 C. Huang et al.
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Figure 1. Numerical state vector z(¢) for system (25) including three groups initial values: (0.5 + cos 2t,
—0.4 4+ 2sin 3t, 0.8 + cost, 0.5 4+ 3sint), (—0.8 4 cos 2t, sin 2t, 1.2 cos 2t, 0.5 sin 2t), (—0.5 + sin 2,
0.3 + cost, 0.4 4+ sint, —0.5 cos 2t).

Take
Mf—Mg*%, p=7=3, w=L=1,
S BEw= > |cH@)]<0.06.
Cri€N1(2,5) Cri€N1(4,5)

Obviously, all requirements of Theorem 1 are obeyed in (25). Thus, SICNNs (25) pos-
sesses a sole one globally exponentially stable almost periodic solution, which has posi-
tiveness (see Fig. 1).

Remark 3. It should be noted that the positive almost periodicity of SICNNs incorporat-
ing D operator and mixed delays has not been touched in the previous publications [4, 9].
Thus, the corresponding conclusions of the above mentioned literatures are ineffective to
reflect the positive almost periodic stability of SICNNs (25).

5 Conclusions

In this work, we obtain some results involving the existence and global exponential
stability of the positive almost periodic solution for a kind of shunting inhibitory cellular
neural networks incorporating mixed delays and D operator with the help of some analysis
methods and inequality techniques. Because neutral-type operator exists in the neural
networks system, the existing methods are no longer applicable to show the positiveness
of the almost periodic solutions, we have developed novel techniques and mathematical

https://www.journals.vu.lt/nonlinear-analysis
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approaches for overcoming the obstacles coming from neutral-type operator. Lemma 2 is
important for the judgment of the prior boundedness of the operator equation. Moreover,
numerical examples are worked out to demonstrate the advantages of our results. The
strategy adopted in this work can be also applied to explore other types of D operator cel-
lular neural networks, such as neural networks systems involving parameters uncertainties
and impulse disturbance, neural networks accompanying neutral-type mixed delays and
so on. This is our future investigation direction.

Acknowledgment. The authors wish to thank the anonymous reviewers for their careful
work and thoughtful suggestions that have helped improve this paper substantially. In
particular, the authors express the sincere gratitude to Prof. Gang Yang (Hunan University
of Technology and Business) for the helpful discussion.
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