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Abstract. The present article intends to prove the existence of best proximity points (pairs) using
the notion of measure of noncompactness. We introduce generalized classes of cyclic (noncyclic)
F-contractive operators, and then derive best proximity point (pair) results in Banach (strictly
convex Banach) spaces. This work includes some of the recent results as corollaries. We apply
these conclusions to prove the existence of optimum solutions for a system of Hilfer fractional
differential equations.
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1 Introduction and preliminaries

1.1 Measure of noncompactness

We start with listing of some notations and preliminaries that we shall need to express our
results. Throughout the paper, we denote R = the set of real numbers, N = the set of
natural numbers, R+ = [0,+∞) and N∗ = N ∪ {0}. Let (X, ‖·‖) be a real Banach space
with zero element θ. By B(x, r) we denote the closed ball centered at xwith radius r. The
symbol Br stands for the ball B(θ, r). If Z is a nonempty subset of X, then Z and convZ
denote the closure and closed convex hull of Z , respectively, and diamZ as diameter of
the setZ . Moreover, let us denote by MX the family of all nonempty and bounded subsets
of X and by NX its subfamily consisting of all relatively compact sets. We also denote
Λ(X) as a family of all nonempty, bounded, closed and convex subsets of X.

We now recall the concept of measure of noncompactness.
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Definition 1. (See [5].) A mapping ℵ : MX → R+ is said to be a measure of noncom-
pactness (MNC for brief) in X if it satisfies the following conditions:

(i) The family kerℵ = {X ∈MX: ℵ(X) = 0} is nonempty, and kerℵ ⊂ NX;
(ii) Monotonicity: X ⊂ Y ⇒ ℵ(X) 6 ℵ(Y );

(iii) Invariance under closure: ℵ(X) = ℵ(X);
(iv) Invariance under passage to the convex hull: ℵ(convX) = ℵ(X),
(v) Convexity: ℵ(λX + (1− λ)Y ) 6 λℵ(X) + (1− λ)ℵ(Y ) for λ ∈ [0, 1];

(vi) ℵ(X ∪ Y ) = max{ℵ(X),ℵ(Y )}, where X,Y ∈MX;
(vii) Cantor’s intersection property: If {Xn}n>1 is a sequence of nonempty, closed

sets in MX such that Xn+1 ⊂ Xn (n = 1, 2, . . .) and limn→∞ ℵ(Xn) = 0, then
the set X∞ :=

⋂∞
n=1Xn is nonempty and compact.

The family kerℵ defined in axiom (i) is called the kernel of the MNC ℵ.
One of the properties of the MNC is X∞ ∈ kerℵ. Indeed, from the inequality

ℵ(X∞) 6 ℵ(Xn) for n = 1, 2, 3, . . ., we infer that ℵ(X∞) = 0.
The well-known measure of noncompactness is due to Kuratowski [15], which is the

map α : MX → R+ given as

α(Q) = inf

{
ε > 0: Q ⊂

n⋃
k=1

Sk, Sk ⊂ E, diamSk < ε (k ∈ N)

}
.

In 1930, Schauder [20] generalized Brouwer’s fixed point theorem to Banach spaces
as follows.

Theorem 1. Let Z ∈ Λ(X) be a unbounded subset of a Banach space X. Then every
compact, continuous map T : Z → Z has at least one fixed point.

We recall that the mapping T : Z → Y is said to be a compact operator if T
is continuous and maps bounded sets into relatively compact sets, where X and Y are
normed linear spaces, and Z is a subset of X.

In 1955, Darbo [8] used the notion of measure of noncompactness to establish an
extension of Schauder’s fixed point problem as below.

Theorem 2. Let Z ∈ Λ(X) be a subset of a Banach space X, and let T : Z → Z be
a continuous and ℵ-set contraction operator, that is, there exists a constant λ ∈ [0, 1)
with

ℵ(T W) 6 λℵ(W)

for any ∅ 6=W ⊂ Z , where ℵ is an MNC on X. Then T has a fixed point.

The following well-known theorem was proved in 1967 by Sadovskii [19], it is a gen-
eralization of Darbo’s fixed point theorem.

Theorem 3. Let Z ∈ Λ(X) be a subset of a Banach space X, and let T :Z → Z be
a continuous and ℵ-condensing operator, that is,

ℵ(W) > 0 =⇒ ℵ(T
(
W)
)
< ℵ(W)

for any ∅ 6=W ⊂ Z , where ℵ is an MNC on X. Then T has a fixed point.

Nonlinear Anal. Model. Control, 27(5):964–979, 2022
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1.2 Best proximity theory

It is well understood that a mapping T on a nonempty subset A of X possesses a fixed
point if A ∩ T (A) is nonempty. If T is fixed point free, then in this case, we intend to
find the element ϑ in A so that ϑ and T ϑ have smallest distance. In this case, the point
ϑ is a best approximant for T . The credit of pioneering best approximation theory goes
to Ky Fan (1969) (refer [6] and references therein for more details of best approximation
theory). But the problem arises when A is mapped into another subset B of X by T . In
this case the problem is to find a point, which estimates the distance between these two
sets A and B. Such points are known as best proximity points.

Let us take two nonempty subsets A and B of X. It is to be assume that a pair (A,B)
satisfies a property if A and B individually satisfy that property. For example, we say
a pair (A,B) is compact if and only if A and B are compact. For the pair (A,B), we will
define

A0 =
{
p ∈ A: ∃q′ ∈ B

∣∣ ‖p− q′‖ = dist(A,B)
}
,

B0 =
{
q ∈ B: ∃p′ ∈ A

∣∣ ‖p′ − q‖ = dist(A,B)
}
.

It is worth noticing that the pair (A0,B0) may be empty, but in particular, if (A,B)
is a nonempty, convex and weakly compact pair in X, then (A0,B0) is also nonempty,
convex and weakly compact. If A0 = A and B0 = B, then the pair (A,B) is called
proximinal.

A mapping T : A ∪ B → A ∪ B is called cyclic if T (A) ⊆ B and T (B) ⊆ A, and if
T (A) ⊆ A and T (B) ⊆ B, then T is noncyclic. T is called relatively nonexpansive if it
satisfies ‖T p − T q‖ 6 ‖p − q‖ whenever p ∈ A and q ∈ B. In special case, if A = B,
then T is called nonexpansive self-mapping. We consider a best proximity point for a
cyclic mapping T , which is defined as a point % ∈ A ∪ B satisfying

‖%− T %‖ = dist(A,B) = inf
{
‖p− q‖: p ∈ A, q ∈ B

}
.

In case of a noncyclic mapping T , we consider existence of a pair (q, p) ∈ (A,B) for
which q = T q, p = T p and ‖q − p‖ = dist(A,B). Such pairs are called best proximity
pairs.

Eldred et al. in [9] coined the idea of cyclic (noncyclic) relatively nonexpansive map-
pings and obtained best proximity point (pair) results. In doing so, they have used the
concept, which is called as proximal normal structure (in short, PNS). In 2017, Gabeleh
[11] proved that every convex and compact (nonempty) pair in a Banach space has PNS
by using a concept of proximal diametral sequences. Considering this fact, Gabeleh
obtains following result. Recall that the compactness of T : A ∪ B → A ∪ B means
that (T (A), T (B)) is compact.

Theorem 4. (See [12].) Let X be a Banach space, and let (A,B) ∈ Λ(X ) × Λ(X ).
Assume that T : A∪B → A∪B is a relatively nonexpansive cyclic mapping, then T has
a best proximity point, provided T is compact and A0 6= ∅.

https://www.journals.vu.lt/nonlinear-analysis
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Before stating the result for noncyclic mappings, let us recall a mathematical concept
of strict convexity of Banach spaces. A Banach space X is strictly convex if for p, q, x ∈ X
and M > 0,[

‖p− x‖ 6M, ‖q − x‖ 6M, p 6= q
]

=⇒
∥∥∥∥p+ q

2
− x
∥∥∥∥ < M,

holds. The Lp space (1 < p < ∞) and Hilbert spaces are examples of strictly convex
Banach spaces.

Theorem 5. (See [12].) Let X be a strictly convex Banach space, and let (A,B) ∈
Λ(X )× Λ(X ). Assume that T : A ∪ B → A ∪ B is a relatively nonexpansive noncyclic
mapping. If T is compact and A0 6= ∅, then T has a best proximity pair

Recently, several works appeared (see [12–14, 16, 18, 21]) in which best proximity
point (pair) results are obtained using measure of noncompactness.

1.3 Concepts from fractional calculus

We present some concepts and outcomes from fractional calculus, which will be used
in application part of this article. Let −∞ < a < b < ∞. Let C[a, b] denotes the
space of all continuous functions on [a, b]. We denote by Lm(a, b), m > 1, the spaces of
Lebesgue-integrable functions on (a, b). See [10] for more details on fractional calculus.

The left-sided Riemann–Liouville fractional integrals and derivatives are defined as
follows.

Definition 2. Let f ∈ L1(a, b). The integral

Ipa+f(x) =
1

Γ(p)

x∫
a

(x− s)p−1f(s) ds, x > a, p > 0,

is called left-sided Riemann–Liouville fractional integral of order p of the function f .

Definition 3. The left-sided Riemann–Liouville fractional derivative of order p of f is
defined as the following expression:

Dp
a+f(x) =

d

dx
Ipa+f(x), x > a, 0 < p < 1,

provided the right-hand side exists.

We have following results for above power functions.

Lemma 1. For x > a, we have[
Ipa+(t− a)q−1

]
(x) =

Γ(q)

Γ(p+ q)
(x− a)p+q−1, p > 0, q > 0,[

Dp
a+(t− a)p−1

]
(x) = 0, 0 < p < 1.

Nonlinear Anal. Model. Control, 27(5):964–979, 2022
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Lemma 2. For p, q > 0 and f ∈ L1(a, b), we have

Ipa+I
q
a+f(x) = Ip+qa+ f(x), a.e. x ∈ [a, b].

Definition 4. (See [10].) The left-sided Hilfer fractional derivative operator of order
0 < p < 1 and type 0 6 q 6 1 is defined by

Dp,q
a+ = I

q(1−p)
a+ DI

(1−p)(1−q)
a+ , D =

d

dx
.

Remark 1. The Hilfer derivative is considered as an interpolator between the Riemann–
Liouville and Caputo derivative since

Dp,q
a+ =

{
Dp
a+ , q = 0,

I1−p
a+ D, q = 1.

The differential equations with fractional derivatives gain a lot of importance in recent
years. For proving existence of solutions for such equations, the fixed point theory and the
concept of measure of noncompactness is of immense importance. For more applications
of fixed point theorems and MNC, we refer the readers to following works [1–3, 22] and
references therein.

In this article, we first present the results proving existence of best proximity points
(pairs) for some new variants of F-contractive mappings. These conclusions extend some
of recent results in the literature. As an application, we prove existence of optimum
solutions for the differential equations of arbitrary fractional order involving the left-sided
Hilfer fractional differential operator.

2 Main results

We start with defining the following notion introduced in [17, 24].

Definition 5. Let F be a family of all functions F : R+ → R such that:

(F1) F is strictly increasing;
(F2) for each sequences {ξn} ⊆ R+, limn→∞ ξn = 0⇔ limn→∞ F (ξn) = −∞.

Moreover, Π denotes the set of all mappings τ : R+ → R such that

lim inf
t→s+

τ(t) > 0 for all s ∈ R+.

We refer the interested readers to the chapter [23] for review of class of F -contractive
conditions. The authors give fixed point existence result established by using such con-
traction condition together with measure of noncompactness. Moreover, the applicability
of these results in the theory of functional equations is discussed.

We define a new notion of cyclic (noncyclic) contractive operator using these two
classes of functions. Throughout this section, ℵ is an MNC on X, and (A,B) ∈ Λ(X )×
Λ(X ).

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


On a new variant of F -contractive mappings 969

Definition 6. An operator T : A∪B → A∪B is said to be cyclic (noncyclic) F−Π−ϕ-
contractive if there exist F ∈ F , τ ∈ Π and a lower semi-continuous function ϕ :
[0,∞)→ [0,∞) such that min{ℵ(T K1),ℵ(T K2)} > 0 implies

τ
(
ℵ(K1 ∪ K2)

)
+ F

(
ℵ(T K1 ∪ T K2) + ϕ

(
ℵ(T K1 ∪ T K2)

))
6 F

(
ℵ(K1 ∪ K2) + ϕ

(
ℵ(K1 ∪ K2)

))
for every proximinal and T invariant pair Λ(X) × Λ(X) 3 (K1,K2) ⊆ (A,B) with
dist(K1,K2) = dist(A,B).

If ϕ = 0, then the operator T is called a cyclic (noncyclic)F−Π-contractive operator.
We now state the first main existence result.

Theorem 6. Let X be a Banach space, and let T : A ∪ B → A ∪ B be a relatively non-
expansive cyclic F−Π−ϕ-contractive operator. If A0 6= ∅, then T has a best proximity
point.

Proof. Note that (A0,B0) ∈ Λ(X)×Λ(X) is proximinal. Also if p ∈ A0, there exists an
element q ∈ B0 such that ‖p− q‖ = dist(A,B). Since T is relatively nonexpansive,

‖T p− T q‖ 6 ‖p− q‖ = dist(A,B),

which gives T p ∈ B0, that is, T (A0) ⊆ B0. Similarly, T (B0) ⊆ A0, and so T is cyclic
on A0 ∪ B0.

We start with assumptionP0 =A0 andQ0 =B0 and define a sequence pair {(Pn,Qn)}
as Pn = conv(T (Pn−1)) and Qn = conv(T (Qn−1)) for all n > 1. We claim that

Pn+1 ⊆ Qn ⊆ Pn−1 ∀n ∈ N.

We have Q1 = conv(T (Q0)) = conv(T (B0)) ⊆ convA0 = A0 = P0. Therefore,
T (Q1) ⊆ T (P0). So Q2 = conv(T (Q1)) ⊆ conv(T (P0)) = P1. Continuing this
pattern, we getQn ⊆ Pn−1 by using induction. Similarly, we can see thatPn+1 ⊆ Qn for
all n ∈ N. Thus Pn+2 ⊆ Qn+1 ⊆ Pn ⊆ Qn−1 for all n ∈ N. Hence, we get a decreasing
sequence {(P2n,Q2n)} of nonempty, closed and convex pairs in A0 × B0. Moreover,
T (Q2n) ⊆ T (P2n−1) ⊆ conv(T (P2n−1)) = P2n and T (P2n) ⊆ T (Q2n−1) ⊆
conv(T (Q2n−1)) = Q2n. Therefore for all n ∈ N, the pair (P2n,Q2n) is T -invariant.
By a similar manner we can see that (P2n−1,Q2n−1) is also T -invariant for all n ∈ N.

Besides, if (ν, ϑ) ∈ A0×B0 is such that ‖ν−ϑ‖ = dist(A,B), then (T 2nν, T 2nϑ) ∈
P2n ×Q2n and

dist(P2n,Q2n) 6
∥∥T 2nν − T 2nϑ

∥∥ 6 ‖ν − ϑ‖ = dist(A,B).

Next, we show that the pair (Pn,Qn) is proximinal using mathematical induction. Obvi-
ously, for n = 0, the pair (P0,Q0) is proximinal. Suppose that (Pk,Qk) is proximinal.
We show that (Pk+1,Qk+1) is also proximinal. Let x be an arbitrary member in Pk+1 =
conv(T (Pk)). Then it is represented as x =

∑m
l=1 λlT (xl) with xl ∈ Pk,m ∈ N, λl > 0

Nonlinear Anal. Model. Control, 27(5):964–979, 2022
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and
∑m
l=1 λl = 1. Due to proximinality of the pair (Pk,Qk), there exists yl ∈ Qk for

1 6 l 6 m such that ‖xl − yl‖ = dist(Pk,Qk) = dist(A,B). Take y =
∑m
l=1 λlT (yl).

Then y ∈ conv(T (Qk)) = Qk+1 and

‖x− y‖ =

∥∥∥∥∥
m∑
l=1

λlT (xl)−
m∑
l=1

λlT (yl)

∥∥∥∥∥ 6
m∑
l=1

λl‖xl − yl‖ = dist(A,B).

This means that the pair (Pk+1,Qk+1) is proximinal, and induction does the rest to prove
that (Pn,Qn) is proximinal for all n ∈ N.

It is worth noticing that if max{ℵ(P2n0
),ℵ(Q2n0

)} = 0 for some n0 ∈ N, then the
relatively nonexpansive mapping T : P2n0

∪ Q2n0
→ P2n0

∪ Q2n0
is compact, and the

result follows from Theorem 4.
So we assume max{ℵ(Pn),ℵ(Qn)} > 0 for all n ∈ N. Since τ ∈ Π , there exists

r > 0 and k ∈ N such that τ(ℵ(P2n ∪ Q2n)) > r for every n > k. As T is F−Π−ϕ-
contractive operator, we have

τ
(
ℵ(P2n ∪Q2n)

)
+ F

(
ℵ(P2n+1 ∪Q2n+1) + ϕ

(
ℵ(P2n+1 ∪Q2n+1)

))
= τ

(
ℵ(P2n ∪Q2n)

)
+ F

(
max

{
ℵ(P2n+1),ℵ(Q2n+1)

}
+ ϕ

(
max

{
ℵ(P2n+1),ℵ(Q2n+1)

}))
= τ

(
ℵ(P2n ∪Q2n)

)
+ F

(
max

{
ℵ
(
conv

(
T (P2n)

))
,ℵ
(
conv

(
T (Q2n)

))}
+ ϕ

(
max

{
ℵ
(
conv

(
T (P2n)

))
,ℵ
(
conv

(
T
(
Q2n)

))}))
= τ

(
ℵ(P2n ∪Q2n)

)
+ F

(
max

{
ℵ
(
T (P2n)

)
,ℵ
(
T (Q2n)

)}
+ ϕ

(
max

{
ℵ
(
T (P2n)

)
,ℵ
(
T (Q2n)

)}))
= τ

(
ℵ(P2n ∪Q2n)

)
+ F

(
ℵ
(
T (P2n) ∪ T (Q2n)

)
+ ϕ

(
ℵ
(
T (P2n) ∪ T (Q2n)

)))
6 F

(
ℵ(P2n ∪Q2n) + ϕ

(
ℵ(P2n ∪Q2n)

))
.

For all n > k, we deduce that

F
(
ℵ(P2n+1 ∪Q2n+1) + ϕ

(
ℵ(P2n+1 ∪Q2n+1)

))
6 F

(
ℵ(P2n ∪Q2n) + ϕ

(
ℵ(P2n ∪Q2n)

))
− τ
(
ℵ(P2n ∪Q2n)

)
6 F

(
ℵ(P2n ∪Q2n) + ϕ

(
ℵ(P2n ∪Q2n)

))
− r

6 · · ·
6 F

(
ℵ(P0 ∪Q0) + ϕ

(
ℵ(P0 ∪Q0)

))
− 2(n− k)r,

that is,

F
(
ℵ(P2n+1 ∪Q2n+1) + ϕ

(
ℵ(P2n+1 ∪Q2n+1)

))
6 F

(
ℵ(P0 ∪Q0) + ϕ

(
ℵ(P0 ∪Q0)

))
− 2(n− k)r for all n > k.

https://www.journals.vu.lt/nonlinear-analysis
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Therefore, F (ℵ(P2n+1 ∪Q2n+1) +ϕ(ℵ(P2n+1 ∪Q2n+1)))→ −∞ as n→∞, and
by (F2) we must have

lim
n→∞

ℵ(P2n ∪Q2n) = lim
n→∞

ϕ
(
ℵ(P2n ∪Q2n)

)
= 0.

That is, limn→∞ ℵ(P2n ∪ Q2n) = max{limn→∞ ℵ(P2n), limn→∞ ℵ(Q2n)} = 0. Now,
let P∞ := ∩∞n=0P2n and Q∞ := ∩∞n=0Q2n. Using property (vii) of Definition 1, the
pair (P∞,Q∞) is nonempty, convex, compact and T -invariant with dist(P∞,Q∞) =
dist(A,B). Therefore, T admits a best proximity point in P∞ ∪Q∞, and this completes
the proof.

If we put ϕ = 0 in Theorem 6, then we have following result for F−Π-contractive
mapping.

Corollary 1. Let X be a Banach space, and let T : A ∪ B → A ∪ B be a relatively
nonexpansive cyclic F−Π-contractive operator. If A0 6= ∅, then T has a best proximity
point.

Corollary 2. Let X be a Banach space, and let T : A ∪ B → A∪ B be a relatively non-
expansive cyclic operator, which satisfies

ℵ(T K1 ∪ T K2) + ϕ
(
ℵ(T K1 ∪ T K2)

)
6 e−k

[
ℵ(K1 ∪ K2) + ϕ

(
ℵ(K1 ∪ K2)

)]
.

If A0 6= ∅, then T has a best proximity point.

Proof. If we set τ(t) = k and F (t) = ln(t), then the proof follows from Theorem 6.

It is noteworthy here that if we consider ϕ = 0 in above corollary, then we get
a particular case of Darbo-type best proximity point theorem.

The second existence result is for relatively nonexpansive noncyclic F−Π−ϕ-con-
tractive operator.

Theorem 7. Let X be a strictly convex Banach space, and let T : A ∪ B → A ∪ B be
a relatively nonexpansive noncyclic F−Π−ϕ-contractive operator. If A0 is nonempty,
then T has a best proximity pair.

Proof. Let (p, q) ∈ A0 × B0 be such that ‖p − q‖ = dist(A,B). Since T is relatively
nonexpansive noncyclic mapping,

‖T p− T q‖ 6 ‖p− q‖ = dist(A,B),

which gives T p ∈ A0, that is, T (A0) ⊆ A0. Similarly, T (B0) ⊆ B0 and so T is
noncyclic on A0 ∪ B0.

Let us define a pair (Pn,Qn) as Pn = conv(T (Pn−1)) and Qn = conv(T (Qn−1)),
n > 1 withP0 = A0 andQ0 = B0. We have thatQ1 = conv(T (Q0)) = conv(T (B0)) ⊆
B0 = Q0. Therefore, T (Q1) ⊆ T (Q0). Thus Q2 = conv(T (Q1)) ⊆ conv(T (Q0)) =
Q1. Continuing this pattern, we get Qn ⊆ Qn−1 by using induction. Similarly, we can

Nonlinear Anal. Model. Control, 27(5):964–979, 2022
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see that Pn ⊆ Pn−1 for all n ∈ N. Hence we get a decreasing sequence {(Pn,Qn)} of
nonempty, closed and convex pairs in A0 × B0. Also, T (Qn) ⊆ T (Qn−1) ⊆
conv(T (Qn−1)) = Qn and T (Pn) ⊆ T (Pn−1) ⊆ conv(T (Pn−1)) = Pn. Therefore,
for all n ∈ N, the pair (Pn,Qn) is T -invariant. From the proof of Theorem 6 we have
(Pn,Qn) is a proximinal pair such that dist(Pn,Qn) = dist(A,B) for all n ∈ N ∪ {0}.

Following the proof of Theorem 6, if max{ℵ(Pn0),ℵ(Qn0)} = 0 for some n0 ∈ N,
then the relatively nonexpansive mapping T : Pn0 ∪ Qn0 → Pn0 ∪ Qn0 is compact, and
the result follows from Theorem 5.

So we assume that max{ℵ(Pn),ℵ(Qn)} > 0 for all n ∈ N. In view of the fact that
τ ∈ Π , there exist r > 0 and k ∈ N such that τ(ℵ(Pn ∪Qn)) > r for every n > k. Since
T is F−Π−ϕ-contractive operator,

τ
(
ℵ(Pn ∪Qn)

)
+ F

(
ℵ(Pn+1 ∪Qn+1) + ϕ

(
ℵ(Pn+1 ∪Qn+1)

))
= τ

(
ℵ(Pn ∪Qn)

)
+ F

(
max

{
ℵ(Pn+1),ℵ(Qn+1)

}
+ ϕ

(
max

{
ℵ(Pn+1),ℵ(Qn+1)

}))
= τ

(
ℵ(Pn ∪Qn)

)
+ F

(
max

{
ℵ
(
conv

(
T (Pn)

))
,ℵ
(
conv

(
T (Qn)

))}
+ ϕ

(
max

{
ℵ
(
conv

(
T (Pn)

))
,ℵ
(
conv

(
T (Qn)

))}))
= τ

(
ℵ(Pn ∪Qn)

)
+ F

(
max

{
ℵ(T (Pn)

)
,ℵ
(
T (Qn

)
)
}

+ ϕ
(
max

{
ℵ
(
T (Pn)

)
,ℵ
(
T (Qn)

)}))
= τ

(
ℵ(Pn ∪Qn)

)
+ F

(
ℵ
(
T (Pn) ∪ T (Qn)

)
+ ϕ

(
ℵ
(
T (Pn) ∪ T (Qn)

)))
6 F

(
ℵ(Pn ∪Qn) + ϕ

(
ℵ(Pn ∪Qn)

))
.

Thus, for all n > k, we obtain

F
(
ℵ(Pn+1 ∪Qn+1) + ϕ

(
ℵ(Pn+1 ∪Qn+1)

))
6 F

(
ℵ(Pn ∪Qn) + ϕ

(
ℵ(Pn ∪Qn)

))
− τ
(
ℵ(Pn ∪Qn)

)
6 F

(
ℵ(Pn ∪Qn) + ϕ

(
ℵ(Pn ∪Qn)

))
− r

6 · · ·
6 F

(
ℵ(P0 ∪Q0) + ϕ

(
ℵ(P0 ∪Q0)

))
− (n− k)r,

that is,

F
(
ℵ(Pn+1 ∪Qn+1) + ϕ(ℵ(Pn+1 ∪Qn+1))

)
6 F

(
ℵ(P0 ∪Q0) + ϕ

(
ℵ(P0 ∪Q0)

))
− (n− k)r for all n > k.

This implies that F (ℵ(Pn+1 ∪ Qn+1), ϕ(ℵ(Pn+1 ∪ Qn+1))) → −∞ as n→∞, and
by (F2) we have

lim
n→∞

ℵ(Pn ∪Qn) = lim
n→∞

ϕ
(
ℵ(Pn ∪Qn)

)
= 0.
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Thereby, limn→∞ ℵ(Pn ∪ Qn) = max{limn→∞ ℵ(Pn), limn→∞ ℵ(Qn)} = 0. Now,
let P∞ := ∩∞n=0Pn and Q∞ := ∩∞n=0Qn. Using property (vii) of Definition 1, the
pair (P∞,Q∞) is nonempty, convex, compact and T -invariant with dist(P∞,Q∞) =
dist(A,B). Therefore, T has a best proximity pair.

If we set ϕ = 0 in Theorem 7, then we have the following result for F−Π-contractive
mapping.

Corollary 3. Let X be a strictly convex Banach space, and let T : A ∪ B → A ∪ B be
a relatively nonexpansive noncyclic F−Π-contractive operator. If A0 is nonempty, then
T has a best proximity pair.

Corollary 4. Let X be a strictly convex Banach space, and let T : A ∪ B → A ∪ B be
a relatively nonexpansive noncyclic operator, which satisfies

ℵ(T K1 ∪ T K2) + ϕ
(
ℵ(T K1 ∪ T K2)

)
6 e−k

[
ℵ(K1 ∪ K2) + ϕ

(
ℵ(K1 ∪ K2)

)]
.

If A0 6= ∅, then T has a best proximity pair.

Proof. If we set τ(t) = k and F (t) = ln t, then the proof follows from Theorem 7.

It is noteworthy here that if we consider ϕ = 0 in above corollary, then we get
a particular case of Darbo-type best proximity pair theorem.

3 Application

In this section, we establish the existence of an optimal solution of the following problem
involving systems of Hilfer fractional differential equations with initial conditions.

LetK and γ be positive real numbers, I = [0,K], and let (E, ‖·‖) be a Banach space.
Let B1 = B(α0, γ) and B2 = B(β0, γ) be closed balls in E, where α0, β0 ∈ E.

We consider the following system of Hilfer fractional differential equation of arbitrary
order with initial conditions:

Dν,µ
0+ x(t) = u

(
t, x(t)

)
, t ∈ (0,K],

I
(1−ν)(1−µ)
0+ x(0) = α0,

(1)

Dν,µ
0+ y(t) = v

(
t, y(t)

)
, t ∈ (0,K],

I
(1−ν)(1−µ)
0+ y(0) = β0,

(2)

whereDν,µ
0+ is the left-sided Hilfer fractional differential operator, 0 6 ν 6 1, 0 < µ < 1;

the state x(·) takes the values from Banach spaceE; u : I×B1 → E and v : I×B2 → E
are given mappings satisfying some assumptions. The following result establishes the
equivalence of (1) with the integral equation.
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Lemma 3. (See [10].) The initial value problem (1) is equivalent to the following integral
equation:

x(t) =
α0

Γ(ν(1− µ) + µ)
t(ν−1)(1−µ) +

1

Γ(µ)

t∫
0

(t− s)µ−1u
(
s, x(s)

)
ds, t ∈ I.

Let J ⊆ I, and let S = C(J , E) be a Banach space of continuous mappings from J
into E endowed with supremum norm. Let

S1 =
{
x ∈ C(J , B1): I(1−ν)(1−µ)x(0) = α0

}
,

S2 =
{
y ∈ C(J , B2): I(1−ν)(1−µ)x(0) = β0

}
.

So (S1, S2) is a nonempty, bounded, closed and convex pair in S × S. Now, for every
φ ∈ S1 and ψ ∈ S2, we have ‖φ − ψ‖ = sup ‖φ(s) − ψ(s)‖ > ‖α0 − β0‖. Therefore
dist(S1, S2) = ‖α0 − β0‖, which ensures that (S1)0 is nonempty. Now, let us define the
operator T : S1 ∪ S2 → S as follows:

Tx(t) =


β0 t

(ν−1)(1−µ)

Γ(ν(1−µ)+µ) + 1
Γ(µ)

∫ t
0
(t− s)µ−1u(s, x(s)) ds, x ∈ S1,

α0 t
(ν−1)(1−µ)

Γ(ν(1−µ)+µ) + 1
Γ(µ)

∫ t
0
(t− s)µ−1v(s, x(s)) ds, x ∈ S2.

(3)

Lemma 4. The operator T : S1 ∪S2 → S defined by (3) is cyclic if u and v are bounded
and continuous such that u, v ∈ L1(0,K).

Proof. Let x ∈ S1 and set p = µ+ ν − µν. We have

Tx(t) =
β0

Γ(p)
t(p−1) +

1

Γ(µ)

t∫
0

(t− s)µ−1u
(
s, x(s)

)
ds.

Applying I1−p
0+ on both sides and applying Lemma 1, we get

I1−p
0+ Tx(t) =

β0

Γ(p)
I1−p
0+ t(p−1) + I1−p

0+

1

Γ(µ)

t∫
0

(t− s)µ−1u
(
s, x(s)

)
ds

=
β0

Γ(p)

Γ(p)

Γ((1− p) + (p− 1))
t(1−p)+(p−1) + I1−p

0+ Iµ0+u
(
s, x(s)

)
(t)

= β0t
0 +

[
I1−ν(1−µ)0+u

(
s, x(s)

)]
(t)

= β0 +
[
I1−ν(1−µ)0+u

(
s, x(s)

)]
(t).

Here [I1−ν(1−µ)0+u(s, x(s))](t)→ 0 as t→0 by Lemma 2. Therefore I1−p
0+ Tx(0)=β0,

which means Tx(t) ∈ S2. Similarly, one can show that Tx(t) ∈ S1 if x ∈ S2. Thus T is
cyclic operator.

We say that z ∈ S1 ∪ S2 is an optimal solution for system (1) and (2), provided that
‖z − Tz‖ = dist(S1, S2), that is, z is a best proximity point of the operator T defined
in (3).
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Assumptions. We consider the following hypotheses to prove the existence of optimal
solutions to the differential equations.

(A1) Let ℵ be any MNC. For any bounded pair (N1, N2) ⊆ (B1, B2), there exist
F ∈F , a nondecreasing function ϕ :R+→R+ and τ >0 such that ℵ(u(J×N2)),
ℵ(v(J×N1)) > 0 implies

ℵ
(
f(J ×N1) ∪ g(J ×N2)

)
<

Γ(µ)

τµ−1
ℵ(N1 ∪N2)

and

τ + F
(
ℵ
(
u(J ×N2) ∪ v(J ×N1)

)
+ ϕ

(
ℵ
(
u(J ×N2) ∪ v(J ×N1)

)))
6 F

(
ℵ(N1 ∪N2) + ϕ

(
ℵ(N1 ∪N2)

))
.

(A2) For all (x, y) ∈ S1 × S2,∥∥f(t, x(t)
)
− g
(
t, y(t)

)∥∥ 6
Γ(µ+ 1)

τµ

(∥∥x(t)− y(t)
∥∥− τp−1

p
‖β0 − α0‖

)
.

The following result is the mean-value theorem for fractional differential, which we
have rewritten according to our notations.

Theorem 8. (See [7].) Let I, u, q > 0 and E be given as above. Let u be integrable
on I, and let m and M be the infimum and supremum of u, respectively, on I. Then there
exists a point ζ in I such that

1

Γ(q)

t∫
0

(t− s)q−1u
(
s, x(s)

)
ds =

tq−1

Γ(q)
u
(
ζ, x(ζ)

)
.

Then we give the following result.

Theorem 9. Under notations defined above, the hypotheses of Lemma 4 and assump-
tions (A1) and (A2), the system of Hilfer fractional differential equation (1)–(2) has an
optimal solution.

Proof. It is clear that system (1)–(2) has an optimal solution if the operator T defined
in (3) has a best proximity point.

From Lemma 4, T is a cyclic operator. It follows trivially that T (S1) is a bounded
subset of S2. We prove that T (S1) is also an equicontinuous subset of S2. For t1, t2 ∈ J
with t1 < t2 and x ∈ S1, we observe that

∥∥Tx(t1)− Tx(t2)
∥∥

=

∥∥∥∥∥ β0

Γ(p)
t
(p−1)
2 +

1

Γ(µ)

t2∫
0

(t2 − s)µ−1u
(
s, x(s)

)
ds− β0

Γ(p)
t
(p−1)
1

− 1

Γ(µ)

t1∫
0

(t1 − s)µ−1u
(
s, x(s)

)
ds

∥∥∥∥∥
Nonlinear Anal. Model. Control, 27(5):964–979, 2022
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=

∣∣∣∣∣ β0

Γ(p)

(
tp−1
2 − tp−1

1

)
+

1

Γ(µ)

t1∫
0

(
(t2 − s)µ−1 − (t1 − s)µ−1

)
u
(
s, x(s)

)
ds

+
1

Γ(µ)

t2∫
t1

(t2 − s)µ−1u
(
s, x(s)

)
ds

∣∣∣∣∣
6

β0

Γ(p)

∣∣tp−1
2 − tp−1

1

∣∣+
M

µ

∣∣∣∣∣
t1∫

0

[
(t2 − s)µ−1 − (t1 − s)µ−1

]
ds

∣∣∣∣∣
+
M

µ

∣∣∣∣∣
t2∫
t1

[
(t2 − s)µ−1

]
ds

∣∣∣∣∣.
As t2 → t1, right-hand side tends to 0. Thus ‖Tx(t2) − Tx(t1)‖ → 0 as t2 → t1.
Thus T (S1) is equicontinuous. With the similar argument, we can prove that T (S2) is
bounded and equicontinuous subset of S1. Thus the application of Arzela–Ascoli theorem
concludes that (S1, S2) is relatively compact.

Next, we show that T is relatively nonexpansive. For any (x, y) ∈ S1 × S2, we have∥∥Tx(t)− Ty(t)
∥∥

=

∥∥∥∥∥ β0

Γ(p)
t(p−1) +

1

Γ(µ)

t∫
0

(t− s)µ−1u
(
s, x(s)

)
ds

−

(
α0

Γ(p)
t(p−1) +

1

Γ(µ)

t∫
0

(t− s)µ−1v
(
s, x(s)

)
ds

)∥∥∥∥∥
=
t(p−1)

Γ(p)
(β0 − α0) +

∣∣∣∣∣ 1

Γ(µ)

t∫
0

(t− s)µ−1
[
u
(
s, x(s)

)
− v
(
s, y(s)

)]
ds

∣∣∣∣∣
6
τ (p−1)

Γ(p)
‖β0 − α0‖

+
1

Γ(µ)

t∫
0

(t− s)µ−1 Γ(µ+ 1)

τµ

[∥∥x(s)− y(s)
∥∥− τp−1

Γ(p)
‖β0 − α0‖

]
ds (by (A2))

6
τ (p−1)

Γ(p)
‖β0 − α0‖+

1

Γ(µ)

τµ

µ

Γ(µ+ 1)

τµ

[
‖x(s)− y(s)‖ − τp−1

Γ(p)
‖β0 − α0‖

]
= ‖x− y‖,

and thereby, ‖Tx− Ty‖ 6 ‖x− y‖. Therefore T is relatively nonexpansive.
At last, let (K1,K2) ⊆ (S1, S2) be nonempty, closed, convex and proximinal pair,

which is T -invariant and such that dist(K1,K2) = dist(S1, S2)(= ‖α0 − β0‖). By
using a generalized version of Arzela–Ascoli theorem(see Ambrosetti [4]) and assump-
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tion (A1) we get

τ + F
(
ℵ(T (K1) ∪ T (K2)) + ϕ

(
ℵ
(
T (K1) ∪ T (K2)

)))
= τ + F

(
max

{
ℵ(T (K1)),ℵ

(
T (K2)

)}
+ ϕ

(
max

{
ℵ
(
T (K1)

)
,ℵ
(
T (K2)

)}))
6 τ + F

(
max

{
sup
t∈J

{
ℵ
({
Tx(t): x ∈ K1

})}
, sup
t∈J

{
ℵ
({
Ty(t): y ∈ K2

})}}
+ ϕ

(
max

{
sup
t∈J

{
ℵ
(
{Tx(t): x ∈ K1

})}
, sup
t∈J

{
ℵ
({
Ty(t): y ∈ K2

})}}))
6 τ + F

(
max

{
sup
t∈J

{
ℵ

({
β0t

p−1

Γ(p)
+

1

Γ(µ)

t∫
0

(t− s)q−1f
(
s, x(s)

)
ds: x ∈ K1

})}
,

sup
t∈J

{
ℵ

({
α0t

p−1

Γ(p)
+

1

Γ(µ)

t∫
0

(t− s)q−1g
(
s, y(s)

)
ds: y ∈ K2

})}}

+ ϕ

(
max

{
sup
t∈J

{
ℵ

({
β0t

p−1

Γ(p)
+

1

Γ(µ)

t∫
0

(t− s)q−1f
(
s, x(s)

)
ds: x ∈ K1

})}
,

sup
t∈J

{
ℵ

({
α0t

p−1

Γ(p)
+

1

Γ(µ)

t∫
0

(t− s)q−1g
(
s, y(s)

)
ds: y ∈ K2

})}}))
.

So, in view of Theorem 8, it follows that

τ + F
(
ℵ
(
T (K1) ∪ T (K2)

)
+ ϕ

(
ℵ
(
T (K1) ∪ T (K2)

)))
6 τ + F

(
max

{
sup
t∈J

{
ℵ
({

β0 t
p−1

Γ(p)
+
tµ−1

Γ(µ)
conv

({
f
(
σ, x(σ)

)
: σ ∈ J

})})}
,

sup
t∈J

{
ℵ
({

α0t
p−1

Γ(p)
+
tµ−1

Γ(µ)
conv

({
g
(
σ, x(σ)

)
: σ ∈ J

})})}}
+ ϕ

(
max

{
sup
t∈J

{
ℵ
({

β0t
p−1

Γ(p)
+
tµ−1

Γ(µ)
conv

({
f
(
σ, x(σ)

)
: σ ∈ J

})})}
,

sup
t∈J

{
ℵ
({

α0t
p−1

Γ(p)
+
tµ−1

Γ(µ)
conv

({
g
(
σ, x(σ)

)
: σ ∈ J

})})}}))
6 τ + F

(
max

{
tµ−1

Γ(µ)
ℵ
(
f(J ×N1)

)
,
tµ−1

Γ(µ)
ℵ
(
g(J ×N2)

)}
+ ϕ

(
max

{
tµ−1

Γ(µ)
ℵ
(
f(J ×N1)

)
,
tµ−1

Γ(µ)
ℵ
(
g(J ×N2)

)}))
6 τ + F

(
tµ−1

Γ(µ)
ℵ
(
f(J ×N1) ∪ g(J ×N2)

)
+ ϕ

(
tµ−1

Γ(µ)
ℵ
(
f(J ×N1) ∪ g(J ×N2)

)))
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6 τ + F
(
ℵ
(
f(J ×N1) ∪ g(J ×N2)

)
+ ϕ

(
ℵ
(
f(J ×N1) ∪ g(J ×N2)

)))
6 F

(
µ(N1 ∪N2) + ϕ

(
µ(N1 ∪N2)

))
.

Therefore, we conclude that T satisfies all the hypotheses of Theorem 6, and so the
operator T has a best proximity point z ∈ S1 ∪ S2, which is an optimal solution for
system (1) and (2).
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