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Abstract. We propose a stochastic SIR model with two different diseases cross-infection and
immunization. The model incorporates the effects of stochasticity, cross-infection rate and
immunization. By using stochastic analysis and Khasminski ergodicity theory, the existence
and boundedness of the global positive solution about the epidemic model are firstly proved.
Subsequently, we theoretically carry out the sufficient conditions of stochastic extinction and
persistence of the diseases. Thirdly, the existence of ergodic stationary distribution is proved. The
results reveal that white noise can affect the dynamics of the system significantly. Finally, the
numerical simulation is made and consistent with the theoretical results.
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1 Introduction

Mathematical modeling is an important tool that can help us understand the transmission
of an infectious disease. Many scholars [1-3, 6-11, 13, 15, 16, 18, 21, 24, 30] have put
forward mathematical models and have made contributions to disease control.

As far as we know, a classic and important SIR model was early investigated by
Kermazk and McKendrick [11] in 1927. In classical SIR models, the infected patients
can recover health with treatment. Many scholars have also investigated the SIR model in
different situations. Capasso et al. [3] summarized Kermazk—McKendrick model and took
into account nonlinear incidence phenomena for large numbers of infectives. Meanwhile,
Capasso et al. expanded the threshold theory and laid a foundation for solving the stochas-
tic nonlinear threshold. Hethcote [10] gave a qualitative analysis of nonlinear incidence
SIR model, which is appropriate for viral agent diseases and considered social impact.
Liu [18] investigated a deterministic and modified nonlinear SIR model with periodic
solutions. In [18], the author also explored the corresponding stochastic epidemic models
and the asymptotic behavior of the solution. Ghosh et al. [7] gave an SIR model with
nonmonotonic incidence and logistic growth. In [7], authors studied the condition for
backward bifurcation and Hopf bifurcation and solved the optimal control problem. Dieu
et al. [6] classified a stochastic SIR model and developed ergodicity of the underlying
system.

In classical epidemiological models, bilinear and standard incidence rates [28] are
suitable for a small number of people in a short time, so many scholars use nonlinear
incidence [2,6,7,10, 16, 18,21]. Logistic model [7] is more in line with the law of social
population growth. In references [16,21], the authors introduced the stochastic epidemic
model with cross-infection of diseases. It has become a common phenomenon that people
are infected with different diseases at the same time. On the basis of reference [2,6,7,10,
16,18,21], a deterministic SIR model with cross-infection and permanent immunization is
proposed in which the nonlinear incidence is used. The corresponding model is as follows:

[ S pﬁ15[1 (1 —p)ﬁgSIg
= 1 _ —_ _ _ _
ds(t) _TS( K) o 1S ot Lo p1S — 65| dt,
(pB1 ST
dIl(t) = PhSh - (/142 + ’71)]1] dt,
Lo + S 0
[(1 —p)B2SIy
diL(t) = | ——————= — I, dt
2( ) | a2 _|_ 12 (’LL3 +72) 2 )
dR(t) = |1 4+ v2lo — R + 55} dt,

where S(t) and R(t) with the natural mortality rate uq and g4, respectively, are the
susceptible class and the removed class, respectively. I;(¢) and I2(t) are the individuals
with cross-infection at time ¢. 81 and (35 are the contact rates. p is the proportion of patients
infected by two diseases. o and p3 are the mortality of cross-infection diseases, which
include natural mortality and mortality due to diseases. y; and -5 are recovery rates of
cross-infection diseases, respectively. § is constant vaccination rate of susceptible class.
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The susceptible class will have permanent immunity after vaccination. All parameters are
positive. Functions 51511 /(c1 + S) and B2S1s/ (e + 1) represent nonlinear incidence
rates for cross-infection diseases.

However, the spread of diseases is often affected by environmental noise [1,4,8,9,13,
15,16,21,24,28,30], a lot of literatures add randomness to reflect real life more accurately.
The properties for stationary distribution of random variables were proved in [8]. [15]
gave an SIR epidemic model that a susceptible person is infected with a disease and tem-
porarily immunized. All references [1,4,9,13,24,28,30] are stochastic epidemic models
with nonlinear incidence that has been used in chemostat model [25]. We assume that the
mortality rates of S(¢), I1(¢), I2(t), R(t) are disturbed by white noise in system (1), then

we have
1 S pB1SI (1 —p)BaSis

dS(t) = _rS(l K) 1S ot Lo S —05|dt
+ 015 dBy(t),
[pB1 ST

d[l(t) = -1;611_’_5{ — (/.LQ + ’Yl)Ilil dt + o214 dBQ(t),
(1 — ST.

dl(t) = % — (3 + 72)]2} dt + 031> dB3(t),
| ax+ 1

dR(t) = [71[1 + volo — ug R + (55] dt + o4R dB4(t).

Thus, we can consider the following system:

. [ S pB1ST (1—p)B2SIs

ds = _rS(l K) o 1S A 1S —4S|dt

+0’15d31(t)7

[pp1ST 2
dl; = _2;611%51* — (p2 + ’71)11] dt + o911 dBa(t),

(1 — ST
dI, = A=p)BSh _ (us + 72)12} dt + o3> dB3(t).

ag + I

In the next, we only consider the dynamic properties of system (2) through differential
equation theories.

Some notations of stochastic differential equations can be seen in [19]. Let ({2, F,
{Fi}t>0, P) be a complete probability space, which has a filtration { F; };>0 and satisfies
the usual conditions. The functions By (t), Ba(t), Bs(t) are Brownian motion defined
on this complete probability space. We define R = {y € R™: y; > 0,1 < i < m}.
Let f(¢) be an integrable function on [0, +00) and define (f(¢)) = (1/t) fot f(6)do. This
paper mainly studies mathematical modeling and theoretical proof as well as the influence
of parameter changes on the model.

We arrange the article as follows: Section 2 proves that system (2) has a global
positive solution, which is unique. In Section 3, stochastic boundedness of the solution is
explored. Section 4 investigates the extinction and persistence conditions of the stochastic
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system (2). We show the maximum value at point S and the existence of a unique ergodic
stationary distribution in Section 5. At last, we give the numerical simulations and a brief
conclusion.

2 Global positive solution

Theorem 1. For any given initial value (S5(0),1,(0),15(0)) € R3 and t > 0, there is
a unique positive solution (S(t),11(t), I2(t)) of system (2), which belongs to R3. with
probability one.

Proof. By standard arguments, there is a unique positive local solution (S(t), I1(t), I2(t))
ont € [0,7.), provided that (S(0),11(0),I2(0)) € R3. Here 7, denotes the explosion
time. Next, we need to prove the global property of the solution.

Define a C? function as

ar(p2 +7)  ar(pz +m) In pBS

b1 pB1 ai(pz +71)
+ L —-1—-Inl1+1I,—1—Inls.

V(S I1,I)=5—

Since for any u > 0, we have u — 1 — Inu > 0, it follows that V' is a positive definite
function. Through Itd’s formula, we have

AV(S, 1, ) = LV (S, 1, L) dt + o (S _ W) By (1)
1

+ 0'2(]1 — 1) ng(t) + 03([2 — 1) dB3(t),

where
LV (S, 11,1>)
a(p2 + 1) S) pb1Shi (1 —p)B2Sis }
PRl | AT SR - S -8
( pﬁlS ) |:T ( K a; + S ag + I m
a1 (p2 +71)of ( 1 ) [Pﬁhgh ] o3
¢ O TIT (o 2 ()| + 22
2pf1 Ii)|on+S (2 +71) 1 2
1 (1 —p)ﬁgSlg 0'§
+ (1 12){ ot (13 +72) 2| + 5
< _LS2 + (7’+ 7"0[1(,U,2 +71))S+ (1 _p)alﬁQ(MQ +71)
K pB1 K B
a1 (p2 +71) (s +9) ai(pe +n)of o3  of
+ 2B +p2+p3s+71+2 + Yy > + >
r raq(p2 +7) (1 —p)arBape +71)
< sup - L2y (r—!—)S}—!—
56115{ K pB1K pB1
a1 (p2 +71)(p1 +9) a1(pe +m)ot o3 o3
+ 28, +M2+M3+’Y1+’Y2+—2p61 +2+2
=\
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Here ) is a positive constant. Through [20], we can get the global property of the unique
positive solution. O

3 Stochastically ultimate boundedness
Theorem 2. The solution (S(t), I1(t), I2(t)) of system (2) with any initial value (S(0),
I,(0),15(0)) € R3. is stochastically ultimate bounded.

Proof. Letu = S+11+15, u = min{uy +0, po+v1, 3+ }. Define W (u) = (14+u)",
where constant v > 0 will be given later. Then

dW(U) = ,CW(U) dt + l/(l + ’UJ)U71 [olS dB; (t) + 0911 dB; (t) + o011, dB; (t)} s

where

LW (u) = v(1+u)” ! [TS(I - [LS;) — (1 4+ 6)S — (p2 + 7)1 — (3 +72) 12

-1
+ %(1 +u)" "2 (015? + o317 + 0313)
[K
v(1+u)! TT —pS —ply — ufz}
viv—1) _

M

(14 u)"?(01S* + 0317 + 0313)

v(1 4 u)’ ! Kr—uu} —1—%(1—&— w)’%(o7 Vo3 Vo3)u?

> <1/;1 \ 0) (O’% Voiv Jg)u2>
) 01\/02 \/03) 2)

=v(l+u)"" <1+u

5-
v+ 02| (u- (55
() ()]

Choose v > 0 such that
(5

LW (u) < v(1+u)" {—W - (Iir - u>u + KT]

) o1 \/02\/03) =@ >0,

then we obtain

4
and

dW (u) < v(1 +u)" 2 [—mﬂ + (IZT ) + K} dt

+ I/(]. + U)V_l [0’15 dBl(t) + 0'2_[1 dBl(t) + 01[2 dBl(t)] .
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Then we get
d[ektW(u(t))] = E[ektW(u(t))] dt
+ ektl/(l + U,)U_l [alS dB; (t) + o9l ng(t) + o115 dB3(t)} s

where 0 < k < ve.
Thus, one has

t

E [ W (u(t))] = W (u(0)) + E / £(cFW (u(s)) ds, 3)
0
where
L(e"W (u(t)))
= ke W (u(t)) + " LW (u)
k Kr Kr
g kt 1 v—=2 | 1 = -
ve (1 +u) L( +u)? — pu +(4 ,u) +4]
Kr
ot (s (e BB
v 4
< vektQ.
Here
k K 2k K k
Q:= sup (1 +u)"? {—((p— >u2 + (T -+ )u—|— =Ty } +1.
u€R v 4 v 4 v
Following (3), we obtain
kt vQ
E[e"W (u(t))] < W (u(0)) + A
Consequently, we have
. vQ
tlggosupE[(l +u(t)) ] < - = =Qo as.
For any small constant ¢ > 0 and letting = [vQ/(ke)]*/¥, the Chebyshev’s inequality
[28] implies that
P{(14+u)>H} < E(lH;y“)
Then o
E(1+u)” 5
P{(1+u)>H} g%g izs.
ke
Consequently,

P{l+u)<H}>1-¢,
so u(t) is ultimately bounded. Therefore, S(t), I1(t), I2(t) are ultimately bounded. [
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4 Extinction and persistence in mean

From system (2) we get

| S pB1SLi (1 —p)B2SIy

ds = _rS(l K) 15 A 1S — 45| de
+ 015 dBy(t)

< rS(l — Ii) — 1S — 55’} dt + 015 dB4 (t)

= |(r — py — 8)S(t) — [’;s?(t)} dt + o1S(t) dBy (¢).

We consider the stochastic equation
dX(t) = [(r —p1 —0)X(t) — ;{X2(t)} dt + o1 X (t) dB1 (t), X(0)=Xo. ¥

From stochastic comparison theory we know that S(t) < X ().
From Pasquali [22] we get Lemma 1.

Lemma 1. Define Ry = 7/(1 +3+0%/2). If Ry < 1, then we have lim;_, , oo X (t) =0
a.s., while if Ry > 1, system (4) has a unique ergodic stationary distribution s(-) with

probability density

rk1+1
"iQ X,‘il e—K,QX
F(Iil ) ’

where ky = 2(r — py — 8) /0%, ke = 2r/(Ko?), I'(s) = [, t*"'e' dt, and

m(X) =

P{ lim %/w(X(s)) ds = /W(X)W(X)dX} =1,

t—o0

where w is an integrable function with measure p.
Proof. From system (4) we get the stationary Fokker—Plank equation

d

e (0= = 90 = 1220 )n(x) - 5.

with probability density 7(X). Let h(X) = 0?X?m(X), then we can simplify the
equation in the following form:

where d is a constant, g(X) = (k1 X — ke X?)/X2.

https://www.journals.vu.lt/nonlinear-analysis
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X
h(X):H(X)[J—d HET)drl,

where H(X) = e/ 9(Md | 1 is a constant. We can calculate

Then we can get

H(X) _ ef1X g(r)dr _ eflx(lilelizTQ)TQ dr _ enllanan+cl _ CQXN187K2X,

where ¢; and ¢y are constants. We have

X
0= - [ e

From the conditions 7(X) > 0 and f X)dX = 1 we integrate the above formula,
and let d = O, J = (IOOO(CQ/O—l)X’il 2 7K2X dX)
We can get
k1—1
K
X) = 27)(%1—2 —an. O
’/T( ) F(Hl — 1) €

For the following proof, we define

+oo

+o00

1_

Ry = b — / x 7(x) de, Ry = (L-p)B> — / xm(x) da.
p2 + 71+ S o+ az(ps + 72 + 3)

Lemma 2. (See [29].) If (S(t), I1(t), I2(t)) is the solution of system (2), then we have

S(t) + L(t) + I(t)

lim =0 a.s.
t—o00 t
and
S(t I (¢ I5(t
im 2@ Zo g B g i 20
t—o00 t—o00 t—o00

Lemma 3. (See [14,29].) Assume pn > (03 V 03V 03)/2. If (S(t), I1(t), I2(t)) is the
solution of (2), then

=0 a.s.

t
lim fO dBl fO Il dB2 lim fO IQ(S) ng(S)
t

t—o00 t t—)oo t t—o00

Theorem 3. The diseases I1(t) and I5(t) are said to be extinctive if R1 < 1 and Ry < 1,
respectively.

Nonlinear Anal. Model. Control, 27(4):740-765, 2022
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Proof. We first prove the extinction of disease I7(t). Applying Itd’s formula to sys-
tem (2), one has

S 2

dinl, = [apﬁs ~ (Mz +m+ ";ﬂ dt + 0 dBs(t)
pp1 X o3

< —= .

< [041 X <M2+’Y1 + 5 dt 4+ 02 dBs(t)

From system (4) we learn S < X. Then we have

t
Inhi(t) lnIl o3 1
< —= - dBs(t).
7 <pbhiy /a1+X prt vt +t/02 2(t)
0

Then we get the following inequality by Lemmas 1 and 3

t
, In I, (¢) 1 X
] 24l im =
P S CELL N
0

/N

o2
dX - (u2+71+22>

+oo

=pp / a m(x)de — + —|—(Lg
—pa o)+ p2 2
0

(u2+71+ 2)(9‘{1—1) 0,

which implies lim;_, ;o I1(t) = 0 a.s. if Ry < 1.

In the same way as in the proof of I;(¢), we can get the following inequality from
system (2):

1 s
dlnl, = {(%% - (ug T+ U;)] dt + o3 dBs(t)
1—p)BaX
< {(5)52 - <,u3+72+ (723)] dt + o3 dBs(t),
2

where S < X. Then we get
t

t
mh(f) Wb (171”)52%/)@1)(7 <u3+72+°;°’) +%/o—3de(t).
0

t t (65
0

So we have

mbL(#) _ (1-p)Bs [ 2
lim sup nf()é( ap)BQ/m(x)dz<u3+72+a3)
2

t——4o00 2
0

(,u3+72+ 2)(9‘{21) 0,

thus, lim;_, 1 oo Io(t) = 0 a.s. if Ry < 1.

https://www.journals.vu.lt/nonlinear-analysis
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Theorem 4. For any given initial value (S(0), I,(0), I5(0)) € R?, we have the following
results of system (2):

() If "1 > 1and Ry < 1, then I1(t) will be persistent in mean, and I5(t) will be
extinct. Besides, we have

2
1

liminf(I; (t)) > — o

2
92
m it Z 2 %K<u2+71+ 2>(9‘i1 1)>0 as.

() If R < 1and Ry > 1, then I, (t) will be extinct, and I5(t) will be persistent in
mean. Besides, we have

lim inf (I5(t)) > rog(is + 12 + %)

> Ro—1) >0 a.s.
P00 rag(ps + v2) + (1 _p)2ﬁ§K( 2= 1)

(iii) IfR1 > 1 and Rs > 1, then I, (t) and I5(t) will be persistent in mean and satisfy

liminf (11 (t) + (1))

1 O’% U%
>§ petyit o (Ri— 1) +ag(uz+r+—= R —-1)| >0 as.,

2
where
o {Kpﬁl (pB1 + a1 B2 — paifB2) K(1 —p)Ba + rag(us +72) }
= max 5 , .
ras rag

Proof.  From the first equations of system (2) and system (4) one gets

t t

InS(t) —InS(0) o2 r1 1 [ pBili(s)
0 0
t
_}/ (1 —p)Bala(s) - o1B1(t)
t 042“!‘]2(8) t
0
o 1 1 [ o
Zr— [ — 7?7?¥/S(5)d77/71]1()d5
0 0
t
L [ (1—p)Ba o1B1(t)
_g/TIQ(S)dS‘F 7 (5)
and 0
t
_ 2
lnX()tlnX(O)_T_'ul_ —%—%%/X(s)d +013;1(t) ©)
0
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From (5) and (6) one has

0> lnS()—lnX()

1
phy - / Ir(s) ds,
Qi ot

\
w\»—l
o\

;L

®

|
SR
o\ﬁ

0
that is,
t
1 PﬁlK (1-p)BK1 /
Z — > — .
t /(S(s) X(S)) ds Ty Il Qg t 12(8) ds
0 0 0

(i) By Theorem 3, since Ry < 1, then lim;_, o [2(t) = 0 a.s. Since S; > 1, then
0 < I5(t) < e and € > 0 small enough such that

t
1 X(s) o) p(1 —p)B1PaKe
- | ————ds— =) - > 1.
pﬂlt o+ X(S) ° <M2 M 2 > rogag ”

0

Applying Itd’s formula to the the Lyapunov function In I, it follows that

s ,
dlnl, = oiﬁis - (/IQ v+ 022)] dt + o3 dBy(t)
[ pB1X U%) pa1 (S — X) }
= |22 72 dt + 02 dBy(t
P (N2+’71+ 2 ) Pt a4t 2(t)
[ pB1X o5 pp1(S — X)
> e 2 Ba(t).
o+ X (M2 +v+ = > + - dt + 02 dBs(t) @)

Calculating (7) directly, we can obtain

t t
In I, (t) 1/ pAiX (s) o3 p2ﬁfK1/
Al 2 [ Paldl) g %) _ 2 n(s)a
t t) a+ X(s) ST\t rad t 1(s)ds
0 0

p(L=p)BifeKe  03Bs(t)  InLi(0)
a1 t t ’

Simplifying the inequality above, we can obtain

2
roy

<Il( )> ﬁZK

j PALX (5)

ar + X (s

03) _ p(1—p)Bi1B2Ke

ds — | p2+m +
) 2 ro10n

0'232(1}) ll’lll(t) 111]1(0)
T T T ]

https://www.journals.vu.lt/nonlinear-analysis
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ra? X (s o2 1— Ke
|t fy ZER ds — (ua +m + G) - HUSRAREE
+%"‘(”+“‘“(0)], 0<Ii(t) <1

I hX(s) 3 _ p(1=p)BiBaK
A o 2R ds = (i + 1 + ) — PISRALKe

oo B Inl
492 tz(t) tl(t)]’ 1< Il(t),

WV

where ¢ — 0 as ¢ — +o0o. According to Lemma 4, one sees that lim;—, o, I1(¢)/t = 0

and limy_, ;oo In Iy (¢)/t =0as [;(t) > 1
Then one can calculate that
2

liminf (7 (t)) > <u2+”y1+ 2)(9{1—1) 0.

rag
t—+o0o pQB%K

(ii) By Theorem 3, since 231 < 1, then lim;_, . I1(¢) = 0 a.s. Since Ry > 1, then
0 < I1(t) < e and € > 0 small enough such that

+oo
2 J—
(1 —p)B2 / xﬂ(m)dm—a2<ug+72+‘723) _%jﬁﬂ(ﬁ o1
0

Using It6’s formula to the Lyapunov function s In I5(¢t) + I2(t) gets
d(a2 In Ig(t) + IQ(f))
o2
= {(1 —p)B2S — s (u3 + 72 + 23) - (#3 + 72) -72] dt + o3 dBs(t)

02
= {(1 —p)BX —az (us + 72 + ;) — (3 +72) 2 + (1 — p)Ba(S — X) | dt

+ o3 dB3(t).
Then we get
ag In Ix(t) + I(t)
t
t
! a3 1-— Ke
> 7/(17P)B2X(5)d5*0¢2 ps+v2 + = ) — p(1 —p)BifaKe
t 2 rog
0

1 p)zggK) 1]12(5) 1oy T3Ba(0) | sl B(0) + B(0)

B <M3 T Ty t t

Then one can calculate that

2 ok
o TCYQ(/J/?) +fy2+?d)
| £ (L) > Ry —1) > 0.
fminf (12(1)) (s +72) 1 (1~ pPFEK |

Nonlinear Anal. Model. Control, 27(4):740-765, 2022
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(iii) Define
V=Inl+ Wi+ I,

then we have

+yr [ pp1S _ i%
D V__a1+S <u2+71+ 2)]dt+02d32(t)
2
+ [(1 —p)B2S — (M:s +7+ 02‘3) — (M:s + 72) Iz] dt 4+ 03 dBs(t)
[ pBX 93\ , PhS = X)
z o F X (M2+71+ 5 | T o dt + 02 dBy(t) + 03 dBs(t)
o3
+ [(1 — )X —az (Ma +72 + 2)
— (us +y2) o + (1 —p)Ba(S — X)} dt. (8)
From (8) one gets
t t
V(t) = V(0) 1/ pB1X(s) o9 1/
RSP S _ i} - _
; 3 ) s X(s) ds—(p2+m+ 5 )+ (1—p)B2X(s)ds
0 0

> _ EpBi(phi + a1 f _palﬁz)l/th(s) ds

2

g3
B Gy ra t
1

2

¢
K1 -p)p :-arag(/xg +72)1/I2(s) ds 4+ 023;2(15) N 03Bt3(t).
2

0
Sorting out the above inequalities results in

lim inf (11() + I2(t))

1 2
> @[(M +71+U;)(ml—1)+@2<M3+72+U23’)(m2—1)] >0,

)

o— Inax{ KppBi(ph1 + Oé12/82 —paiBs) K(1—p)Bs+ras(us+72) } .
roq rQg

5 Stationary distribution

In this section, we use the Has’minskii theory [12] to prove the stationary distribution of
system (2).

Theorem 5. System (2) has a unique ergodic stationary distribution o(-), if

 (1=p)BaS® | ppS° 8%t o3 o3
R = s Jroq—i—SO Mo + p3 +v1+ 72 + 5 +2+2 >0,
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K o 1-— a1 01 K
by > p15102+( p)B2 n P15103,
(041+S) [} T‘(Oél“v‘S)
and
H2+/L3+71 —|—’)/2 —2(’[94—1)(0’%\/0’%\/0’%) > 0
Proof.  System (2) has a diffusion matrix
o282 0 0
A= 0 o3I} 0
0 0 o2
Let H = ming ;, 1,707 5%, 0317, 03135} such that
2
Y ki€ = oiS*EE + 03116 + 031365 > HIEP,
ij=1
(S, I1,1I5) € U, £ = (£&1,&2,&3) € R3, then we get that all the eigenvalues of diffusion

matrix are greater than zero.
Define V: R} — R,

V(S,Il,jg) = M|:b1 <S - SO — SO ln 5) — bQS — hl]l - 111[2 —|—bg[1 —|—b4]2
0

1 9+2
+0+2(S+11+12g) .
Here § = (K(r — py — 8))/r, by = K/(rS°)(pa1fi/ (a1 + 8°)% + (1 — p)Ba/a),
by = blpﬁlSO/(al (/JQ +’71)), by = b2(1 —p)BgSO/(ag(,ug, +’}/2)), 0< <l Deﬁning
a sufficiently large M > 0 such that

— MR+ max{B,C,D,E,F,J} < -2, ©)
where
R {_r519+3 B M1f+2+MP51(b2+b3)h
(.1, 1)ers L 2K 2
(pstre M1 -p)B(1 J;az(bQ +by))e ol
2 o2
C=  sup {—TS"”?’ - m]f” _ Mlgﬂ
(8,11,12)ery U 2K 2 2
M(1— 1 b b
n (1 —p)Ba( -2i-oz2( 2 + 4))512 +O},
Q3
D = sup {_<T_ M(l_p)622(1+a2(b2+b4))6>519+3
(s yery U \2K a3(0 +3)

o p“2 ;»711—19—&-2 +Mp61(b2 +b3)[1 . p’3 ;721—3—&-2 +O},

Nonlinear Anal. Model. Control, 27(4):740-765, 2022


https://doi.org/10.15388/namc.2022.27.27446

754 Z. Chang et al.

E= sup {_7”519+3 M2t 19+2 K3 + 72 1+
(S,Il,IQ)G]Ri 4K 2 2

n M(1—p)B2 (1+042(b2+b4))

SIQ + Mpﬂl(bg + bg)[l + O},

H2 +71 ;942 M3+ 72 942
F= sup w3 _ 2 - Doz 22y
(S 11’12 €R3 2K 4 1 2 2

)62(1 + as(by + b4))

SIs + Mpﬂl(bQ + b3)[1 + O},

T 942 M3 T2 1940
J = go+3 _ 2 942 _ 0+
(S 118711‘121))611%‘3 2K 2 L 4 2

)52(1 + az(bg + bs))

SIQ + Mpﬁl(bg + b3)11 + O},

0= sup

r (H2 +71) o (13 +72) 9
(S,I1,I2)€R3 {_SWFS -y HT- T b "
41,42 +

2K 2 1 2
o1, U+1 9+2( 2\, 2.\, 2
+7S(S + 1 + I3) +— (S+ 1+ )" (6f Vo3 Va3 .

It is clear that for V (S, I1, I5), there exists a unique minimum point (S, I, I2). Then de-
note
a positive-definite function V' (S, I1, I2) : RY — Ry:

V(Sa 11712) = V<S7 11712) _V(§7£a§) = MVYI + ‘/27

where

%:b1(S—SO Sol 5)) —b25—1n11—1n12+b3[1+b412,

1
V= §+2w+ly+hﬂﬁ V(S, I, Iy).

Applying the Itd’s formula yields

ryoo b (S 597~ bipBiSIi  bi(1—p)BeSI | bipBiS°L
! ay + S ag + I ay + S

+b1( —P)525012+5001 bar bapB1STy  ba(1 —p)BaSIs

ss-s°+
as + I 2 ( ) a1 + S as + 1o
_ phiS a5 (1-p)BS *p)ﬂg o3 | bspBSh
a1+5+u2+71+2 o+ I, +u3+72+2+7a1+5
ba(1 — ST
—b3(pe +71) 11 + bal = p)BeSIz ba(ps 4+ v2) 12
g + I
bir 02 . bor 0 pB1S pB1S° (1 —p)B2S
< _ 2 (9 _ _
= K(S )"+ KS(S ) - ar+S o +89 Qs
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(1-p)B2S°  (1-p)B2SIx (1 -p)BaS®  phiS°

* a * (a2 +¢)2 Qo ap + 59
b S0
+ <1pﬁ1 — b3 (pe2 +71))I1 + (()52 — ba(p3 +72)>I2
a1 Q2
bspBrSh | ba(1 —p)B2SIy S%?% o032 o2
R A R
_ (1—p)B2SIy | bsppiSIi  by(1—p)BaSL; (1 —p)BaS°
=G(S) + 5 _
(a2 +¢) ap+ 8 as + Ip lo%
pB1S° %% o3 | o3
a1+SO+u2+M3+’71+’72+ 5 +2+2
1-— 1 by +b 1— S0
< G(S) + (1 —p)Ba( +2a2( 2 + 4))512 + pBa(bs + )Tt — (1—p)pB2
Qs Q2
pB15° SOO'% o% a§
a1+50+u2+u3+%+72+ 5 +2+2,
where ¢ € (0, I1) and
by 0 527“ 0 pB1S pB1S°
G(S) = S-S —S(5-8
( ) K ( ) K ( ) a; + S o1 + S0
_(d=phks [ —p)B2S°
(6%} a9 '
From above equation we can get
, 2b17" 0 bQ’)” 0 palﬁl (]. —p)ﬁg
= 2 J—
G = =S+ - - p ~
and 2yr 20 2pas B
G// S - _ 1r 2T pa 1‘ )
( ) K K (Oél —+ S)‘3
Since
b= K (_pafr (1—p)p2
7 rS0\ (g + 99)2 Qg ’
then we have
bor S0 pay By (1—p)B2
!/ _ _ —_ —
G (S)|S:SO K (041 ¥+ 50)2 Qo 0.
Note that X 8 a )6 8K
y4esvait —DP)P2 pa P
b el
1= rS0 ((al + 59) + s ) + r(ag + §9)3’
we have

2byr N 2bor 2pay By

"eQ0y
GU(S7) = K K = (ag + 89)3
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According to (10)—(11), we get G(S) < G(S°) = 0. Therefore,

1-— 50 50 S%2 o2 o2
U=PBaS” PSSOy D2 T
a9 041+SO

2 2 2
1— 14 ag(by + b
+( p)Ba( a2a2(2 4)>S12+p51(bg+b3)11
2

(1-p)Ba(l Z%az(ln +b4)) STy + pBi(be + b3) 1,

LV £ —

where

(1 —p)ﬁQSO Pﬁlso
+
[ %) a; + 59

S%? o2 o2
- <u2+u3+vl+w+ ! +2+3> > 0.

R= 2 2 79

Next,

S
E‘/Q = (S + .[1 + 12)19+1 |:7’S<1 — K) — (,U/l + (S)S — (,UQ + ’}/1)[1 — (ﬂg +’YQ)I2:|
J+1
2
<rS(S+1I + )"+ — %5“3 — (2 + )V = (s + ) I3+
A
2

(S+ 11 + I,)" (07S? + 0313 + 0213)

(S+1I1 + I,)" 2 (0} Vo3 V 03)

Therefore,

M(1 —p)Ba(1 + az(by + b4))

LV < —MR + 5
Qg

STy + Mppi(ba + bs3) 1y

" _gv+3 (2 + 71)Ii9+2 _ (p3 + ’72)I§9+2 1 0.

2K B 2 2

Construct a compact bounded subset U:

: 1
U= {(5,11,12) ERY:e< S -

1 1
€<I1<77 €<I2<}7
€
and € > 0 will be given in the later. In the set Ri \ U, choosing e small enough such that

a3 (us + 72)
12
< 91— p)B2(1 + (b 1 ba))” (12

M(1 —p)Ba(1 + az(ba + by)) (9 + 1)
aZ(9+2)
—~MR + MppPi(bg + b3)e+C < —1, (14)

€

~MR+ e+ B< -1, (13)
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2
< ras(¥ + 3) ’ (15)
2KM (1 — p)Ba(1 + az(bz + bs))
M(1 — 1 b b J+1
MR+ (1—p)Ba( '21‘@2( 2+ b4)) (0 + )e+D<—1, (16)
as(9+2)
r
~MR - s + E< L, (17)
M2 + 71
~MR- BT F <, (18)
13 + 72
~MR - B T <L (19)

Here B, C, D, E, F and J are positive constants defined in equations (20), (21), (22),
(23), (24), (25), respectively. Next, six domains are given in the following:

Ur={(S,[1,) e R}, 0< S < e}, Uy ={(S,I1,5) € R}, 0 < I1 < e},

Us={(S, 1, 1) eR3,0<h<e}, Us={(S1,L)ER, S>e'},

Us={(S,I1,b) eR%, I} > e '}, Us ={(S,I,,I2) €RY}, I, > e '}.

We need prove that LV (S, I1, I>) < —1onR3 \U. Itis clear that R \ U is equivalent
to Uy UU; UU3 U UL U Us U Us.

Case 1. If (S, I, I1) € Uy, due to

O+ 1+ 1912 (9 + 1)e € 9
I, <elr < = 17+2
2 S e g+2 T 942 Togar

we get

LV < —MR 4+ M1 -p)Ba(l +azlbz +ba))(9+1) 7 o3 H2tm o+

a3 (¥ +2) 2K D)
+ MbspBiI; — (“3 ‘2”2 M1 -p)(1 t gz (by + b4))e)I§+2 o
a5
< MR+ M(1—p)Ba(1 J; az(ba b)) +1) 5
a3(0+2)
where
B = sup {_7"519+3 _ (Ms Tt M1 -p)B(1 Jg s (by + b4))6)1§+2
(.1, 1)ers L 2K 2 2
W}fHJrMpﬁl(ngrbg)]lJro} 20)

According to (9), (12) and (13), we have that LV < —1.
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Case 2. If (S, 11,15) € Uy,

r : +
LV < =MR + Mpb(by + ba)]y — 5287 = FEZ L)+
M(1— 1 b+ b
_m;w§w+ ( M&:;%(TFObh+O
2

< —MR + Mppi(by + b3)e + C,

where
C = sup {—TSﬁ+3—'u2+’yllf+2—'u3+wlg+2
(S,I1,12)€ER3. 2K 2 2
M(1 — 1+ ao(bs +0
N ( p)ﬁ2(a2 2(be 4))512_%()}_
2

By (9) and (14) we obtain that LV < —1.
Case 3. If (S, I, I5) € Us, due to
(9 +2)e € co+3

I, < Se < ,
2 < Se 913 3
we have
LV < —MR + M(1 —p)ﬂ2(1v;oz2(b2 +b4))(19+2)6
a2(19+3)
(MO =p)B(1+ sy + b)) gois
_ /“LQTm[fH + MpBi(ba + b3)]1 — “3wa3+2 L0
M(l B p)/BQ(l + (12(()2 + b4))(19 + 2)
<—MR D.
+ a%(ﬁ—i—?)) €+
where

D = sup
(S,11,I2)€RY.

{_ (7’ _ M(1=p)Bs(1 +az(by + b4))e)sﬁ+3
2K a3(d +3)

+ +
et B %IfH + MppBi(ba + b3) I, — BT 5 725“2 +O}-

In view of (9), (15) and (16), we get that LV < —1.
Cased. If (S,I1,15) € Uy,

LV < —MR— ——g0+3 _ T g3 _ m]fﬂ _ m]gﬂ

AK 4K 2 2
M(1— 1+ ag(b2 +b
4 M p)@z(Q2 az (b2 4))S12+Mp51(b2+63)[1+0
2
,
S_MR_W_FE’

21

(22)
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where
E=  sup {_TS§+3 _ M2 e Ha 2 e
(S,11,12)€R? 4K 2 2
M(1— 1+ ba + b
4 M p)BQ(QQ 02002+ %)) g 4 MpBy (bs + b) Ty +o}. 23)
2

Together with (17), we have that LV < —1.
Case 5. If (S, I, I5) € Us,

H2 + Y1 ;942 o3 M2 TV gqe M3 T Y2 ;940
<-MR-E2T 2 SR IEMEY (RS Ry
Lv R 4 1 2KS 4 1 2 2

M(1— 1+ ag(by +b
+ M p)ﬁz(a2 azlb +b4)) o, + Mppi(by + b3)[1 + O
2
M2+ 7
S-MR-= 5 + 1
where
F = sup {_TSW_?’— M2+%If+2_ ,u3+721-§9+2
(S,11,I2)€RE. 2K 4 2
M(1— 1+ ag(b +b
4 M p)ﬁz(a2 az(bz +b4) gp Mppr(ba + b3) 11 + O}- 24)
2

By (18) we get that LV < —1.
Case 6. If (S, I, I3) € Us,

M3+ 72 0942 T o3 M2t Y1912 M3 T2 942
<-MR - B2 2T A ST Ry
LV R 4 2 2KS 2 ! 4 2

M(1 - 1+ (b +0
+ ( p)BQ(Oﬂ 2 (bz 4))512 + MppBi(ba 4 b3) 11 + O
2
3 + 72
< -MR - 4e9+3 +J
where
J=  sup {r go+a _ M2t o Ha 2 o
(5.11,I2)€RE. 2K 2 4
M(1 - 1+ as(bs +0b
i MU sl 20 g,y atp 0+ 0] 29
2

From (19) we derive that LV < —1 for all (S, I1, I5) € Us.
Clearly, € is small enough such that

LV(S, I, 1) < —1, (S, I1,I) e RY\U. O
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6 Numerical simulations

We construct the following equivalent model to facilitate computer simulation:

. _|rsein(1— SE)Y _ pBSUNLG)  (1—p)BSU) ()
SU+1) = { S(])(l K ) ar +S(j) as + I>(j)

—ulS 55 :|At+0'15 )\/ 5,

L(j+1)= {p&()() (p2 +71) 11 (j )}At—f—azfl( WAL,

a1 +5(j)
G+ 1) = [LEDESDLD) 401y (5)| e+ ata) VAo,

where £, (, n are independent random variables, At is the time taken divided by the step
size.

In system (2), let K = 4, r = 1.5, y3 = 0.1, 81 = 0.5, us = 0.1, By = 0.46,
u3 = 0.07, 01 = 03,2 =06, = 04,7, = 0.1, 2 = 0.1, p = 0.8, 01 = 0.15. With
the changes of o2 and o3, the diseases I; and I» will be extinct or persistent.

In each figure below, every figure has two subfigures. The first subfigure represents
the development trend of S(t), I1(t), I2(t), respectively. The second subfigure is the
probability density of S(t), I1(t), I2(t). From Theorem 3 we know that the diseases I;(t)
(2 = 1,2) will be extinct when R; < 1 (z = 1,2). When R; > 1 (+ = 1, 2), the diseases
will be persistent.

In our simulations, we only consider the influence with the changes in white noise on
the disease. When the values of white noises are large than a certain value, the disease
will be extinct. When the white noise is less than a certain value, the disease will be
persistent. The figures are consistent with the theorem in our paper.

a b C
5 (a) 5 (b) 5 (©)
‘ 4 4
= _3 3
@3 - Y
2 2
2 1 1
1 0 0
0 500 1000 0 500 1000 0 500 1000
t t t
al b1 c1
0.02 @) 1 1) 1 1
0.015
2 > 2
2 0.01 205 205
[ Q i
=] [=] [=]
0.005
0 0 0
2 3 4 0 2 4 0 2 4 6
$(1000) 1,(1000) 1,(1000)

Figure 1. Extinction of I (¢) and I2(t).
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Figure 2. I (¢) is persistent and I (¢) is extinct.
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Figure 3. Persistence of I (¢) and I2(¢).
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In Fig. 1, we let 0o = 0.8 and 03 = 0.75. By calculating we obtain that 31 =
0.6899 < 1 and Ry = 0.7334 < 1, then the conditions of Theorem 3 hold. So I (¢) and

I5(t) are extinct.

In Fig. 2, we let 02 = 0.1 and 03 = 0.7. By calculating we gain that 8; = 1.75 > 1
and Ry = 0.785 < 1, which satisfy condition (i) of Theorem 4. We can obtain that [; ()
is persistent (see Fig. 2(e)) and I2(t) is extinct (see Fig. 2(f)).

In Fig. 3, we let 0o = 0.1 and o3 = 0.1. By calculating we get that 9R; = 1.75 > 1
and Ry = 1.4701 > 1, then condition (iii) of Theorem 4 holds. So I;(t) and I5(t) are

persistent.

In Fig. 4, we simulate the influence of different noise intensities on system (2). It is
found that as the intensity of white noise increases, the number of infections will decrease.
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Figure 4. The influence of different noise intensities on the system (2).

In addition, as time goes on, it shows periodic outbreaks and the duration of the outbreak
is shortened.

Diseases are always affected by various noises in the environment, then the changes of
environmental noise can lead to changes in diseases. According to Theorems 3 and 4, the
conditions of extinction and persistence in mean about system (2) have been established.
These theorems are in fact a development of the papers by Cai [2], Liu [16] and Meng
[21]. Furthermore, we used a new stochastic method to investigate the extinction and
persistence, which is different from the previous works [2, 6,7, 16, 18, 21]. The results
that obtained in the present work can be applied to stochastic model of proportional
disturbance. The obtained theory is a positive and effective guidance for cross infection.
Many diseases, such as diphtheria, typhoid and influenza, are cured, the susceptible class
can have permanent immunity. This feature can be well reflected in this model.

The model can introduce telephone noises such as continuous time Markov chain
[5,17,27]. We only study one susceptible person, and we can study multiple susceptible
persons. We also can investigate a susceptible person infected with more than three dis-
eases [32]. We can explore the periodic solution of the epidemic model [23]. The impact
of white noise on not only mortality rate but also infection rates also will be considered.
The methods also can be used in stochastic food chain models [26,31]. In our future
work, we will solve these problems.

7 Conclusion

This paper provides a modeling framework based on stochastic differential equations to
explore the long-term dynamics of epidemic cross-infection with SIR epidemiological
laws. Since the interaction between the disease and the environment is full of stochasticity,
it is of great practical significance to explore the mechanism of environmental stochastic-
ity on the dynamics of infection. For this reason, we assumed that each component of
the population is subject to environmental stochasticity, which is positively correlated
with the density of each component of the population. In addition, in view of the fact
that immunization is widely used in the control of epidemic diseases and has achieved
miraculous achievements repeatedly, we also considered the impact of immunization on
the spread of diseases. With the help of stochastic analysis tools and auxiliary systems, we
studied the properties of the global positive solution of the proposed system. Furthermore,
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we provided our main theoretical results including the extinction, persistence and the
existence of a unique stationary distribution of the proposed model. The results show
that: (i) When R; < 1, j = 1,2, both types of diseases will be extinct with probability
one. Since the intensities of environmental stochasticities o;, @ = 2,3, are negatively
correlated with the conditions for extinction i, j = 1, 2, respectively, which indicates
that environmental stochasticity is not conducive to the survival of the diseases. (ii) When
M1 > 1land Ry < 1, I;(t) will be persistent in the mean, while I5(¢) will be extinct;
when R; < 1 and Ry > 1, I5(t) will be persistent in the mean, while I, (¢) will be
extinct; when R; > 1, j = 1,2, both I;(t) and I5(t) will be persistent in the mean.
Similar to the item (ii), this result suggests that small stochasticity is beneficial to the
survival of the diseases. (iii) When R; > 1 and the parameters meet some other con-
straints (see Theorem 5 for detail), the stochastic system has a unique ergodic stationary
distribution. Ergodicity means that the statistical properties of the stochastic system will
not change over time, which allows us to estimate the contour of the stationary distribution
by simulating a trajectory of the solution. In this scenario, the results also indicate that the
small stochasticity is necessary for the existence of the stationary distribution, i.e., small
stochasticity contributes to the survival of the diseases.

This work is just our preliminary exploration of how stochasticity affects the dy-
namics of disease transmission. In order to have a more comprehensive understanding
of the interaction between environmental stochasticity and the diseases, the following
explorations are needed: (i) The type of stochasticity considered in this article is white
noise, and in complex actual environments, there are other types of stochasticity such
as telegraph noise [5, 17]. It has practical significance to investigate how these different
types of noise synergistically affect the spread of diseases. (ii) This article only considers
the situation of one type of susceptibles. Next, we can explore more complex scenarios
such as by including more than three types of diseases [32]. (iii) This article assumes
that stochasticity is positively correlated with the density of each component. Next, we
can also consider the situation where stochasticity mainly perturbs the infection rate,
which will induce a different stochastic system with degenerate diffusion terms, and its
theoretical analysis is also more challenging.
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