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Abstract. This paper is concerned with the controllability problem for higher-order fractional
damped stochastic systems with multiple delays, which involves fractional Caputo derivatives of
any different orders. In the process of proof, we have proposed the controllability of considered
linear system by establishing a controllability Grammian matrix and employing a control function.
Sufficient conditions for the considered nonlinear system concerned to be controllable have been
derived by constructing a proper control function and utilizing the Banach fixed point theorem
with Burkholder—Davis—Gundy’s inequality. Finally, two examples are provided to emphasize the
applicability of the derived results.

Keywords: controllability, fractional damped systems, stochastic systems, multiple delays, Mittag-
Leffler function.

1 Introduction

Fractional calculus is a dynamic mathematical argument and suitable for analyzing var-
ious problems in evolving applied mathematical research in dealing with many real-
world applications. For more than a decade, many researchers have paid attention on
fractional differential equations. The study of fractional differential equation consists
of key approaches to examine differential equations including fractional derivatives of
unknown function. The fractional derivatives appear as attractive and powerful modeling
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tools in variety of areas such as bioengineering, electrical networks, signal processing,
viscoelastic materials and many other physical phenomena [17, 18,21]. In recent years,
higher-order fractional systems have been widely and efficiently studied because its po-
tential to model real time problems with more accuracy and its occurrence in control
problems [16, 19]. Damping is a force within or beyond an oscillatory system that has
the effect of restricting reducing or preventing its oscillations. The fractional oscillator
can be modeled by establishing the fractional time derivative in standard harmonic os-
cillator, which explains the physical occurrence based on the fractional time evolution
notion. Specifically, in the field of mechanics, fractional damping may occur towards the
modeling of mechanical systems with viscoelastic components. It should be pointed out
that the viscoelastic behavior of complex materials in many real time practices has been
well characterized by fractional-order components; see [2, 8,24,29,30].

Controllability is an essential aspect of control theory, and it acts a significant role in
many control problems. The study of controllability is to verify the presence of a control
function that drives the control system from its initial state to a final state in a spe-
cific time. More works for the controllability problems have been discussed in recent
research; see [9, 20, 25, 27] and references therein. In recent years, the controllability
of fractional damped systems has attracted much attention to researchers [11, 14, 28].
On the other hand, the stochastic analysis has gained significance and attractiveness
based on its applications in wide-ranging areas of applied mathematics and engineering
[4]. The research discussing the uniqueness, existence and stability of several stochastic
differential equations gain more interests; see [1, 6, 12, 15] and the references therein.
Recently, there has been a very important progress in the study of controllability of
stochastic differential systems [13,22,26].

Stochastic process or noise is inevitable to model the time evolution of dynamical
systems, which are related to random influences. Consequently, it is of intense impor-
tance to include the stochastic effects into the analysis of fractional-order systems. Many
works have been done concerning the stochastic differential equations involving fractional
derivatives in the recent years for their importance in applied sciences. Sun et al. [23]
examined the controllability problem for neutral stochastic fractional integro—differential
systems involving infinite delay. Guendouzi et al. [10] obtained the controllability con-
cepts for the fractional stochastic dynamical systems involving multiple delays by means
of Banach fixed point theorem. Recently, Cui and Yan [3] explored the controllability
result for neutral stochastic evolution systems involving fractional Brownian motion.
In [7], the authors obtained the controllability problem for fractional stochastic evolution
systems involving nonlocal conditions and noncompact semigroups by means of fixed
point theory. However, up to now, the controllability concept of higher-order fractional
stochastic systems with damping properties and multiple delays has not been considered
in the literature. Thus, this topic is an interesting one and essential to analyze it. The
analysis includes the contributions, which are stated as follows.

e Most of the earlier investigations on fractional systems have been discussed with
single delay. Consequently, it is essential to pay consideration to the analysis of
fractional damped stochastic systems with multiple delays.
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e Compared with several previous analyses, controllability of higher-order fractional
stochastic system with damping effects and multiple delays is firstly presented for
designing more general fractional-order model.

o The linear system of higher-order fractional damped stochastic dynamical system
involving multiple delays is considered to investigate the controllability concept by
utilizing Grammian matrix, it can be expressed in terms of Mittag-Leffler function.

o Further, Burkholder-Davis—Gundy’s inequality and fixed point theorem are utilized
to derive the sufficient conditions for the nonlinear higher-order fractional damped
system involving multiple delays.

Finally, to explain the efficiency and applicability of controllability criteria clearly,
we provide two examples. A brief viewpoint on how the obtained results can be extended
will be presented in the conclusion section.

2 Preliminaries

Assume the complete probability space ({2, F, P) involving filtration {F; };>¢ generated
by the Wiener m-dimensional process with probability measure P on (2. Let p — 1 <
pr < o A—1 < p2 < Adand A < p — 1, the symbol D represents differential
operator. R™ denotes the m-dimensional Euclidean space R, = [0,00). The state
variable z(t) denoted in the Hilbert space L% (J x 2, R™) is equipped with ||z[|7. =
sup,c 7 Ellz(t)|?, where E(-) symbolizes the expectation w.r.t measure P. The contin-
uous map I = I([0,T]; L%,) is defined from [0,T] into L%, (J x £2, R") satisfying
sup,c 7 El|z(t)]|*> < co. Now we recall several important bas1c concepts.

Definition 1. Fractional derivative with Caputo sense of order p; (0 < mg < p; <
mg + 1) for a function h : RT — R is stated as

t
1 R(mo+1) ()
Cryp1 _
DiMh(t) = de
0+t ( ) F(mo — i+ 1) 0/ (t _ 9)p1—m0

The Laplace Transform (LT) of fractional derivative with Caputo sense is

mgfl

LD RO} = € HE) = Y AP ek,

k=0

Definition 2. The Mittag-Leffler function E,, () involving p; > 0 is stated as

>0, zeC.
Z T+

7=0
The Mittag-Leffler function E,, ,, (%) involving p1, p2 > 0 is stated as

, p1>0,z€C.

Pl’Pz F pl] + ,02

QMg
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The LT of E,, ,, (%) is

1 £P1—P2
L4 By g (£ at™)}6) = o
For po = 1, we have
é‘Pl*l
B (£a)}O) = ey

Lemma 1 [Burkholder-Davis—Gundy’s inequality]. (See [4,5].) For any r > 1 and
for arbitrary L3-valued predictable process ¥ (t), t € [0, T], one has

2r t
2
(i Jooma] )<

where C,, = (r(2r — 1))"(2r/(2r — 1)),

t

[r©aue

0

T
i

Let the Cauchy fractional problem

SDy(t) — ATDP?y(t) = h(t), t=>0,

, 1 (D
y(0) = yo, y(0)=wy1, ..., ¥ (0) =yu_1

withpy—1<pr<pud—1<pa<Aand A< p— 1
Here h : J — R" is a continuous function, and A is a n x n matrix. Applying LT
to (1), we get
€Y (€) — € 1y(0) — €12 (0) — -~ Hy A (0)
— AEP2Y (€) + AL Ty(0) + ALY (0) + - + ATy TH(0)
= H(¢).

Applying inverse LT to the above equation, then utilizing LT of Mittag-Leffler function
and convolution operator, we obtain

pn—1

y(t) _ Zyr(o)tTEpl—pz,l-ﬁ-T (Atpl—f)2)

r=0

A—1
_ Z y" (O)Atpl7p2+TEp17p2,p17p2+1+r (Atﬂl*PQ)
r=0
t

+ / (t = € By oy (Al — €2 )h(€) dE,

0
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3 Controllability result for linear system

Consider the linear damped fractional stochastic system involving multiple delays of the
form
607 y(t) — ASDY?y(1)

P

dw(t
:Bu(t)—kZCiu(t—Ti)—ko(t)J, te[O,T]:J, )

i=0 dt
y(o) = Yo, y/(o) =Y, -, y“_l(o) =Yu-1, (3)
u(t) = w(t)a te [7TP7O)7 (4)
where u—1 < p1 < pu, A—1 < pa < dand A < u—1,y € R” represents a state variable,
Ae R B.C;, € R**™ 4 =0,1,..., P, are constant matrices, u(t) € R™ denotes
acontrol input, 0 =19 < 11 < -+ < T; < .-+ < Tp_1 < Tp are constant delays, and

 represents the initial control function. w(t) represents m-dimensional Wiener process
involving F; generated by w(§),0 < £ < t,and o : J — R™*™ is a continuous function.
The solution of fractional system (2)—(4) takes the form

pn—1
y(t) = Z yr(o)trEplfpmlJrr (Atp17p2)
_ Z yr(O)Atp17p2+rEp1—pg,pl—pg-i-l-‘r’r' (Atprpz)
r=0
t
b [P By (Al = 7 ) Bul) a¢
ot i
+ /(t - g)pl_lEm—PmM (A(t - é‘)ﬁl—PQ) [Zczu(f - Ti)] df
i=0
ot )
+ [ (=& T By, 0 (At =€) 772) ( o (V) dw(ﬁ)> de.
/ /

Form, <t <T7k41, k=0,1,...,P—1,
p—1
y(t) = Z yT (O)trEpl—pz,l—i-r (_Atpl—Pz)
r=0
A—1
_ Z yT(O)Atpl7p2+TEp17p2,p17p2+1+’r‘ (Atm*m)
r=0

t

+ / (t— )P By (A — €72 Bu(€) d¢

0
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tT,;

p e
+ Z / (t - 5 - Ti)plilEm—pz,m (A(t - f - Ti)plim)ciu(f) d§

1=0 “r

T / (t— €)1 By oo (Alt — €)1 52) ( / o(9) dww)) aé

0
p—1
— Z yT(O)trEpl po i (.Atpl ,02)
r=0
A—1
_ Zyr( ).Atpl pz-i—rEpl pop p2+1+T(Atp1 Pz)

k—1 t—Ti i
+ Z / (Z(t — f — Tj)pl_lEpl—pz,m (A(t _f T )Pl PQ)Cj>u(§) df

z—0t77i+1 7=0
t—Tk L
+ / (Z(t - € - Tj)plilEpl—Pmpl (‘A(t - § - Tj)p1p2)cj> u(f) df
=0
OO )
+ / <Z(t - 5 - Tj)plilEPer,Pl (A(t - f - Tj)plpz)CJ) CP(f) df
§=0

t

+ / (t— €)1 By oo (At — € 52) ( / o (9) dww>> .
0

0
pn—1
Yy t) = Z yr(o)trEpl—pz,l+r (Atplipz)

r=0
A

_ yr(O)Atm_p2+TEp1_p27p1_p2+1+r (Atpl—PQ)
t

b [ By (Al = 97 Bul) a¢
0
P

Jr ( t* *7' p 71EP1—P27P1 (A(thj)pIPQ)Cj>u(£)d£
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t—Tp P
/ (Z t - S T p - Epl—l)mpl (A(t - 5 - Tj)plm)cj>u(£) df
7=0

k

0
Jr/ (Zt_ _T 1E01P2101(A(t£Tj)p1p2)cj>90(£)d§

Zrp \i=0

+/a—@m4EwwmxAu—QMﬂﬂ(/awmwwvda
0 0

Controllability Grammian matrix W is as follows:

-
W= [ (T =" Eypopn o (AT = 7))
0
X [(T = &P Bppp, oo (AT = €)7772)B]" d¢
p—1 T=mip
+ Z / lZ(TgTj)pllEpl—pz,pl (A(TgTj)plm)Cj]
=0 Li=0

X [Z(T —&— Tj)pl_lEprpzym (A(T —&— Tj)pl_pz)cj‘| d¢

=0

T—7p P

/ lZ(T - 5 - Tj)pl_lEPerPl ('A(T - f - Tj)m—pz)cj]

0

P *
x [Z(T — €= T5)" T By, o0 (A(T = € = Tj)”l"’z)cj] dg.
j=0

Definition 3. System (2)—(4) is known as controllable on [0, 7] if there exists a control
u(t) for every yo,y1,...,Yu—1,y7 € R™. Then the solution y(t) of system (2)—(4)
satisfies y(0) = o, ¥'(0) = y1,...,y"* " 10) = yu—1, y(T) = yr-

Theorem 1. The linear fractional system (2)—(4) is controllable on J if and only if the
n X n Grammian matrix

e
W= / T gpl 1Eﬂ1—/727p1( (T_f)pliprz)g]
0

< (T = )" " By, pn (AT =€) 77)B] " dg
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p1 Tomip
+ Z / [ (Tﬁ&f’rj)plilEﬁl—szl (A(TgTj)p1P2)Cj]
=0, %, Li=0

X [Z(T —-{— Tj)pl_lEPﬁPQ,Pl (‘A(T —-&{— Tj)pl_pZ)Cj‘| dg

=0

T-tpr p
+ / lZ(T_f_Tj)pl_lEpl—pz,m(A(T_g_Tj)pl_m)Cj]

0 j=0

X

P *
Z T - 5_7— p 1E01P2,01(A(T_§_Tj)plpz)cj‘| df

j=0

| —

is nonsingular.

Proof. Assume that W is nonsingular. For every yo,y1,...,y,—1 and y7, we can take
the following input function w(t):

1
u(t) = S D5(T,. )WY (k), t€ [T — 141, T — 7,
3

where
Dl(Tv t) = (T - t)pl_lEPﬁPQ, pP1 (‘A(T - t)m—pz)B

fort € [0, 7],

Do(T ) = | D_(T =t = 7)™ Epumpu,pu (AT =t =) 77)C; |

Lj=0 J

fort € [T — 7i41, T — 7i)s

D3(T7 t) = Z(T —t- TJ')pl_lEPer’Pl (A(T —t— Tj)pl_pz)cj )

Lj=0 _

fort € [0, T — 7p],

p—1

yr — Z erTEp1—p2,1+T (ATpl_p2)

r=0

- 1
=<
3

A—1

- Z y’”‘ATpl_p2+TEP1*P2»P1*P2+1+T (‘ATpl_pz)

r=0

https://www.journals.vu.lt/nonlinear-analysis
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0/ &

+ /(Z(T_f_Tj)pl_lEpl—Pmpl(A(T_g_Tj)pl_m)Cj)(p(g)df

J=0

-
) 0

Att = T, the solution of system (2)—(4) can be written in the following form:
pn—1
y(T) = Z yT(O)TT'Ep17p2}1+T (AT91_1J2)
r=0
A—1

yT (O)ATPI7p2+rEp1—p2,p1—p2+1+7‘ (ATmfpz)

r=0
A p—1 T
+/ID)1(T DT, W (k) de+ > / (T DT, )W (k) d¢
0 = 07- it
T—7p
+ / Ds (T, )D5(T, £ )W~ (k) de
F
/ (ZT §—1)"™ _1Ep1 —pa (AT =& —75) ™ pQ)CJ>‘P(€)d§
_rp \J=0
T n
+ (ng)plilEm—pz,pl( (T 5p1 p2 ( g >d§y7-
/ oo

Therefore, system (2)—(4) is controllable on [0, T].
On the other hand, assume that system (2)—(4) is controllable, but the matrix W is
singular. Then there exists a vector z # 0 such that

T
Wz =2 / (T = 7 " Epppy. o (A(T — €)1 —72)B]

0

X (T =" Eprp, o0 (AT =™ 7")B] 2 dg

p-1 T=mi i
+ Z*Z Z T—f—Tj)PlflEprp%pl (A(T_f_Tj)Plpz)cj]

’L:OT Ti+1

X [Z(T_g_Tj)pl_lEplpz,Pl (‘A(T_g_Tj)pl_pz)Cj] zdg

Jj=0

Nonlinear Anal. Model. Control, 27(5):879-903, 2022
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T—7p P
+ 2* / lZ(T & — Tj)pl’lEm—m,pl (,4(7', = Tj)Plpz)Cj]
0 Jj=0

P *
X [Z(T —-§— Tj)plilEpl—m,Pl (A(T —-§- Tj)plpz)cj‘| zdg

7=0
=0.
Hence
Z*(T - g)plilEplfpz,pl (A(T - E)plipz)B = 07
P—-1 .
g / [ ST = €= ) 7 By (AT € ”)mm)@] -
iZOT Tit+1 J=0
and
T-tpr p
2 / [ (T_g_Tj)pl_lEprpz’Pl (A(T_g_Tj)pl_pQ)Cj‘| =0
o Li=0
forT € J.

Since system (2)—(4) is controllable, it can be driven from the initial points yy = ¥

= y,—1 = 0 to the final point y7 = z. So there exists a control u(t) that drives the
initial state to y; = zatt = 7T,

yr =2
T
/ (T — P By oo (A(T — 7772 Bu(€) dé
0

+Z/(<

Z T- 5 - Tj)pl_lEpl P2, P1 (‘A(T § - T, )p1 pZ)C
i:OT—ﬂ,.H

—p2, - ) j)u(f) d¢
j=0
T—7p P
+ / <Z(T - 5 - Tj)plilEpl—Pmpl (A(T - 5 - Tj)mpz)Cj) u(f) df
0 7=0

0

—Tp

k
+ / (Z(T - 5 - Tj)pl_lEPeryPl (A(T - 5 - Tj)pl_pz)cj> 90(5) d£
j=0

T 7
+O/(T—§)p1 Epips, pr (A(T = €)P1772) (0/0(19) dw(ﬁ)) dé¢.

https://www.journals.vu.lt/nonlinear-analysis
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Thus

T
Z*Z - /Z*(T - €)p171Eﬂ1—92,Pl (A(T o 5)#1*92)[)’»“(&) df
0

p-1 T i
+ / z (Z T 6_7—)1)1 1EP1 —p2, Pl( (T_g_7j>pl_p2)cj>

=0 7=0

u(§) dg

T- 'r+1

Terp b
* / Z (Z(T €= 1) T By, 0 (AT — € = Tj)pl_pz)CJ) u(§) dg

Jj=0

0
9 k

+ /z*(ZT E_T Pl 1Ep1—p2 p1( (T_f_Tj)pl_pz)Cj><p(€)d£
TP Jj=0

T n
+O/z (T =& Eprpy, po (AT = £)P772) (0/0 )

Then, taking into account that

N
/ T = € By, o (AT — €777) Bu(€) dg
0
P_1 T—7; i
+ Z / Z*<Z(T£Tj)pllEpl—P2,m (A(TETj)pIPZ)Cj>
=07 §=0
u(€) de

<
o

(T-¢- Tj)plilEm—pz,m (A(T & Tj)p1p2)cj> u(§) dé

and

9 k
+ / z (Z(T_ f - Tj)pl_lEpl—PmPl (A(T_ §— Tj)pl_p2)cj> 90(5) df
TP Jj=0

T n
* _ p1—1 _ P1—pP2 o w
+ O/ T =P Epypy, p (AT = 8) )( O/ (¥)d (19)) d¢

tend to zero, it follows that z*z = 0. This implies the contradiction to z # 0. Hence the
matrix W is nonsingular. O

Nonlinear Anal. Model. Control, 27(5):879-903, 2022
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4 Controllability result for nonlinear system

In this section, we analyze the controllability criteria of nonlinear fractional damped
stochastic dynamical system (5)—(7) based on contraction mapping principle. Consider
the nonlinear damped fractional stochastic system involving multiple delays of the form

§ DI y(t) —A5D52y( t)
dw(t)

= h(t t,y(t)) —= t 5
Bu(t +ZCU )+ h(ty(®) +o(tyt)— = 0T ©)
y(0) =yo,  Y(0)=w1, ..., ¥ H(0) = yu-1, (6)
u(t) = ¢(t), te[-7p,0), (7)
where pu —1 < p1 <, A—1<py<Aand A < p— 1, A, B, C; and w(t) are defined

as in previous section, 0 = 7o < 73 < --- < T; < - < Tp_1 < Tp are constant delays,
yeR" u(t) eR™ h: T xR* - R"and o : J x R™ — R™*"™ _ Then the solution of
system (5)—(7) is defined as

1

m

M

y(t) = Yy (O)t Ey —paitr (Atp17p2)

T

1
1

— yr(O)Atl)l_ﬂ’z"r'r'Eplip%p17p2+1+r (Atpl_PQ)

.3
Il
=

+

\o

k
(Z(t -&— Tj>p1_1E01*P2,P1 (‘A(t —§— Tj)pl_p2)cj> 90(6) d¢

. \j=0

+ [ (=& T By, (At = )P 7P2)R(E, y(€)) dE

+ (t - E)plilEpl—szpl (A(t - g)p17p2) (/U(ﬂ’ y(ﬂ)) dw@%) df
0

— L O o~

+ [ (=" T By, (Alt — €)P7P?) Bu(€) d€
0
p—1 ' T

+ / ( — 7)) T gy o (At — & —7) f'%)u(&)dﬁ
i= Ot Tig1

t—Tp P
+ / (Z(t—&—n)pl1Ep1p2,p1(u4(t—£—n)”1 ”)C) (&) d¢, (8)

0 J=0

https://www.journals.vu.lt/nonlinear-analysis
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and
Di(T, )Wy, te€0,T],
u(t) = D;(Ta t)Wilfya te [T* Ti+177-7 Ti]a (9)
D;(Ta t)Wilfya te [OaT* TP]a
Dl(Tv t) = (T - t)pl_lEPﬁPQ,Pl (‘A(T - t)m—pz)B
fort € [0, 7],

]D)Q(Tv t) = [Z(T_ t— Tj)pl_lEPrP%m (A(T_ t— Tj)pl_pz)cj‘| )

Jj=0

fort € [T— Tit1, T — Ti],

P
D3(T7 t) = [Z(T —t- Tj)pl_lEPerPl (A(T —t— Tj)pl_pz)cj‘|

=0

fort € [0, T — 7p),

1 i
1=3 [yT = 3 0T By (AT# )
r=0

A—-1
— Z Y ATP AT B et (ATP17P2)

r=0

0 k
+ / (Z(T—f—rj)"l—lEpl-pz,pl(A(T—f—n)f’l—”)C.j)so(f)df
e \J=0

.
+ / (T = P By oo (AT — 77 h(E,y(€)) de
0

T n
_ e\l _ £\P1—p2 o w )
+ O/(T £) Epi—ps,p1 (A(T £) ) (O/ (?9ay(19)) d (19)> dé]

We impose the following assumptions.

(H1) The linear damped fractional stochastic system involving multiple delays (2)—
(4) is controllable on [0, T].

(H2) There exist the constants N , L > 0 such that the continuous functions / and o
satisfy the following:

[P < N+ 9l?), ot w)|* <L+ |yll?).
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(H3) Foreveryt > 0 and z,y € R", there exist constants N, L > 0 such that the

functions h and o satisfy the following Lipschitz form:

h(t,2) = bt 9)||* < Nlz = yl?, |o(t2) = ot y)]|” < Ll - y]*

For transience, we present the following representations:
ar = ||t" By —pp 140 (A 72) HQ’
ay = ||AtP1*P2+TEp1 g2 p1—patlir (Atpl *Pz) HQ,

a3 = HEpl_p27P1 (.A(t — g)Pl—pz> H27

0
v /ZEH(t_S_Tj)pl_lEl)rpzym(A(t_g_Tj)pl_pz)cj’|2d£’
7=0

—Tp =

- A—1 —
=Bty S B 00 Y Bl a0y 2
- . r=0 r=0
x/</(1+EHy )| )d19> d§+a3T NT/ 1+E||y(9)| )dg]
0 0
u=le@l, =W,
M =|Dy(T.t)|, M=|DAT.1)||, M =|Ds(T,1)].

(10)

Theorem 2. Assume that (H1)-(H3) hold, then the nonlinear fractional system (5)—(7) is

controllable on J.
Proof. Define an operator £ : I — I as follows:

p—1

(t) = Z Y (00" Ep, —py 14 (AL 772)

_ Zyr ,Atpl pz-i—rEpl papr p2+1+r(At01 pz)

+ /(t - g)plilEpl—PmPl (A(t - E)pl*pz)h(g’ y(g)) dg
0

+/<Zt_ _T 1Ep1pzxm(A(t_5_Tj)p1_p2)cj><)0(§)d€

_ gyl _ £)P1—p2 o w
+O/(t 5) EPl*PmPl (A(t E) )(0/ (ﬁvy('l?))d (19)> df
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t
+ / (t— € LBy o (At — €99 Bu(€) dé
0
P—

oy

< t* *Tj)plilEm—P%Pl (A(tif Tj)plpz>cj>
7=0

t—Tit1
x u(§) dg
t—Tp P
+ / (Z(t - 5 - Tj)pl_lEpl—Pz7pl (A(t - 6 - T )p1 pz)c])
§=0
" u()de, (11)

where the control function w(t) is defined as in (9).

By Theorem 1, the control u(t) (9) transfers y(¢) (8) from the initial state yo to the
final state y7, provided that the operators £ has a fixed point in I. So, if the operator £
has a fixed point, then system (5)—(7) is controllable. As mentioned before, to prove the
controllability of system (5)—(7), it is enough to show that ¢ has a fixed point in I. To do
this, we can employ the contraction mapping principle. In the following, we will divide
the proof into two steps.

Based on contraction mapping principle, we shall prove that £ maps I into itself. By
Eq. (11), we have

sup EH gy H2
0tST
2
- SOZ?ETE Zy L Eﬂl—ﬂz,l-‘rr (.Atpl_pg)

+ 8021;157’]3 Z yT(O)At‘)l_p2+7'Ep17p2,p1,p2+1+r (At”l_”2)

2

+ 8 sup E
0<t<T

k
(Z(t_g_ij)l_lEplpzy 1 (‘A<t_£_7-j)pl_p2)cj> QO(E) df
=0

2

0<t<T

0
L8 sup E / (&) By o (A(t—€)P2)h(€, y(€)) dé
0

0<t<T
0

+8sup E /(t*@plilEm—pmm (A(tff)prpz) (/0(197?/(19)) dw(m) dg
0

2

L8 sup E / ()P By o (Al —€)P72) Bu(€) de
0

0<t<T
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+ 8 sup E
0<t<T

pP-1 T
> ( (t—€—mj)P
j=0

X Eﬂl—ﬂm pP1 (A(tSTj)plm)Cj) u(f) d§

7':015*774@ 2

t—Tp P 2
+8 sup B / (Z(t—s—n)m—lEmW(A(t—a—mpl—PQ)cj)u(adg
0<t<T J =
8
= Ry
b=1

Using Holder inequality, Burkholder-Davis—Gundy’s inequality (here C; = 4) and (10),
we have the following estimates:

pn—1 p—1
Rl < 8 Z EHyrtTEplpr,qur (Atpl_p2) ||2 < 8@1 Z EHyT”27
r=0 r=0
A—1 ) A—1
Ro <8 Z E"yT‘Atm_p2+TEP1—02>P1—/72+1+T ('Atpl_m) H < 8ap Z EHyTHQ’
r=0 r=0
0 k 2
Rs <8 sup E / (Z(t_g_Tj)pl_lEm—Pz,m (A(t_f_Tj)pl_m)Cj) @(f) df
0<t<T 2. \i=0
< Suw,

2
Ry <8 sup E

/ (t— € By o (Al — €7 P2)h(€, y(€)) de
0

0<t<T
.
T2l 2
< Sary—NT [ (1+B]u(o)|) ac.
0
t Ui 2
Ra <8 sup Bl [(t =" By (Alt =7 7) ( / o(ﬁ,y(m)dw(«?))ds
0<t<T 5 5

TRl e, 2
<32a32p1 _1L0L/ /(1+E||y(19)|| ) dv | de,
0

(=)

2

Re <8 sup E
0<t<T

/ (t— )P By py (At — €)P92) Bu(€) dé
0

<3
3

T n—1
/Dl (Tv t)]D)T (Ta t)Wil |ij - Z yr']erplfpzlerT’ (ATpl 7p2)
0 r=0
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A—1

+ Z yrATpl7p2+TEp17p2,p17p2+1+r (ATprpz)

r=0

0/ k
- / (Z(T —&— Tj)plilEpl—pz,m (A(T —&— Tj)p1p2)cj> ‘P(ﬁ) d¢

J=0

T
- /(T - g)pl_lEPer,Pl (A(T - £)p1—p2)h(£7 y(f)) df

OT 2
!

(T =" Epipa, pu (AT =€) 772) (/0(197 y(9)) dw(lﬂ) dé] d¢
0

p—1 A—1
MQZ T|Ellyr ) + a1 > Ellyl* + a2 Y Blly.[|* + w
r=0 r=0

oot T
+4asL, LT _1/</(1+E|‘y(19)||2) dﬁ) de

0

i
7'2/3171 _
+%%r4NT/@+EM@WN4,

0

p—1
Ellyr|® +a1 ) Ely,|?

R M Z ((T—Ti)—(T—TH_l))

C,O\OO

T

r=0
A—1 7-2p1_1 n )
+as Y Elly,|? + uv + das L, L —3 / (/(1+E||y(19)“ )dﬂ) d¢
0

r=0 0

)
7—‘2p1,1 -
cogr 8 [ Elol) ]

0

pn—1
Elyr|® + a1 Y Ely.|?

r=0

8
Rg < §M212(7—— Tp)

A-1
—|—agz:EHyr||2 +uv + 4dasL, L

2 ‘ﬂilj(]1+Em H)M)s

0

.
’TQPl* N
+ag5— 1NT/ (1+E[ly©)|* dg].

0
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Then
sup E|(&y) (0|’
o<t<T
p—1 A—1 7_,2 -1 T ,
<8a1 Y Ely|® +8aQZEHyrH +uv + 8as 1NT/(1+EHy(£)H ) de
r=0 5
T 1 r / 2 8 2,2
+32a3 / / (1 +E[ly@)[]") dv | dg + M1 Tw
0
* §M2F(<T— 7) = (T = i)+ I = 7)o
T
2 2
C+T) 0/(1+E||’y(€)|| ) d¢ <C(1+70235TEH11(§)H ), tel, T,

Here C'is a constant, which gives that £ maps I into itself.
Next, for any z,y € I, we shall prove that £ is a contraction mapping on I,

E||(€2)(t) — () (®)||?

<8 sup E|Di(T,t)D] (T,t)Ww "
0<t<T
T n
x { / (T " Epypy. po (AT —£)72) < / 09, 2(9)) — o (9, y(9))] dw(ﬂ)) de
i

+/(T*£)”171Eprpz,p1 (A(T=€)"772) (h(& 2(€)) — h(&9(8))) df]

+Do(T, D] (T, )W ™!

.
/ (T—=&)" " Epyps, o (A(T—€)772) </ — o (0,y(9))] dw(ﬂ)) dg

A
/ (T8 Epyops. 1 (A (T—s)“‘”)(h(é,x(f))—h(éy@))dﬁ]
+ D3

(T, D3 (T, )W ™"

;
/T )" Epy—pa, pr (AT —6)"772) (/ (9, 2(9)) —aﬁy(w)}dw(ﬁ))dﬁ

!
/T ) " Eprmpa, i (A (T—@“”"‘)(h(ﬁw(&))—h(&y@)))dﬁ]
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t

+/(t—§)"1_lEm—p2,m (At—€)""") (/ [0(9,2(9)) — o (9, y(9))] dw(ﬁ)) d¢

2

T / (T—6)" " Bpr gy, on (A(t—6)™ ) (h(€, 2(6)) — h(€,y(£))) dé

< (8MPIP + 8M°1% + 8MP1 + 8)
T

x E /(T—f)”HEm—m,m( (T-)""") </ —0(197y(19))}d11)(19)>d€

0

2

+ (8M*1? + 8M>1? + 8M>1? + 8)
2

;
< E / (T =) By, (AT —6)72) (h(€,2(6)) — (&, 9(€))) dé

0

T2p1 1 A
<3205 Lo L(M?P + M1 + M?I? +1) / /Ellm —y()|[*)dv
1 0 0
T
21—l 2,2 1272 A22 2
+8a32p _ZNT(MZ + M?1° + M1 /EH —y(©)|") d¢
0
2p1—1
< Sas S (M 4 0% 4+ NP2+ 1) (AL, L+ NT) sup Ella(t) - y()|*d,
2p1 — 0<t<T
Hence, if
T2t 2,2 ~ 2.2 ~219 H N
8a32p 2(Ml + M 1"+ M1 +1)(4L.L+ NT) < 1
=

then £ is a contraction mapping on I. Now the Banach contraction fixed point theorem
guarantees that £ has a unique fixed point. Therefore, the solution of system (5)—(7) is y(t)
that given by (8), and we can see that y(7) = y7. Moreover, the control u(t) drives the
state of system (5)—(7) from yq to final state y on [0, 7]. Consequently, system (5)—(7)
is controllable on [0, T]. O

S Examples

Example 1. Consider the following linear damped fractional stochastic system involving
multiple delays:

§DE y(t) — ATDP?y(t)
P

= Bu(t) + Y _Cult—7,) +o(t)——=, te[0,T], (12)

Nonlinear Anal. Model. Control, 27(5):879-903, 2022


https://doi.org/10.15388/namc.2022.27.27587

898 G. Arthi et al.

where p — 1< pr <, A—1<pa <\ p, A€ N,y € R% ¢t € J and

1 0 2 00 0 0
A=[o0o 1 1|, B=[1 0|, c=[1|], a=|[0],
“1 2 0 0 1 0 1

By Theorem 1, the Grammian matrix W defined as

T
W= / T 5;)1 1EP1 P27P1( (7’_5)91—92)8]
0

< [(T =P Epppy. oo (AT — g)pﬁpz)Br de
T—70
+ Z / [(T — f — 7-0)91*1Ep1_p27p1 (A(’T _ f _ TO)Pl*PQ)CO]

=07,

X [(T = € = 70)"" " Epypy, pu (AT — € — 10)P1772)Co] " d€
T—71

1
/ [Z T 577_ 1EP1—P27P1 (A(TgTj)p1p2)Cj]
7=0

*

1
X [Z T - 5_7- p _1Ep1 pz,m( (T_f_Tj)pl_m)Cj] dg.
7=0

The Mittag-Leffler function is given by

oo
Epl—szl (Atpl —pz) = Z ’
= T((pr — p2)k + p1)

Epipa, o1 (At = )7 772)
1 0 2 _ £\P1—p2 -1 4 2 _ £)2(p1—p2)
— L[ + 0 1 1 % +]1-1 3 1 L
I'(p1) -1 2 0 I'(2p1 — p2) 1 2 0 I'(3p1 — 2p2)
-3 8 2 _ £)3(p1—p2)
+1-2 5 1 L o
-1 2 0 ['(4p1 — 3p2)

ay ag ag
(T_f)Pl—lE‘pl_p%pl(A(T_g)m—ﬂz): as as ag |,

ary ag Qg
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where
o = (7'_5)91—1 (7'_@2/)1—92—1 (7'_€>3p1—2p2—1 L
' L'(p1) I'(2p1 — p2) L'(3p1 — 2p2) ’
4(7'_5)3/71*2/)2*1 8(7'_5)4P1*3P271
= + s
“ L'(3p1 — 2p2) L(4p1 — 3p2)
gy = ATt Togpnn2eemt | YTogyter et
T T(2p1 - p2) ['(3p1 — 2p2) ['(4p1 — 3p2) ’
(DTt (=2)(T =g
= + 4+
“ L(3p1 — 2p2) ['(4p1 — 3p2)
o (TGPt (TogPmoet (Tget
° L'(p1) L'(2p1 — p2) ['(3p1 — 2p2) ’
(T_g)Qprprl (7‘_5)3;)172/)271 (7‘_5)4p173p271
YT T2 p2) I'(3p1 — 2p2) T(dpy—3p2)
_ DTt (Tt ()Tt
['(2p1 — p2) L(3p1 — 2p2) [(4p1 — 3p2) ’
e 2(7'_5)2/)1*@*1 2(7'_5)3/)1*2;)2*1 2(7'_5)4P1*3P271 L
T T(2p1 - p2) T'(3p1 — 2p2) ['(4p1 — 3p2) ’
B e 3
T )
ay az as 0 0 as as
(T_ f)pl_lEmfpz,m (A<T_ f)pl_pz)lg =l1a4 as ag 1 0)=1|as as],
ay asg ag 0 1 ag ag
[(T - f)pl_lEplfpzy p1 (A(T - g)pl _02)8}
X [(T - g)pl_lEﬂlﬁomﬂl (A(T - é‘)ﬂl—/h)B} ’
a2 as a a a a% + a?,} ag2as5 + asag asag + asag
= |as ag <a2 a5 ag) = | aqas5 + azag ag + a% asag + agQg
ag Qg 3 6 9 asgag + asag asag + agag a% + ag
=a”.
Similarly,
[(T —{- TO)plilEPﬁPz,Pl (A(T —&- TO)ﬂliP?)CO}
bl b2 b3 O b2
=|by b5 bg 11=10b5]1],
by bg by 0 bs
where
b — (T—&—m)Pr~1  (T—€—m7p)2Pr P2l (T —&—7g)3p1— 2021 L
1 — )

L'(p1) L'(2p1 — p2) T'(3p1 — 2p2)
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4(T_§_TO)391—QP2—1 8(7’_5_7.0)4p1—3p2—1

by = +eee,
? L'(3p1 —2p2) I'(4p1 — 3p2)
b — 2T —E—1o)2r Pl (T —E—1p)3Pr2p2 L (T —&—7p)ter3p2t L
’ ['(2p1 — p2) L'(3p1 —2p2) ['(4p1 — 3p2) ’
bg — (T_é-_TO)pl_l
L'(p1) '
[(T B 5 o Tl)plilEpl—PmPl (’A(T - 5 - 7.1),017;)2)61}
dy do ds 0 ds
=|ds ds ds 0| =1|ds|,
dr dg dg 1 dg
where
dy = (T—é—Tl)pl—l (T—5_71)2p1_p2_1 (T—f—Tl)3pl_2p2_1 L
L'(p1) I'(2p1 — p2) L'(3p1 — 2p2) ’
gy MT—g—m) el ST —gomyntnt
I'(3p1 —2p2) L (4p1 — 3p2) ’

g — 2(T o 7-1)2P1*P2*1 2(T —&— 7-1)301*2@71

’ ['(2p1 — p2) ['(3p1 — 2p2)

2(T _ f _ 7-1)41)1—3/)2—1
+ + SR
['(4p1 — 3p2)
dg = (T=¢ )™
L'(p1) '

[(T —{— 7—0>p1_1EP1*ﬂ2>P1 (A(T —&— To)pl—pz)co]
X [(T -&— TO)plilEPrP%Pl (A(T —&- TO)P1*p2)CO] ’

b2 bybs bobs
= [bobs B2 bsbs | =07,

bobsg  bsbg bg
1
[Z T §— TJ 1_1E01—P2701 ('A(T —&- Tj)pl_pQ)Cj]
=0

1 *
X [Z(T - 5 - Tj)pl_lEmfmypl (A(T - § - Tj)p]_p2>cj‘|
j=0
b34+d3  bobs +dsdg  babs + dsdg
bobs + dsdg bg + dg bsbgs +dgdg | = d
babg + d3dg  bsbg + dgdyg b2 + d?

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

Controllability of nonlinear higher-order fractional damped stochastic systems 901

Thus, the matrix W is obtained by
T T-7o T—m1
W:/a*d§+ /b*d§+ /d*d£>0, T > 0.
0 T—71 0

From the above, we have shown that W is a nonsingular matrix. Thus, we can ensure that
system (12) is controllable on [0, 7.

Example 2. Consider the following nonlinear damped fractional stochastic system involv-
ing multiple delays:

§DIy(t) — AFDP2y(t)

dw(t)

P
= Bu(t) + > Ciult =) + h(t,y(1) + o (t.y(®) =g~ t€0,T],  (13)
=0

where t — 1 < p1 S A—1<pa <A\ A €N,y € R% ¢t € Jand A, B, Cy, C; and
y(t) are as above,

In(cosh(y1)) sy (1)
o(t,y(t)) = W , h(t,y(t)) = | cosya(t)
sin(ys) y3(t)

Since the corresponding linear fractional system is controllable by Example 1, o (¢, y(¢))
and f(¢t,y(t)) satisfy the assumptions of Theorem 2. Based on that, we conclude that
system (13) is controllable on [0, T].

6 Conclusion

In this paper, we have analyzed the higher-order fractional damped stochastic system in-
volving multiple delays in both linear and nonlinear cases. Based on controllability Gram-
mian matrix, controllability results for the considered linear damped fractional stochastic
system have been attained under suitable assumptions. Some sufficient conditions, which
ensure the controllability of nonlinear damped fractional stochastic system containing
multiple delays in control have been derived by applying the fixed point technique. Exam-
ples were provided to verify the established criteria. The proposed technique could be im-
plemented to other type of fractional-order dynamical systems. An interesting extension
would be to study the controllability concept for the fractional damped nonlinear equation
involving time-varying delay or fractional damped stochastic system with various delay
effects. This area will be the future focus of our research.
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