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Abstract. It is well known that integer-order neural networks with diffusion have rich spatial
and temporal dynamical behaviors, including Turing pattern and Hopf bifurcation. Recently, some
studies indicate that fractional calculus can depict the memory and hereditary attributes of neural
networks more accurately. In this paper, we mainly investigate the Turing pattern in a delayed
reaction–diffusion neural network with Caputo-type fractional derivative. In particular, we find that
this fractional neural network can form steadily spatial patterns even if its first-derivative counterpart
cannot develop any steady pattern, which implies that temporal fractional derivative contributes to
pattern formation. Numerical simulations show that both fractional derivative and time delay have
influence on the shape of Turing patterns.

Keywords: fractional derivative, neural network, Turing instability, pattern formation, reaction–
diffusion.

1 Introduction

In the past few years, neural networks have attracted much attention in different fields
of science and engineering, owing to their valuable applications in associative mem-
ory, combinatorial optimization, image processing and so on [5, 13]. Some of the above
applications are based on the dynamical behavior analysis of neural networks [2]. Ac-
tually, neural networks are realized by large-scale integrated circuits, and the density
of electromagnetic fields is generally not uniform. Therefore, in factual modeling, only
considering the change of time seems to be not comprehensive when electrons are moving
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in asymmetric and nonuniform electromagnetic fields [21,22]. Due to the reaction–diffusion
effect, neural networks have rich spatial and temporal dynamical behaviors, like various
Turing patterns.

Spatial dynamics in reaction–diffusion systems was originally proposed by Turing
in the work of [23], which mainly focuses on chemical reaction systems. This pioneer
work not only established the theoretical foundation for understanding diverse patterns
occurring in the natural world, but also opened a new research field, namely, pattern
dynamics, which has received extensive attention and is still a hot topic in many fields
such as species dynamics [7,27,28], medicine [26,31], networks [4,14,29]. Based on the
reaction–diffusion theory of Turing, Chua and Goraş [4] investigated the phenomenon of
pattern formation in cellular neural networks. Recently, Zhao et al. [29] studied the con-
ditions of Hopf bifurcation and Turing instability in a reaction–diffusion neural network,
where the corresponding model is described as follows:

∂u(x, y, t)

∂t
= d1∆u(x, y, t)− c1u(x, y, t)

+ a1 tanh
(
v(x, y, t)

)
+ b1 tanh

(
u(x, y, t)

)
,

∂v(x, y, t)

∂t
= d2∆v(x, y, t)− c2v(x, y, t)

+ a2 tanh
(
u(x, y, t)

)
+ b2 tanh

(
v(x, y, t)

)
(1)

in which u(x, y, t), v(x, y, t) stand for state variables of neurons at time t and spatial
position (x, y); ci > 0 (i = 1, 2) denote the rates of resetting neuronic potential to the
resting state in isolation; ai, bi (i = 1, 2) represent connection weights; ∆ = ∂2/∂x2 +
∂2/∂y2 is the Laplacian operator in a two-dimensional space; di > 0 (i = 1, 2) are
diffusion coefficients of electrons among neurons.

Traditional neural networks, such as system (1), are mainly established from the view
of integer-order derivatives, which can be described by classical ordinary differential
equations. From the perspective of the application the integer-order derivative is used to
describe some properties at a certain time in physical processes or some local properties
of a certain position. In recent years, experimental research indicates that fraction-order
derivatives provide an excellent tool for the description of memory and hereditary prop-
erties of various materials and processes [1, 15]. Generally speaking, plenty of practical
objects can be described clearly by the fractional differential equations due to their more
degrees of freedom and infinite memory. Thus, the research of fractional neural networks
has gained much attention, and some valuable results have been referred to [9–12, 20].

Besides, due to the finite speed of signal transmission and amplifiers switching, time
delay exists unavoidably in neural networks, which is known as transmission delay. Usu-
ally, the time delay is harmful to the stability performance of neural networks, causing
oscillation, even chaos. Zhao et al. [30] introduced the transmission delay into a discrete-
time Hopfield neural network model and showed that Hopf bifurcation occurs when the
delay exceeds a critical value.

In [8], fractional calculus is used in electrical circuits that possess memory and hered-
itary properties, which is similar to the integrated circuits of Hopfield neural network.
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Moreover, since fractional calculus is a generalization of conventional calculus, it is
expected that fractional models will generally provide a more accurate description of
the system dynamics than those based on classical differential equations [17]. In order
to describe the memory and hereditary properties of Hopfield neural network, fractional
order q is introduced into our model. Besides, time delay τ1 and τ2 are considered,
which accounts for the finite speed of signal transmission and amplifiers switching in
integrated circuits. Furthermore, it is generally assumed that the reaction–diffusion terms
in system (1) play a conclusive role in pattern formation. A question arises naturally
whether temporal fractional derivative has some relationship with pattern formation. To
be specific, can the fractional reaction–diffusion neural network produce steadily spatial
patterns even if its first-derivative counterpart cannot form any steady pattern? To this
end, we consider the following delayed fractional reaction–diffusion neural network:

∂qu(x, y, t)

∂tq
= d1∆u(x, y, t)− c1u(x, y, t)

+ a1f
(
v(x, y, t− τ1)

)
+ b1f

(
u(x, y, t)

)
,

∂qv(x, y, t)

∂tq
= d2∆v(x, y, t)− c2v(x, y, t)

+ a2f
(
u(x, y, t− τ2)

)
+ b2f

(
v(x, y, t)

)
(2)

with initial condition

u(x, y, θ) = φu(θ), v(x, y, θ) = φv(θ), (x, y) ∈ Ω,
satisfying

φu(θ), φv(θ) > 0, θ ∈ [−τ, 0), φu(0), φv(0) > 0,

and Neumann boundary condition

∂u(x, y, t)

∂n
=
∂v(x, y, t)

∂n
= 0, (x, y) ∈ ∂Ω,

where q ∈ (0, 1] is the fractional order; τ1 and τ2 are transmission delay that reflects the
time-lag effect; f(·) denotes the activation function, which maps the input to the output
of the neuron; a square domain Ω = (0, L) × (0, L) in which L is a positive bounded
constant; n is the outward unit normal vector of the boundary ∂Ω that is assumed to be
smooth; other variables and parameters are similar to those in system (1). For simplicity,
let τ = τ1 = τ2. The Neumann boundary condition implies that nothing enters this system
and nothing exits from this system.

The main contributions of this paper can be summarized as follows: (i) By theo-
retical analysis and numerical simulations, the paper illustrates that temporal fractional
derivative contributes to pattern formation in system (2); (ii) Fractional derivative can
soften the stability conditions of the homogeneous steady state, which implies that when
fractional-order q = 1, Hopf bifurcation occurs in system (2), but once q < 1, the homo-
geneous steady state may become stable; (iii) To avoid complicated and tedious MATLAB
programming, numerical simulations are mainly completed by Simulink, which is more
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efficient and can visually represent the interrelationships of neuron states; (IV) Numerical
simulations indicate that the fractional derivative is related to the shape of the Turing
pattern. Besides, as the fractional derivative decreases, it softens the Turing instability
conditions of system (2).

This paper is organized as follows. In Section 2, we first analyze the existence of
Hopf bifurcation and obtain the parameter sets, where the homogeneous steady state of
system (2) is stable. Furthermore, we present and discuss the results of Turing instability
and pattern formation, which will be illustrated by numerical simulations in Section 3.
The paper ends with a conclusion in Section 4.

2 Hopf bifurcation and Turing instability

Throughout this paper, we address the following assumption holds.

(H1) f ∈ C(R,R), f(0) = 0, zf(z) > 0 for z ∈ R, z 6= 0.

2.1 Hopf bifurcation

The homogeneous steady state of system (2) is E0 = (0, 0). In this subsection, we focus
on the local asymptotic stability ofE0, which is useful for Turing instability analysis. The
linear perturbation equations with respect to E0 are

∂qu(x, y, t)

∂tq
= d1∆u(x, y, t)− c1u(x, y, t)

+ φ1v(x, y, t− τ) + ϕ1u(x, y, t),

∂qv(x, y, t)

∂tq
= d2∆v(x, y, t)− c2v(x, y, t)

+ φ2u(x, y, t− τ) + ϕ2v(x, y, t),

(3)

where φi = aif
′(0), ϕi = bif

′(0), i = 1, 2. Expand the perturbation variables in the
Fourier space (

u
v

)
=

∞∑
k1=0

∞∑
k2=0

(
r1(k1,k2)
r2(k1,k2)

)
eλt+i(k1x+k2y), (4)

where λ is the growth rate of perturbations in time t, i is the imaginary unit and i2 = −1.
In order to facilitate the analysis, let k = k1 = k2. Substituting (4) into (3), we obtain the
characteristic equation as follows:

λ2q + p1(k)λq + p2(k) + re−2τλ = 0, (5)
where

p1(k) = k2d1 + k2d2 + c1 + c2 − ϕ1 − ϕ2,

p2(k) =
(
c1 − ϕ1 + k2d1

)(
c2 − ϕ2 + k2d2

)
, r = −φ1φ2.

To find possible periodic solutions, which may bifurcate from a Hopf bifurcation point,
let λ = iω (ω > 0 is a real number) be a root of (5). Separating the real and imaginary
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parts yields

cos(qπ)ω2q + p1(k) cos
qπ

2
ωq + p2(k) + r cos(2ωτ) = 0,

sin(qπ)ω2q + p1(k) sin
qπ

2
ωq − r sin(2ωτ) = 0.

(6)

It follows that

ω4q + 2p1(k) cos
qπ

2
ω3q +

[(
p1(k)

)2
+ 2p2(k) cos(qπ)

]
ω2q

+ 2p1(k)p2(k) cos
qπ

2
ωq +

(
p2(k)

)2 − r2 = 0. (7)

From the first equation of (6) we have for n = 0, 1, . . . ,

τ (n) =
1

2ω

{
arccos

[
−1

r

(
cos(qπ)ω2q + p1(k) cos

qπ

2
ωq + p2(k)

)]
+ 2nπ

}
,

Define the bifurcation point of system (2) as τ0 = min{τ (n)}. To establish the main
results of this section, we list the following assumptions.

(H2) Equation (7) has no positive real root.
(H3) Equation (7) has at least one positive real root.
(H4) (Φ1Ψ1 + Φ2Ψ2)/(Ψ2

1 + Ψ2
2 ) 6= 0, where Φi, Ψi (i = 1, 2) will be defined in

Lemma 2.

Define a parameter set

Π1 =
{

(c1, c2, φ1, φ2, ϕ1, ϕ2) ∈ R2
+ × R4

∣∣ p1(k) > 0, p2(k) + r > 0
}
,

where E0 is locally asymptotically stable when τ = 0 and q = 1. For τ = 0 and q ∈
(0, 1), we first introduce the following lemma.

Lemma 1. (See [16].) The following autonomous system

∂qz

∂tq
= Jz, z(0) = z0,

where 0 < q < 1, z ∈ Rn, J ∈ Rn×n, is asymptotically stable if and only if | arg(λi)| >
qπ/2 (i = 1, 2, . . . , n). In this case, each component of the states decays towards 0 like
t−q . Also, this system is asymptotically stable if and only if | arg(λi)| > qπ/2 and those
critical eigenvalues that satisfy ‖ arg(λi)| = qπ/2 have geometric multiplicity one.

From Lemma 1 we obtain that the homogeneous steady state E0 is locally asymptoti-
cally stable if the following inequalities hold: |arg(λi)| > qπ/2, i = 1, 2. Similarly, we
define the following parameter set:

Π2 =

{
(c1, c2, φ1, φ2, ϕ1, ϕ2, q) ∈ R2

+ × R4 × (0, 1)
∣∣∣ ∣∣arg(λi)

∣∣ > qπ

2

}
,

where E0 is locally asymptotically stable for τ = 0 and q ∈ (0, 1).

Nonlinear Anal. Model. Control, 27(5):823–840, 2022
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In conclusion, when τ = 0, the homogeneous steady state E0 is stable if the parame-
ters ϕ1 and ϕ2 are in the set Π1 ∩Π2.

Lemma 2. Let λ(τ) = µ(τ) + iω(τ) be the root of Eq. (5) near τ = τ0 satisfying
µ(τ0) = 0, ω(τ0) = ω0, then the following transversality condition holds:

Re

[
dλ

dτ

]∣∣∣∣
τ=τ0

6= 0.

Proof. Based on implicit function theorem, we calculate the derivative of Eq. (5) with
respect to τ as follows: dλ/dτ = Φ(λ)/Ψ(λ), where Φ(λ) = 2λre−2τλ, Ψ(λ) =
2qλ2q−1+p1(k)qλq−1−2τre−2τλ. The real part of dλ/dτ at τ = τ0 is Re[dλ/dτ ]|τ=τ0 =
(Φ1Ψ1 +Φ2Ψ2)/(Ψ2

1 + Ψ2
2 ), where Φ1 and Φ2 are the real and imaginary parts of Φ(iω0),

respectively; Ψ1 and Ψ2 are the real and imaginary parts of Ψ(iω0), respectively. Based
on assumption (H4), the transversality condition is met.

Theorem 1. For system (2), the following results hold:

(i) If (ϕ1, ϕ2) stays in the set Π1 ∩Π2 and (H2) holds, then the homogeneous steady
state is locally asymptotically stable for τ ∈ [0,+∞).

(ii) If (ϕ1, ϕ2) stays in the set Π1 ∩Π2 and (H3), (H4) hold, then

(a) The homogeneous steady state is locally asymptotically stable for τ ∈ [0, τ0).
(b) System (2) undergoes a Hopf bifurcation at the homogeneous steady state

when τ = τ0, i.e., it has a branch of periodic solutions bifurcating from the
homogeneous steady state near τ = τ0.

Choose (ϕ1, ϕ2) as free parameters and project the parameter sets Π1 and Π2 into
a two-dimensional space with respect to (ϕ1, ϕ2). From the conditions of parameter
sets Π1 and Π2 we draw the stability regions of E0. In Fig. 1, the parameter set Π1

corresponds to region A (green), while Π2 corresponds to the region B (yellow). Region
B implies that temporal fractional derivative can enlarge the stability region of E0.

Figure 1. The bifurcation diagram of the parameters ϕ1 and ϕ2 with c1 = 2, c2 = 4, φ1 = −4, φ2 = 2,
τ = 0, where the position of the mark “×” is (2, 3), and the one of “∗” is (3, 4). The two solid (blue) lines
come from the conditions of Π1, while the dashed (orange) line comes from the condition of Π2.

https://www.journals.vu.lt/nonlinear-analysis
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2.2 Turing instability

Next, we will verify that system (2) can form steadily spatial patterns even if its first-
derivative counterpart cannot develop any steady pattern. Firstly, we discuss the Turing
instability of system (2). The unbalanced changes of phases, corresponding to Turing
branches, are the transitions of system (2) from the uniform state to the oscillatory state
[29, 32]. After the process, the formed patterns are called Turing patterns. From (5) we
obtain the necessary conditions for causing Turing instability when τ = 0:

ϕ1 + ϕ2 − c1 − c2 < 0, (8)
(c1 − ϕ1)(c2 − ϕ2)− φ1φ2 > 0, (9)

d1d2k
4 −

[
(ϕ2 − c2)d1 + (ϕ1 − c1)d2

]
k2

+ (c1 − ϕ1)(c2 − ϕ2)− φ1φ2 < 0. (10)

Conditions (8)–(10) indicate that system (2) is unstable for some perturbations to the wave
number k. Thus, we obtain that detk(J) = 0 at the critical value. That is to say, Turing
bifurcation occurs when Im(λk) = 0, Re(λk) = 0 at k = kc 6= 0 [19]. When Turing
patterns come into being, the wave number kc satisfies

k2c =
(ϕ2 − c2)d1 + (ϕ1 − c1)d2

2d1d2
.

Based on above discussions, we get the following result.

Lemma 3. If the parameters ϕ1 and ϕ2 are in the set Π1 ∩ Π2 and the following
conditions hold

d1(ϕ2 − c2) + d2(ϕ1 − c1) > 0, (11)[
d1(ϕ2 − c2) + d2(ϕ1 − c1)

]2 − 4d1d2
[
(c1 − ϕ1)(c2 − ϕ2)− φ1φ2

]
> 0, (12)

then Turing instability in system (2) occurs when τ = 0.

When τ 6= 0, Turing instability occurs when λ→ 0, namely, p2(k)+ r → 0, and then
we have the following Turing instability curve:

ϕ∗2(ϕ1) = c2 + k2d2 −
φ1φ2

c1 − ϕ1 + k2d1
.

Letting ϕ2(k) = ϕ2(k + 1) yields

ϕ∗1(k, k + 1) =
2c1 + (2k2 + 2k + 1)d1

2
±

√
(2k + 1)2d21

4
− φ1φ2d1

d2
.

Denote

Π3 =
{

(c1, c2, φ1, φ2, ϕ1, ϕ2) ∈ R2
+ × R4

∣∣ (11) and (12) hold
}
.

We set (ϕ1, ϕ2) as free parameters, then project the parameter set Π3 into a two-
dimensional space with respect to (ϕ1, ϕ2). From Fig. 2 we observe that Π1 ∩Π2 ∩Π3

corresponds with regions C (green) and D (yellow), where the Turing instability occurs.

Nonlinear Anal. Model. Control, 27(5):823–840, 2022
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Figure 2. The bifurcation diagram of the parameters ϕ1 and ϕ2 with d1 = 0.1, d2 = 1.6, c1 = 2, c2 = 4,
φ1 = −4, φ2 = 2, where the position of the mark “∗” is (4, 1) and the one of “+” is (3.5, 3). The dashed (red)
lines come from the conditions ofΠ3, while the dot-and-dash (green) lines corresponds toϕ∗

2(ϕ1) when k = 2.

When the fraction order q = 1, the Turing instability region only consists of region C.
That is to say, region D is the enlarged region, where Turing instability is caused by
fractional derivatives and reaction–diffusion terms together.

Theorem 2. If (ϕ1, ϕ2) stays in Π1 ∩Π2 ∩Π3, we obtain the following results:

(i) For ϕ1 ∈ [ϕ∗1(k−1, k), ϕ∗1(k, k+ 1)), system (2) will undergoes k-mode Turing
bifurcation at ϕ2 = ϕ∗2(ϕ1);

(ii) When ϕ1 = ϕ∗1(k, k + 1), (k, k + 1)-mode Turing–Turing bifurcation occurs at
ϕ2 = ϕ∗2(ϕ∗1(k, k + 1)).

Remark 1. Usually, the curves of ϕ∗2(ϕ1) with k ∈ N may reduce the area of Turing
instability region. In Fig. 2, regions C and D are exactly below the curve of ϕ∗2(ϕ1) with
k = 2, and the Turing–Turing bifurcation point with k = 1 is on the left side of regions C
and D. Thus, in this paper, the curves of ϕ∗2(ϕ1) with k ∈ N make no difference with the
Turing instability region.

3 Numerical simulations

Numerical algorithms for reaction–diffusion systems are often complicated, which need
tedious MATLAB programming. Garvie [6] proposed a semiimplicit (in time) finite-
difference scheme to approximate the solutions of reaction–diffusion systems. The semi-
implicit method means this algorithm involves approximations at the current time level tn
and at the previous time level tn−1. The corresponding algorithm is reduced to a sparse,
banded and linear system of algebraic equations. In this section, we use Simulink to
simplify the programming, which is more efficient and visually represents the interrela-
tionships of neuron states. Simulink is graphical programming that is easy for nonpro-
fessional scholars to program and realize the equivalent effect gained by MATLAB code.
Besides, we can utilize user-defined MATLAB function blocks in Simulink, which takes
full advantage of MATLAB code and Simulink.

https://www.journals.vu.lt/nonlinear-analysis
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Firstly, we give the following result about the Laplacian operator, which is used for
the approximate calculation of reaction–diffusion terms. By means of the finite-difference
scheme mentioned in [6, 25], the Laplacian with respect to the concentration field w in
the node (i, j) is calculated along the x and y directions simultaneously:

∆2w(i, j, tn) ≈ ∆2
xw(i, j, tn)

h2x
+
∆2
yw(i, j, tn)

h2y
, (13)

where

∆2
xw(i, j, tn) = w(i+ 1, j, tn)− 2w(i, j, tn) + w(i− 1, j, tn),

∆2
yw(i, j, tn) = w(i, j + 1, tn)− 2w(i, j, tn) + w(i, j − 1, tn).

hx and hy in Eq. (13) are x and y grid spacings, respectively. Assume h = hx = hy and
discretize Laplacian operation in a two-dimensional domain Ω:

∆2w(i, j, tn) ≈ w(i+ 1, j, tn) + w(i− 1, j, tn)

h2
− 4w(i, j, tn)

h2

+
w(i, j + 1, tn) + w(i, j − 1, tn)

h2
. (14)

From (14) the two-dimensional Laplacian operator is

∆2 ≈ L =
1

h2

0 1 0
1 −4 1
0 1 0

 .
Following the approach of the modified Adams–Bashforth–Moulton predictor–correc-

tor scheme mentioned in [3], we derive the approximate numerical values of the fractional
derivatives with delay. Denote ∆t as the time-step. Consider a uniform grid {tn = n∆t:
n = −k,−k + 1, . . . ,−1, 0, 1, . . . , N}, where k and N are integers such that k = τ/∆t
and N = T/∆t. Discretize the initial condition

u(tj) = φu(tj), v(tj) = φv(tj), j = −k,−k + 1, . . . ,−1, 0.

Besides, the delayed terms can be rewritten as follows:

u(tj − τ) = u(j∆t− k∆t) = u(tj−k),

v(tj − τ) = v(j∆t− k∆t) = v(tj−k),

where j = 0, 1, . . . , N . The iteration formulas from u(tn), v(tn) to u(tn+1), v(tn+1) are

u(tn+1) = φu(0) +
(∆t)q

Γ(q + 2)
F1

(
tn+1, ũ(tn+1), ṽ(tn+1)

)
+

hq

Γ(q + 2)

n∑
j=0

aj,n+1F1

(
tj , u(tj), v(tj)

)
,

Nonlinear Anal. Model. Control, 27(5):823–840, 2022
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v(tn+1) = φv(0) +
(∆t)q

Γ(q + 2)
F2

(
tn+1, ũ(tn+1), ṽ(tn+1)

)
+

hq

Γ(q + 2)

n∑
j=0

aj,n+1F2

(
tj , u(tj), v(tj)

)
,

where the discrete right-hand terms in system (2) are

F1

(
tn, u(tn), v(tn)

)
= d1∆u(tn)− c1u(tn) + a1f(vn−k) + b1f

(
u(tn)

)
,

F2

(
tn, u(tn), v(tn)

)
= d2∆v(tn)− c2v(tn) + a2f(un−k) + b2f

(
v(tn)

)
,

and the predictor terms are

ũ(tn+1) = φu(0) +
1

Γ(q)

n∑
j=0

bj,n+1F1

(
tj , u(tj), v(tj)

)
,

ṽ(tn+1) = φv(0) +
1

Γ(q)

n∑
j=0

bj,n+1F2

(
tj , u(tj), v(tj)

)
.

In addition, aj,n+1 and bj,n+1 are defined as

aj,n+1 =


nq+1 − (n− q)(n+ 1)q if j = 0,

(n− j + 2)q+1 + (n− j)q+1 − 2(n− j + 1)q+1 if 1 6 j 6 n,

1 if j = n+ 1,

bj,n+1 =
(∆t)q

q

(
(n+ 1− j)q − (n− j)q

)
.

System (2) is simulated numerically in a 100 × 100 two-dimensional square region.
Time step and space step are set as 0.005 and 0.5, respectively, which needs large amount
of computation but ensures the accuracy of numerical simulations. Diffusion coefficients
(d1, d2) are chosen as (0.1, 1.6). Besides, c1 = 2, c2 = 4, a1 = −4, a2 = 2. b1 and
b2 are chosen as free parameters. Simulink construction of system (2), as we can see in
Fig. 3, consists of some blocks and lines. Each block can realize different functions and is
connected with others by data flow lines. The main blocks are 2D Convolution and user-
defined MATLAB function. The 2D convolution completes the approximate calculation of
the reaction–diffusion terms by two-dimensional Laplacian operator L. The user-defined
MATLAB function realizes the integration of the right-hand terms in system (2) by the
above modified Adams–Bashforth–Moulton predictor–corrector scheme.

When fractional order q = 1 and τ = 0, system (2) becomes a first-derivative system.
Activation function f(·) is selected as tanh(·), where b1 = ϕ1 and b2 = ϕ2. Set (b1, b2)
as (4, 1) (marked by “∗”) and (3.5, 3) (marked by “+”), respectively (as we can see in
Fig. 2). Figures 4 and 5 are the two-dimension spatial states of neurons u(x, y, t) and
v(x, y, t) at some moments, respectively. On account of diffusion, neuronic states not
only vary in time, but also change in space. What is interesting is that spatial states take
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Figure 3. Simulink construction of system (2) with q ∈ (0, 1).

on particular shapes. Comparing the figures of u(x, y, t), v(x, y, t)( T = 50) with the
figures of u(x, y, t), v(x, y, t) (T = 100) in Fig. 4, we observe that system (2) forms
steady Turing patterns. Furthermore, when (b1, b2) is (3.5, 3), we observe in Fig. 5 that
as the time T increases from 50 to 100, the figures of u(x, y, t), v(x, y, t) (T = 50) are
different from the figures of u(x, y, t), v(x, y, t) (T = 100), which means that under this
condition, system (2) cannot induce any steady Turing pattern.

As we can observe in Fig. 6, system (2) with q = 0.79 can form steady spatial patterns.
Comparing it with Fig. 5, we know that system (2) form steadily spatial patterns even if its
first-derivative counterpart cannot develop any steady pattern. Hence, these patterns are
induced by temporal fractional derivative and reaction–diffusion terms together, which
corresponds with region D in Fig. 2. Furthermore, to investigate the relationship between
fractional derivative and Turing pattern, we change the fractional order q as 0.72 or
0.87. From Figs. 7 and 8 we observe that the shape of Turing patterns varies with the
fractional order q. Obviously, when q = 0.72, the patterns of u(x, y, t) and v(x, y, t)
become various steady types. When q = 0.87, the stability performance of the patterns of
u(x, y, t) and v(x, y, t) is a little weak. In Fig. 8, when the time T increases from 50 to
100, the center patterns change to some extent.

It rises a question that whether temporal fractional derivative has some relationship
with the locally asymptotical stability region or Turing instability region with respect to
(ϕ1, ϕ2). From the left figure in Fig. 9 we obtain that the stability region of E0 varies
with fractional order q. As q increases from 0.72 to 0.79, the stability region of E0 loses
region D instead. Increasing q from 0.79 to 0.87 continuously, the stability region does
not contain region C, namely, when q = 0.87, E0 is stable when (ϕ1, ϕ2) only stays
in regions A and B. Besides, we wonder how the Turing instability region induced by
fractional derivatives and reaction–diffusion terms together varies with fractional order q.
From the right figure in Fig. 9, when q = 0.72, the Turing instability region induced by
fractional derivatives and reaction–diffusion terms together consists of regions E, F and G.
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Figure 4. The steadily spatial patterns of u(x, y, t) and v(x, y, t) of system (2) in two-dimension square domain
with τ = 0, q = 1, d1 = 0.1, d2 = 1.6, c1 = 2, c2 = 4, a1 = −4, a2 = 2, b1 = 4 and b2 = 1. The initial
condition is chosen as u(0) = ((x−50)2+0.2(y−50)2) < 250, v(0) = (0.2(x−50)2+(y−50)2) < 250.

Figure 5. The unsteadily spatial patterns of u(x, y, t) and v(x, y, t) of system (2) in two-dimension square
domain with q = 1, b1 = 3.5 and b2 = 3 and other parameters are similar to those in Fig. 4.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Turing instability and pattern formation of a fractional neural network 835

Figure 6. The steadily spatial patterns of u(x, y, t) and v(x, y, t) for system (2) in two-dimension square
domain with q = 0.79, b1 = 3.5 and b2 = 3 and other parameters are similar to those in Fig. 5.

Figure 7. The steadily spatial patterns of u(x, y, t) and v(x, y, t) for system (2) in two-dimension square
domain with q = 0.72 and other parameters are similar to those in Fig. 6.
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Figure 8. The unsteadily spatial patterns of u(x, y, t) and v(x, y, t) for system (2) in two-dimension square
domain with q = 0.87 and other parameters are similar to those in Fig. 6.

Figure 9. The bifurcation diagram of the parameters ϕ1 and ϕ2 with different fractional orders.

As q increases, the corresponding Turing instability region shrinks to region E, that is to
say, when (ϕ1, ϕ2) stays in regions F and G, system (2) with q = 0.87 cannot form steady
Turing patterns.

Remark 2. Due to that time delay widely exists in the neural network, we investigate the
impact of transmission delay on Turing patterns. As we observe in Fig. 10, the patterns
of u(x, y, t) and v(x, y, t) are more complicated than the patterns of those in Figs. 4–5
(a nondelay integer-order subsystem of system (2)) and Figs. 6–8 (a nondelay fractional-
order subsystem of system (2)). Compared with Fig. 6, as τ increase from 0 to 0.6, Turing
patterns change unpredictably and become unstable.
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Figure 10. The unsteadily spatial patterns of u(x, y, t) and v(x, y, t) for system (2) in two-dimension square
domain with q = 0.79, τ = 0.6 and other parameters are similar to those in Fig. 6.

Figure 11. The bifurcation diagrams of u(0, 0, ·) and v(0, 0, ·) with respect to the parameter τ ∈ [0, 1].

Remark 3. As shown in Fig. 11, the central points of u(x, y, t) and v(x, y, t) are selected
to study the bifurcation diagrams of system (2) with respect to transmission delay τ .
u(0, 0, ·) and v(0, 0, ·) stay in stable state when τ < τ0 = 0.06 and oscillate greatly as
τ exceeds τ0, where τ0 can be seen as the critical value of Hopf bifurcation. Hence, as
the transmission delay increases, Turing patterns lose its stability, and state variables of
neurons vary in both time and space. Furthermore, when τ < τ0 and fractional order
is in a certain section, a stable Turing pattern may occur, which is induced by temporal
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fractional derivative and reaction–diffusion terms together; when τ > τ0, no matter how
fractional order changes, the stable Turing pattern is hard to form.

4 Conclusion

In this paper, we proposed a delayed reaction–diffusion neural network with the Caputo-
type fractional derivative. The condition of Hopf bifurcation was obtained firstly through
analyzing relevant characteristic equation, while the condition of Turing instability was
derived following the pattern dynamics theory proposed by [23]. Especially, we found that
fractional derivative has a certain relationship with Hopf bifurcation and Turing pattern.
To be specific, the fractional derivative could enlarge the stability region of homoge-
neous steady state E0 concerning (ϕ1, ϕ2), which means that when the first-derivative
counterpart of system (2) is unstable at E0, but once introducing fractional derivative,
E0 may become stable again. Besides, as the fraction derivative decreases, it softens
the Turing instability conditions of system (2). With the help of Simulink, we obtained
the approximation solutions of system (2). Numerical simulations show that temporal
fractional derivative contributes to Turing patterns in system (2), which accords with the
previous theoretical analysis. Meanwhile, we found that the shape of the Turing pattern
is related to the fraction order and the time delay.

Pattern dynamics in neural networks with diffusion has been investigated in [4,14,29],
but previous research does not consider fractional derivative. In our study, we illustrate
the impact of fractional derivative on spatial and temporal dynamics for system (2) and
obtain plenty of meaningful findings. [29] obtained the amplitude equations for system (1)
and studied the selection of Turing patterns. Due to the existence of fractional derivative,
it is difficult for us to obtain the amplitude equations of system (2). In our further research,
we will try to improve some classic methods, such as multiple-scale analysis, to obtain
the amplitude equations for fractional reaction–diffusion systems.

The spatial dynamics analysis of reaction–diffusion neural networks not only reveals
some properties of integrated circuits that are used to build neural networks, where a Tur-
ing pattern corresponds to a steady state that leads to nonuniformly spatial oscillation, but
also illustrates many biological phenomena such as normal neuron firing in the brain [18]
or biological disorders such as fibrillation [24].

Acknowledgment. We would like to thank the referees and the editor for their careful
reading of the original manuscript and their valuable comments and suggestions that
improved the presentation of this work.
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