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Abstract. In this paper, we are concerned with the eigenvalue problem of Hadamard-type singular
fractional differential equations with multi-point boundary conditions. By constructing the upper
and lower solutions of the eigenvalue problem and using the properties of the Green function, the
eigenvalue interval of the problem is established via Schauder’s fixed point theorem. The main
contribution of this work is on tackling the nonlinearity which possesses singularity on some space
variables.
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1 Introduction

In this paper, we focus on the existence of positive solutions for the following eigen-
value problem of Hadamard-type singular fractional differential equations with multi-
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point boundary conditions:
—gD%x(t) = Mf(t,x(t)), ae.te(le),

z(1) =0, x(e) = xog + uZaix(ap(m)), M

where f : [1,¢] x (0,400) is continuous, zD® is the Hadamard fractional derivative of
orderawithl < a<2,1<m <ne <--- <nm < e, and the constants g, u and a;
are nonnegative, the function ¢ : [1,e] — [1, €], ¢(¢) < t is continuous.

In recent years, fractional-order nonlinear problems have attracted the attention of
many researchers from mathematics and other applied science due to its wide range of
applications in applied mathematics, physics, bioscience, engineering, chemistry, etc.
A large number of contributions have been made for fractional differential equations in the
sense of the Riemann—Liouville fractional derivative or the Caputo fractional derivative,
[1,4-6,8,9,12-20]. However, the Hadamard-type fractional integral and derivative differ
from the Riemann—Liouville and the Caputo fractional derivative since the kernels of the
Hadamard-type integral and derivative contain logarithmic functions of arbitrary exponent
and thus are regarded as a different kind of weakly singular kernels. Thus it is more
difficult to explore the existence of solutions for the Hadamard-type fractional differential
equations, [2,10,11,21].

In the recent work [21], by analysing the spectral construct of a linear operator and
calculating the fixed point index of the corresponding nonlinear operator, Zhang et al.
considered the existence of positive solutions for the following Hadamard-type fractional
differential equation:

22D (t) = f(t,2(t), — 2, 2(1)), 1<t<e,
z2(1) =02(1) = 0z(e) =0, 2)
2,°2(1) =02,°2(1) =02, 2(e) = 0,

where 2 < a, 3 < 3, o is a differential operator denoted by t(d/dt), that is, oz(t) =
t(d/dt)z(t), 2,* and 2,° are the Hadamard fractional derivatives of order o, 8, f €
(1,e) x (0,+00) x (0,400), [0,+00) is a continuous function, and the criteria of the
existence of positive solutions were established. Recently, based on Leray—Schauder-type
continuation, El-Sayed and Gaafar [3] established the existence of positive solutions to a
class of singular nonlinear Hadamard-type fractional differential equations with infinite-
point boundary conditions or integral boundary conditions.

However when f possesses singularities on space variables, especially for the eigen-
value problem, few results are established on Hadamard-type fractional differential equa-
tions. Inspired by the above works, the aim of this paper is to establish the existence of
positive solutions for the eigenvalue problem of the Hadamard-type fractional differential
equation (1) when f possesses singularity on space variables.

The rest of this paper is organized as follows. In Section 2, we firstly recall the
concepts and properties of Hadamard fractional integral and derivative and then give the
logarithmic Green kernel. Our main results are summarized in Section 3.
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2 Basic definitions and preliminaries

In this section, we firstly present the definition of Hadamard-type fractional integral and
derivatives as given in [7]. Then we give some basic lemmas, which will be used in the
rest of the paper.

Suppose @ € C, n = [Rea], Rea > 0, and (a, b) is a finite or infinite interval of R™.
The a-order left Hadamard fractional integral is defined by

wl%x(t) = ﬁ /(lnt —1In S)O‘*lx(s)%, t € (a,b),

S
a

and the « left Hadamard fractional derivative is defined by

WD a(t) = F(nl_a)(t;t>n/t(lnt—lns)”a1:1:(5)(?, t e (a,b).

a
The relationship between fractional integration and derivative is introduced as follows.
Lemma 1. (See [7].). Supposen —1 < a <n, v > 0.

() If1 < a < 2, then gD%x(t) = 0 if and only if x(t) = c1(Int)*~1 + co(Int)>—2
forany ci,co € R
(ii) The equality yD*(yI“x(t)) = z(t) holds for every x € L1[1,e].
(iii) Let x € C[1,00) N LY[1, 00). The following formula holds:

al® (eDx(t Z ci(Int)®
i=1

(V) pl*(al"2(t)) =g 127 (2)(1).
Lemma 2. (See [3].) For g € L'[1, €], the boundary value problem
—uD%%(t) = A\g(t), aete(le),

subject to the multi-point boundary conditions
m
z(1) =0, z(e) =$0+uzai$(<ﬂ(77)
has a unique solution x € AC[1, €] if and only if x is a solution of the integral equation

)\ULllnto‘1 ds
/GtS ZMl—O’ /G 771 )

xo(lnt)a !
1-0) ~
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where
Glt,s) = 1 {(lnt)o‘_l(l —Ins)* ! —(Int—Ins)* 1, 1<s<t<e,
’ I'(a) | (Int)*~1(1 —Ins)*7t, 1<t<s<e,
and
m
o =AY a;i(np(m))" " # 1.
i=1

Lemma 3. (See [15]). Let r(t) = t*~1(1—t). The Green’s functions G has the following
properties:

() G e C([L¢] x [Le], R).
(ii) Forallt,s € (1,e), the following inequalities hold:
(a — Dx(Int)r(1 —Ins) < T(a)G(t,s) < k(Int)(1 —Ins)* 2
Definition 1. A continuous function v (t) is called a lower solution of (1) if it satisfies

—uDY(t) < Mf(t,¥(t)), ae.te(l,e),
B0, W) > w0+ ai(p(m):

Definition 2. A continuous function ¢(¢) is called a upper solution of the eigenvalue
problem (1) if it satisfies

—uD*¢(t) 2 Af(t, (1)), ae.te(le),
¢(1) <0, dle) <wo+p Y aid(e(n)).
i=1
We make the following assumptions throughout this paper:

(H1) f:[1,€] x (0,+00) — [0,400) is continuous and is nonincreasing in z > 0;
(H2) For all » € (0,1), there exists a constant ¢ > 0 such that, for any (¢,z) €
[1,e] x (0,+00), f(t,rz) < r=cf(t,2).

Remark 1. For » > 1, by (H2), we have the following equivalent conclusion: for any
(t,x) € [1,€] x (0,+00), f(t,ra) = r—cf(t, ).

In fact, for » > 1 and any (¢,z) € [1,e] x (0,400), one has f(¢, r - (1/r)z) <
(1/r)=cf(t,rx), thatis, f(t,rz) = r~<f(t,x).

Lemma 4 [Maximal principle]. If z € C([0, 1], R) satisfies
z(1) =0, z(e) = zg + ,uZaix(cp(m))
i=1

and —pg D*x(t) > 0 foranyt € [0,1], then z(t) > 0, ¢t € [0, 1].

Proof. By Lemma 2, the conclusion is obvious, and we thus omit the proof here. O
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3 Main results

Let

(a—1) Z pai(a — 1)k(Inp(n:))
T(a+2) (1-o)l(a+2)
then we state our main result as follows.
Theorem 1. Suppose (H1) and (H2) hold, and
(H3) infyepr e f(£,1) > 0and 0 < [{(1 —1Ins)* 2 f(s,kx(Ins))(ds/s) < +oo.

Then there are constants 0 < Ay < X\* and p > 0 such that for any A € (A1, X\*), the
eigenvalue problem (1) has at least one positive solution x(t) satisfying the asymptotic

property
r(Int) < x(t) < p(Int)*1.

Proof. Firstly, define a function space F = C/[1, e] and a subset Q) of E:
Q={z(t) € E |3, >0: z(t) > l,x(Int), t € [1,¢]}. 3)

Obviously, @ is a nonempty since x(Int) € Q.
Define an operator T in E:

(Thx)(t )\/G (t,s)f(s,z(s)) dSS
+Z A”azllff,a / G(o(n), ) f (s,2(s ))% + xo((llnt):)_ L@

i=1
It follows from Lemma 2 that the fixed point of the operator T} is the solution of the
eigenvalue problem (1).

In what follows, we prove that the operator T} is well defined and T\ (Q) C Q. To
do this, for any z* € @, it follows from the definition of () that there exists a positive
number [%. such that *(¢) > I¥.x(Int) for any ¢ € [1,e]. Choose [~ = min{1/2,1%.},
then we have x*(t) > l,~x(Int) for any ¢ € [1,¢]. So by Lemma 3, (H2) and (H3), we
gets

(Tha™)(t)

lnt
()

/ ) 2 (5,0 ()

1

1

3?0(11’1 t)a_l

(1-0)
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/lflnso‘ 2f(s,ly /{(lns))dS
s

1
e

Apa;(Int)* 'k (In o(1:)) 12 F(s. Lk s)) 32
Zl 1—0’F(Oé) /(1 1 ) f(vl:v* (1 ))8
wo(lnt)*~+ !
(1-0)
Mg € Apaile " k(ln p(n;) )92 (s k(lns ds
<<r(a) +; (1= o) (a) )1/1 tn s)* 72 (s, wlln ) -
M
< +oo0. 5)

Next, take B = max{2, max;c[1 ¢ *(t)}, then it follows from Lemma 3 and (H2)
that

(Tha™)(t)
> A(If‘(;)l)ﬁ(lnt)jm —lns)f(s,m*(s))%
+Zm 1_0)1;1(2) K(p(ms)) /Cmms) o)
> A(g(;)l)n(lnt)/en(l “ns)f(s, B)ds
. Z SIS /e,i(l e, %
> )\(a;(;))B_em(lnt)/em(l ~Ins) (s, 1) (6)

1
e

L Z Ap(a—1) ?_Zz)r((lz)t)’i(@(m)) /ﬁ(l —Ins)f(s, 1)%

1

k(Int). (7)

W<1+iw> /C/g(l —Ins)f(s, 1)%

_

(5) and (7) indicate that T’ is well defined and T (Q) C Q.

https://www.journals.vu.lt/nonlinear-analysis
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Now we shall try to construct the upper and lower solutions of the eigenvalue prob-
lem (1). As the operator T}, is decreasing on z, let

i(Ing)*t d
/Gts f(s,k(Ins)) ——&—Zualn /G ©(n:),s) f(s,k(Ins)) 5,
—0)

S

then, similar to 7, for all ¢ € [1, €], one gets

L(t) > [ ( Z Mall g i ) /,.;(1 —1Ins)f(s, K(lns))is] x(Int),
h ML(t) > k(lnt) Vte[l,e],
where
N L(a)

(0= 1)(1+ Y, bertelly 21— ns) f(s, m(In 5)) 42

On the other hand, notice that f (¢, z) is decreasing in x > 0, thus, for any A > Ay, it
follows from Lemma 3 and (H3) that

/G(t, s)f(s,)\L(s))% +3 ““llhitg /G o), s) £ (5, AL(s ))%
1 =1
zo(lnt)*—1
(1-o0)
f ds ual (Int)>—1 ds
< [ G(t,s)f (s, ML(s Z G(p(mi),s) f (s, \L(s)) —
/ e S
zo(lnt)*—1
(1-o0)
f (Int)>—1 ds
< [ G(t,8)f(s,k(Ins)) Z pail — G(p(ni),s) f (s, r(Ins)) —
1/ (1-0) / s
xo(lnt)*~1
(1-0)
1 Sk (hw7 ae ds o
<<F(o¢)+,_l 1= o)l(a) )/1—lns 2f(8 k(lns))— . (1_0)
i= 1
< 400
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Now take C' = max{2, max;c[; ¢ L(t)} and

Ce 1/(—e+1)
A* 1A .
>max{ AL [Ainfse[l_,e] f(s,l)] }

Let

e

R(t) = X° /G(t,s)f(s,A*L(s))%
1
a-l ds  wxo(lnt)*~1

. pa;(Int) , N ds
£ Z e /G(som), F (s N L) S+
1
By (H2), for any ¢ € [1, ¢], we have
N F (5.0 L(s)) = (V)7 f(5.0) > (\7) O f(s.1) > A
Thus it follows from Lemma 3 that

R(t) > (a;(lozjl_ﬁ(lnt)/ﬁ(l - lns)%

_[(la-1A"! pai(a — 1A K(Inp (1))
- ( T(a+2) +; (1—o)T(a+2) >’i(lnt)

> k(lnt) Vtellel.

Let (nt)>1
xo(Int)*—
t) = NL(t) + ——"F—, t) = R(t),
(1) (t) + 1—0) ¥(t) = R(1)
then by Lemma 2, for any ¢ € [1, ¢, we have

zo(ln a—1
o(t) = NL(1) + 0(<11_t)0) > w(lnt),

m ®)
$(1)=0,  ple)=ao+p> ad(en)),
=1
G(t) = R(t) > k(Int), te[l,e],
©)

P(1) =0, Y(e) = xo + Mzai¢(<ﬁ(m))-

=1

https://www.journals.vu.lt/nonlinear-analysis
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It follows from (8) and (9) that ¢(t), ¢ (t) € Q and
r(Int) < (t) =Ta- (A'L(t)), r(nt) < ¢(t) Vte[l,e], (10)
which implies

(t) = Tr (V'L(1))

e

ds
=X [ G(t,s)f(s,\*L(s)) —
/ :
+A*§: :uai lnt ol /G S A*L(S))% + Io(lnt)a71
(1-o0) (1) s (1-o0)
< )\*/G(t,s)f(s ML(s ))d;
1
N i(Int) d Int)e—!
Y Wlfa /G o). S)\l())ss+gm((1)0)
[ ds
<A [ G(t,s)f(s,k(Ins))—
j s
+)‘*Z ,ual (Int)>—1 /G o), s n(lns))% n wo((lln_tt)_l
=¢(t) Vte[l,e]. 11
Thus, by (10), (11), we have
HD(t) + X* f (t,9(1)) = uD* (Tow (A L(1))) + X" f (1, 6(1))
= =N f(ENL() + A f(t6(t) >0, (12)

aDo(t) + X* f(t, ¢(t)) < gD ()\*L(t) + W + X f(t,8(1))
= gD*(Tx-r(Int)) + X" f(t, (t))
= —Xf(t, k(Int)) + X f(t,6(1))
< =N f(t,s(Int)) + X f(t,k(Int)) = 0. (13)

(8) and (9) imply that ¢, v satisfy the boundary value conditions of the eigenvalue
problem (1). Thus it follows from (11)—(13) that ¥(¢), ¢(¢) are upper and lower solutions
of the eigenvalue problem (1) when A = A\* and (1), ¢(t) € Q.

Nonlinear Anal. Model. Control, 27(4):789-802, 2022
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Next, construct a function F':

[t o), y<v(t),
Fly) =  fty(t), () <y <o), (14)
[ 4(), y> ().

For any A € (A1, \*), consider the following modified eigenvalue problem:

—gD%(t) = A\F(y), ae.te€ (1,e),

We define an operator 2 in E:

Apa;(Int)e—1 ds
V! G(t, G(e(n;
) / P (y(s) 2 + z = / o1 3)F (4()) <
Int
4 Zo(nt)*”
(1- U)
It follows from the assumption that ' : [0, +00) — [0, 400) is continuous. Thus it is
clear that a fixed point of the operator 2l is a solution of the modified eigenvalue problem
(15).
For all y € E, it follows from Lemma 3, (14) and ¢ (t) > x(Int) that

Yy € E.

e

@0 = [ G r () ¢+ 3 Al / Gloln).5) F(y()
zo(lnt)*~!
(1-0)

(i B ) fo o s g2

o 1 pa;k(ln p(n o ds o
<)\<F(O‘)+i_1 (1= o)l () )1/ —1Ins) Qf(sw())?+(1—a)

(1 pair(in p(ns)
< <F(a)+ (1 - o)l () )

+ 0oy

— 00.

(1-0)

So 2, is bounded. It is easy to see that 2 : £ — E is continuous from the continuity of
F(y) and G(t, s).

(1—Ins)*2f(s,k(lns)) %

,_.\

https://www.journals.vu.lt/nonlinear-analysis
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On the other hand, for any {2 C F bounded, since G(t, s) is uniformly continuous on
[1,e], we know that 2y (2) is equicontinuous. Thus the Arzela—Ascoli theorem implies
that Ay : E — FE is completely continuous. It follows from the Schauder fixed point
theorem that 2 has at least one fixed point y such that y = A y.

Now we show

P(t) Sy(t) < ¢t), telle]

To do this, let w(t) = ¢(t) — y(t), t € [1,e]. Since ¢(t) is the upper solution of the
eigenvalue problem (1) and y is a fixed point of 2, we have

w(l) =0, w(e) = xo + ,uZal-w(go(m)). (16)
i=1

It follows from the definition of F', (10) and (11) that

f(to(t) < F(y@t) < f(t,9) < f(t,k(nt)) Vye B, Vte e, (17
i.e.,
gDw(t) =g D*¢(t) —g D*y(t) = =X\ f(t,x(Int)) + AF (y(t)) <0, (18)

which implies that —ypD%w(t) > 0. It follows from Lemma 4 that w(t) > 0, that is,
y(t) < ¢(t) on [0, 1]. By the same way, we have y(¢) > v (t) on [0, 1], thus we get

P(t) <y(t) < o(t), tellel. (19)

By (14), we have F(y(t)) = f(t,y(¢)), t € [1,e]. Consequently, y(t) is a positive
solution of the eigenvalue problem (1).
Finally, we prove the asymptotic properties of solutions. Firstly, from (19) we get

y(t) > 0(t) > ~lnd). 20)

On the other hand, it follows from (20) and Lemma 3 that

f s “ a;(Int)*=1 / S
)= [ Gt (w6 5 30 P ET— [ 6o (5.900)

— (1 s
zo(lnt)*—1
(1-0)
1 & pask(lnp(n) / o ds
<A 1—Ins)* L k(1 =4 =
[ (F(a) +, . (o)) (1-Ins)*~?f (s, (Ins)) ot 1-0)
= 1
x (Int)*?
= p(lnt)*~ 1.
Thus we get the asymptotic properties of solutions #(Int) < y(t) < p(Int)*~1L. O
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Example. Consider the following singular eigenvalue problem:

—uD¥2x(t) = A(1 — Int)22=2/3(t), ae.te (1,e),

2(1) =0, x(e)—;+2x(¢<2>>+m<¢<z>>7 1)

where p(t) = t1/2.
Proof. Leta=3/2,u=1,m =3/2,12=5/2,

flt,x) = (1 —Int)?z=2/3(t),
then (H1) holds, and for all » € (0, 1) and for any (¢, z) € [1,€] x (0, +00),
ftrz) =r23(1 —1Int)2272/3 <r 23 f(t, 2),

which implies that (H2) also holds.
Also, by direct calculation, we have inf,c[ o f(¢,1) =1 >0,
r ds [ d
0< /(1 —Ins)* 2 f(s,k(Ins)) el /(1 —Ins) Y21 —In 5)2572/3(5)—8
s s
1 1
—1/67,.-1/3 ds
< [(1—1Ins) In (s)— < +o0.
s
1

Hence (H3) holds. Hence, by Theorem 1, there are two constants 0 < A; < A* such
that for any A € (A1, \*), the singular eigenvalue problem (21) has at least one positive
solution x(t), and there exists a constant p > 0 such that

InY2(#)(1 — Int) < z(t) < pIn/?(2). O
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