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Abstract. In this article, we consider the existence and uniqueness of solutions for a class of initial
value problems of fuzzy Caputo–Katugampola fractional differential equations and the stability of
the corresponding fuzzy fractional differential equations. The discussions are based on the hyper-
bolic function, the Banach fixed point theorem and an inequality property. Two examples are given
to illustrate the feasibility of our theoretical results.
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1 Introduction

In this paper, we are concerned with the existence, uniqueness and stability of solutions
for a class of initial value problems of fuzzy fractional differential equations (FFDE) of
the following form:

CDq,p
0+ u(t) = λu(t)⊕ f

(
t, u(t)

)
, t ∈ (0, T ],

u(0) = u0 ∈ RF ,
(1)

where CDq,p
0+ is the fuzzy Caputo–Katugampola fractional generalized Hukuhara deriva-

tive of order q ∈ (0, 1], p > 0 is a fixed real number, λ ∈ R, f : (0, T ] × RF → RF is
a continuous fuzzy nonlinear mapping, and RF is the space of fuzzy numbers.

Fractional-order differential equation can be regarded as a generalization of ordinary
integer-order differential equation, and we refer the reader to [13,17,24,26]. However, due
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to errors caused by observations, experiments and maintenance, the variables and parame-
ters that we get are usually fuzzy, incomplete and inaccurate. These uncertainties are intro-
duced into fractional differential equations called fractional fuzzy differential equations.

In recent years, there has been some research on fractional fuzzy differential equa-
tions. Except for various numerical solutions, most of the methods transform fractional
fuzzy differential equations into fractional fuzzy integral equations and then use nonlinear
analysis methods to discuss the qualitative properties of the solutions. In 2010, Agarwal
et al. obtained the solution of the initial value problem by studying the corresponding
fuzzy integral equation of the initial value problem in [2]. In 2012, Allahviranloo et
al. [5] studied the analytical solution to the initial value problem for a class of Riemann–
Liouville-type fractional differential equations under the strong generalized Hukuhara dif-
ferentiability introduced in [8]. Then Allahviranloo et al. studied the initial value problem
of the Volterra–Fredholm-type fuzzy integro–differential equation, and established the
existence and uniqueness of the solution by using a compact mapping theorem and an
iterative method [3]. Recently, Ngo presented results on the existence and uniqueness
of solutions for two kinds of fractional fuzzy functional integral equations and fuzzy
functional differential equations using the contraction mapping principle and the suc-
cessive approximation method [11, 12]. For research on solutions of initial boundary
value problems for fractional fuzzy differential equations, more information can be found
in [1, 4, 6, 13, 22, 27, 32, 35] and the references therein.

The study of Ulam stability can provide an important theoretical basis for the existence
and even uniqueness of the solution of the differential equation and it can also provide
a reliable theoretical basis for the approximate solution of the corresponding equation. In
1993, Obloza studied the stability of the differential equation in [23]. Miura and others
established Ulam stability theory of differential equations in different abstract spaces [18,
19, 31]. In 2013, Rezaei et al. [29] established Hyers–Ulam stability of nth-order linear
differential equations with constant coefficients using the Laplace transform method.
Mortici et al. [20] studied the general solution of the inhomogeneous Euler equation
and the Hyers–Ulam stability on a bounded domain using the integral method. In 2016,
Bahyrycz et al. discussed Ulam stability of the generalized Frechet equation in a Banach
space using a fixed point theorem in [7]. In 2018, Onitsuka [25] established the Ulam
stability of first-order nonhomogeneous linear difference equations.

The purpose of this paper is to introduce fuzzy Caputo–Katugampola fractional dif-
ferential equations, and discuss the existence, uniqueness and stability of solutions of
fuzzy fractional differential equations (1). The structure of the paper is as follows: some
preliminaries are given in Section 2. In Section 3, we establish the existence and unique-
ness of solutions to problem (1). In Section 4, we discuss the stability of the solution. In
Section 5, some examples are given to illustrate the feasibility of the results.

2 Preliminaries

In this section, we briefly introduce some definitions, notations and results related to fuzzy
functions, which will be referred to throughout this paper.
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We denote the set of all real numbers by R and the set of all fuzzy numbers on R
is indicated by RF . A fuzzy number is a mapping u : R → [0, 1] with the following
properties:

(a) u is upper semicontinuous;
(b) u is fuzzy convex, i.e., u(λx + (1 − λ)y) > min{u(x), u(y)} for all x, y ∈ R,

λ ∈ [0, 1];
(c) u is normal, i.e., there exists x0 ∈ R for which u(x0) = 1;
(d) suppu = {x ∈ R | u(x) > 0} is the support of the u, and its closure cl(suppu)

is compact.

For α ∈ (0, 1] denote [u]α = {x ∈ R | u(x) > α} and [u]0 = cl{x ∈ R | u(x) > 0}.
Then it is well known that the α-level set of u, [u]α = [uα, uα], is a closed interval for all
α ∈ [0, 1], where u and u represent the upper and lower branches of the fuzzy set u ∈ RF ,
respectively. A fuzzy number function defined on the real set R and valued in RF is
called a fuzzy-valued function, that is, f : R→ RF . Let the α-level representation of the
fuzzy-valued function f : [a, b]→ RF be expressed by [f(t, u)]α = [fα(t, u), f

α
(t, u)],

t ∈ [a, b], α ∈ [0, 1].
For u ∈ RF , we define the diameter of the α-level set of u as d([u]α) = uα−uα. Let

u, v ∈ RF . If there exists w ∈ RF such that u = v⊕w, then w is called the H-difference
of u and v, and it is denoted by u 	 v. In this paper, the sign “	” always stands for the
H-difference.

The Hausdorff distance between fuzzy numbers is given by RF × RF → [0,+∞),

d(u, v) = sup
r∈[0,1]

max
{∣∣uα − vα∣∣, ∣∣uα − vα∣∣}.

Then it is easy to see that d is a metric in RF and the following properties of the metric d
are valid (see [28]):

(i) d(u⊕ w, v ⊕ w) = d(u, v) for all u, v, w ∈ RF ;
(ii) d(ku, kv) = |k|d(u, v), k ∈ R, u, v ∈ RF ;

(iii) d(u⊕ v, w ⊕ z) 6 d(u,w) + d(v, z) for all u, v, w, z ∈ RF ;
(iv) (d,RF ) is a complete metric space.

For the fuzzy-valued function u, v defined on [a, b], we introduce measureD(u, v) :=
supt∈[a,b] d(u(t), v(t)). We say that the fuzzy-valued function f is integrable on [a, b] if
the function f is continuous in the metric d and its definite integral exist, and we have[ b∫

a

f(t, u) dx

]α
=

[ b∫
a

fα(t, u) dx,

b∫
a

f
α

(t, u) dx

]
.

Definition 1. (See [20].) The generalized Hukuhara difference of two fuzzy numbers
u, v ∈ RF (gH-difference for short) is defined as follows:

u 	gH v = w ⇐⇒
(i) u = v ⊕ w, or

(ii) v = u+ (−1)w.
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A function u : [a, b]→ RF is called d-increasing (d-decreasing) on [a, b] if for every
α ∈ [0, 1], the function t 7→ d([u(t)]α) is nondecreasing (nonincreasing) on [a, b]. If u is
d-increasing or d-decreasing on [a, b], then we say that u is d-monotone on [a, b].

Definition 2. (See [9].) Let u : (a, b) → RF and t ∈ (a, b). The fuzzy function u is
said to be generalized Hukuhara differentiable (gH-differentiable) at t if there exists an
element u′(t) ∈ E such that

u′(t) = lim
h→0

u(t+ h) 	gH u(t)

h
.

Denote by C([a, b],RF ) the set of all continuous fuzzy functions, AC([a, b],RF ) the
set of all absolutely continuous fuzzy functions on the interval [a, b] with values in RF .

Theorem 1. (See [21].) If u ∈ AC([a, b],RF ) is a d-monotone fuzzy function and q ∈
(0, 1), then

CDq,p
a+u(t) =

pq

Γ(1− q)

t∫
a

(
tp − sp

)−q
u′(s) ds, t ∈ (a, b].

Now, we consider the fractional hyperbolic functions and their properties that will be
used in the next section. The Mittag-Leffler function frequently used in the solution of
fractional-order systems (see [15]), is defined as follows:

Eα(x) =

∞∑
k=0

xk

Γ(αk + 1)
, Eα,β(x) =

∞∑
k=0

xk

Γ(αk + β)
.

Lemma 1. (See [10].) Set δ > 0. Now Eα(·) and Eα,β(·) have the following properties:

(i) Let 0 < α < 1. Then Eα(−δtα) 6 1 and Eα,α(−δtα) 6 1/Γ(α). Moreover,
Eα(0) = 1 and Eα,α(0) = 1/Γ(α);

(ii) Let 0 < α 6 1 and β < α+ 1. Then Eα(·) and Eα,β(·) are nonnegative. Addi-
tionally, put t1 6 t2. Then Eα(δtα1 ) 6 Eα(δtα2 ) and Eα,β(δtα1 ) 6 Eα,β(δtα2 );

(iii)
∫ z
0
Eα,β(tα)tβ−1 dt = zβEα,β+1(zα), α > 0, z > 0.

Theorem 2. (See [21].) For λ > 0 and u is d-increasing, or λ < 0 and u is d-decreasing,
(by applying the definition of the Mittag-Leffler function) the solution of problem (1) is
expressed by

u(t) = u0Eq,1

(
λ

(
tp

p

)q)
⊕ 1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
× f

(
s, u(s)

)
ds,
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where t ∈ [0, T ] (for the case of λ > 0 and u is d-increasing), whereas if λ < 0 and u is
d-decreasing, t ∈ [0, T ], then we obtain the solution of problem (1) is

u(t) = u0Eq,1

(
λ

(
tp

p

)q)
	 (−1)

1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
× f

(
s, u(s)

)
ds.

3 Existence and uniqueness results

Let C[a, b] be the space of all continuous fuzzy-valued functions on [a, b]. Consider the
following assumptions:

(H1) f : [0, T ]× RF → RF is continuous;
(H2) there exists L > 0 such that d(f(t, u), f(t, v)) 6 Ld(u, v) for t ∈ [0, T ] and

u, v ∈ RF ;
(H3) L(p−1T p)qEq,q+1(|λ|(p−1T p)q) < 1.

Theorem 3. Assume that λ > 0, u is d-increasing, and conditions (H1), (H2) and (H3)
are satisfied. Then the initial value problem (1) has a unique solution in C[0, T ].

Proof. Consider the operator A1 : C[0, T ]→ C[0, T ] given by

A1u(t) = u0Eq,1

(
λ

(
tp

p

)q)
⊕ 1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
× f

(
s, u(s)

)
ds,

where t ∈ [0, T ], and it is easy to see that u is a solution to the initial value problem (1) if
and only if u = A1u. From Lemma 1 we have

d
(
A1u(t), A1v(t)

)
= d

(
1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
f
(
s, u(s)

)
ds,

1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
f
(
s, v(s)

)
ds

)q

6
1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
d
(
f
(
s, u(s)

)
, f
(
s, v(s)

))
ds

6 L
1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
d
(
u(s), v(s)

)
ds
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6 LD(u, v)
1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
ds

= L(p−1tp)qEq,q+1

(
λ
(
p−1tp

)q )
D(u, v)

for u, v ∈ RF and for each t ∈ [0, T ], which implies that

D(A1u,A1v) 6 L
(
p−1T p

)q
Eq,q+1

(
|λ|
(
p−1T p

)q )
D(u, v).

Therefore, the Banach contraction mapping principle guarantees that u = A1u has
a unique fixed point u∗ ∈ C[0, T ], so there is a unique solution to problem (1). The
proof is completed.

Theorem 4. Assume that λ < 0, u is d-decreasing, conditions (H1)–(H3) and the follow-
ing condition are satisfied:

(H4) for any t ∈ (0, T ],

Eq,1

(
λ

(
tp

p

)q)
u0
α ⊕ 1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
× f

(
s, u(s)

)α
ds

is nonincreasing in α,

Eq,1

(
λ

(
tp

p

)q)
u0
α ⊕ 1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
× f

(
s, u(s)

)α
ds

is nonincreasing in α, for any α ∈ [0, 1] and t ∈ (0, T ],

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
d
[
f
(
s, u(s)

)]α
ds

6 pq−1Eq,1

(
λ

(
tp

p

)q)
d[u0]α.

Then the initial value problem (1) has a unique solution in C[0, T ].

Proof. Consider the operator A2 : C[0, T ]→ C[0, T ] given by

A2u(t) = u0Eq,1

(
λ

(
tp

p

)q)
	 −1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
× f

(
s, u(s)

)
ds,
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where t ∈ [0, T ]. It is easy to see that u is a solution to the initial value problem (1) if and
only if u = A1u. From Lemma 1 we have

d
(
A2u(t), A2v(t)

)
6

1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
d
(
f
(
s, u(s)

)
, f
(
s, v(s)

))
ds

6 LD(u, v)
1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
ds

6 LD(u, v)
1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
|λ|
(
tp − sp

p

)q)
ds

= L
(
p−1tp

)q
Eq,q+1

(
|λ|
(
p−1tp

)q)
D(u, v)

for u, v ∈ RF and for each t ∈ [0, T ], which implies that

D(A2u,A2v) 6 L
(
p−1T p

)q
Eq,q+1

(
|λ|
(
p−1T p

)q )
D(u, v).

Therefore, the Banach contraction mapping principle guarantees that u = A2u has
a unique fixed point u∗ ∈ C[0, T ], so there is a unique solution to problem (1). The
proof is completed.

4 Stability results

Motivated by Eα-Ulam-type stability concepts of fractional differential equations (see
[33]) and Ulam-type stability concepts of fuzzy differential equations (see [34]), we intro-
duce some newEq-Ulam-type stability concepts of fuzzy fractional differential equations.

Let ε > 0 and φ : [0, T ]→ R+ be a continuous function. We consider the equation

CDq,p
0+ x(t) = λx(t) ⊕ f

(
t, x(t)

)
, t ∈ (0, T ], (2)

and the associated three inequalities

d
(
CDq,p

0+ y(t), λy(t) ⊕ f
(
t, y(t)

))
6 ε, t ∈ [0, T ], (3)

d
(
CDq,p

0+ y(t), λy(t) ⊕ f
(
t, y(t)

))
6 φ(t), t ∈ [0, T ], (4)

d
(
CDq,p

0+ y(t), λy(t) ⊕ f
(
t, y(t)

))
6 εφ(t), t ∈ [0, T ]. (5)

Definition 3. Equation (2) is Eq-Ulam–Hyers stable if there exists c > 0 such that for
each ε > 0 and for each solution y ∈ C[0, T ] to inequality (3), there exists a solution
x ∈ C[0, T ] to Eq. (2) with

d
(
y(t), x(t)

)
6 cEq

(
γf t

q
)
ε, γf > 0, t ∈ [0, T ].
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Definition 4. Equation (2) is generalized Eq-Ulam–Hyers stable if there exists a contin-
uous function θ : R+ → R+ with θ(0) = 0 such that for each solution y ∈ C[0, T ] to
inequality (3), there exists a solution x ∈ C[0, T ] to Eq. (2) with

d
(
y(t), x(t)

)
6 θ(ε)Eq

(
γf t

q
)
, γf > 0, t ∈ [0, T ].

Definition 5. Equation (2) is Eq-Ulam–Hyers–Rassias stable with respect to φ if there
exists cφ > 0 such that for each ε > 0 and for each solution y ∈ C[0, T ] to inequality (5)
there exists a solution x ∈ C[0, T ] to Eq. (2) with

d
(
y(t), x(t)

)
6 cφεφ(t)Eq

(
γf t

q
)
, γf > 0, t ∈ [0, T ].

Definition 6. Equation (2) is generalized Eq-Ulam–Hyers–Rassias stable with respect
to φ if there exists cφ > 0 such that for each solution y ∈ C[0, T ] to inequality (4) there
exists a solution x ∈ C[0, T ] to Eq. (2) with

d
(
y(t), x(t)

)
6 cφφ(t)Eq

(
γf t

q
)
, γf > 0, t ∈ [0, T ].

Lemma 2. A function y ∈ C[0, T ] is a solution of inequality (5) with

(H5) CDq,p
0+ y(t) 	 [λy(t) ⊕ f(t, y(t))] exists in RF for all t ∈ [0, T ] if and only if

there exists a function g ∈ C[0, T ] (which depends on y) such that:

(i) d(g(t), 0̂) 6 εφ(t), t ∈ (0, T ];
(ii) CDq,p

0+ y(t) = λy(t) ⊕ f(t, y(t)) ⊕ g(t), t ∈ (0, T ].

Note one can have similar results for inequations (3) and (4) and we omit them here.

Proof. The sufficiency is obvious and we only prove the necessity. Let

g(t) = CDq,p
0+ y(t) 	

[
λy(t) ⊕ f

(
t, y(t)

)]
, t ∈ [0, T ].

Then we get (ii). Additionally, due to

d
(
CDq,p

0+ y(t), λy(t) ⊕ f
(
t, y(t)

))
= d
(
CDq,p

0+ y(t) 	
[
λy(t) ⊕ f

(
t, y(t)

)]
, 0̂
)

= d
(
g(t), 0̂

)
and inequality (5), we can see (i) holds. The proof is completed.

Lemma 3. Let y be a solution of inequality (5) with y(0) = y0. Assume that condi-
tion (H5) is satisfied. Then y satisfies the integral inequality

d
(
y(t), B1(f, t)

)
6 εp1−qEq,q

(
|λ|
(
p−1tp

)q ) t∫
0

φ(s)

(tp − sp)1−qs1−p
ds,

if λ > 0 and y is d-increasing, where t ∈ [0, T ] and

B1(f, t) := Eq,1

(
λ

(
tp

p

)q)
y0 ⊕

1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
× f

(
s, y(s)

)
ds.
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Proof. From Lemma 2 we see y satisfies
CDq,p

0+ y(t) = λy(t) ⊕ f
(
t, y(t)

)
⊕ g(t), t ∈ [0, T ],

y(0) = y0 ∈ RF ,
(6)

if λ > 0 and y is d-increasing, noticing y is a solution to problem (6), we have

y(t) = Eq,1

(
λ

(
tp

p

)q)
y0 ⊕

1

pq−1

t∫
0

Eq,q(λ( t
p−sp
p )q)[f(s, y(s)) ⊕ g(s)]

s1−p(tp − sp)1−q
ds.

Let

C1(g, t) :=
1

pq−1

t∫
0

Eq,q(λ( t
p−sp
p )q)g(s)

s1−p(tp − sp)1−q
ds.

Then

y(t) = Eq,1

(
λ

(
tp

p

)q)
y0

⊕ 1

pq−1

[ t∫
0

Eq,q(λ( t
p−sp
p )q)f(s, y(s))

s1−p(tp − sp)1−q
ds ⊕

t∫
0

Eq,q(λ( t
p−sp
p )q)g(s)

s1−p(tp − sp)1−q
ds

]
= B1(f, t) ⊕ C1(g, t).

From this it follows that

d
(
y(t), B1(f, t)

)
= d
(
y(t) ⊕ C1(g, t), B1(f, t) ⊕ C1(g, t)

)
= d
(
y(t) ⊕ C1(g, t), y(t)

)
= d
(
C1(g, t), 0̂

)
6

1

pq−1

t∫
0

Eq,q(λ( t
p−sp
p )q)d(g(s), 0̂)

s1−p
(
tp − sp

)1−q ds

6 εp1−qEq,q
(
|λ|
(
p−1tp

)q) t∫
0

φ(s)

s1−p(tp − sp)1−q
ds. �

Lemma 4. Let y be a solution of inequality (5) with y(0) = y0. Assume that condi-
tion (H5) is satisfied. Then y satisfies integral inequality

d
(
y(t), B2(f, t)

)
6 εp1−qEq,q

(
|λ|
(
p−1tp

)q ) t∫
0

φ(s)

(tp − sp)1−qs1−p
ds

if λ < 0 and y is d-decreasing, where t ∈ [0, T ] and

B2(f, t) := Eq,1

(
λ

(
tp

p

)q)
y0 	

−1

pq−1

t∫
0

sp−1
(
tp − sp

)q−1
Eq,q

(
λ

(
tp − sp

p

)q)
× f

(
s, y(s)

)
ds.
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Proof. The proof of Lemma 4 is similar to Lemma 3, so we omit it here.

Remark 1. One can have similar results to Lemmas 3, 4 inequalities (3) and (4)

Theorem 5. Assume that λ > 0 and u is d-increasing, conditions (H1)–(H3) and

(H6) there exists a nonnegative, nondecreasing and continuous function φ such that

p1−qEq,q
(
|λ|(p−1tp)q

) t∫
0

φ(s)

s1−p
(
tp − sp

)1−q ds 6 Cφφ(t), t ∈ [0, T ],

holds.

Suppose also that a function y ∈ C[0, T ] satisfies inequality (5) and condition (H5) holds.
Then Eq. (2) is Eq-Ulam–Hyers–Rassias stable.

Proof. Let x be a solution to problem (1), and denote y as a solution to inequality (5) with
y(0) = u0. According to Lemma 3, we have

d
(
y(t), B1(f, t)

)
6 εp1−qEq,q

(
|λ|(p−1tp)q

) t∫
0

φ(s)

(tp − sp)1−qs1−p
ds

6 Cφεφ(t).

where t ∈ [0, T ], From condition (H6) it follows that

d
(
y(t), x(t)

)
6 d
(
y(t), B1(f, t)

)
+ d
(
B1(f, t), x(t)

)
6 Cφεφ(t) +

1

pq−1

t∫
0

Eq,q(λ( t
p−sp
p )q)d(f(s, y(s)), f(s, x(s)))

s1−p(tp − sp)1−q
ds

6 Cφεφ(t) +
L

pq−1

t∫
0

Eq,q(λ( t
p−sp
p )q)d(y(s), x(s))

s1−p(tp − sp)1−q
ds

6 Cφεφ(t) +
L

pq−1
Eq,q

(
λ

(
T p

p

)q) t∫
0

d(y(s), x(s))

s1−p(tp − sp)1−q
ds,

by the generalized Gröwall inequality (see [30, 34]), and we obtain

d(y(t), x(t)) 6 Cφεφ(t)Eq

(
LΓ(q)Eq,q(|λ|(p−1T p)q)tq

pq

)
.

Therefore Eq. (2) is Eq-Ulam–Hyers–Rassias stable according to Definition 5. The proof
is completed.
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Remark 2. Under the assumptions of Theorem 5, we consider Eq. (2) and inequality (4).
One can verify that Eq. (2) is generalized Eq-Ulam–Hyers–Rassias stable according to
Definition 6. Under the assumptions except (H6) of Theorem 5, we consider Eq. (2)
and inequality (3). One can show that Eq. (2) is Eq-Ulam–Hyers stable and generalized
Eq-Ulam–Hyers stable according to Definitions 3 and 4, respectively.

Theorem 6. Assume that λ < 0 and u is d-decreasing, conditions (H1)–(H3) are sat-
isfied. Suppose also that a function y ∈ C[0, T ] satisfies inequality (5) and (H5), (H6)
hold. Then Eq. (2) is Eq-Ulam–Hyers–Rassias stable.

Proof. The proof of is similar to Theorem 5, so we omit it here.

Remark 3. Under the assumptions of Theorem 6, we consider Eq. (2) and inequality (4).
One can verify that Eq. (2) is generalized Eq-Ulam–Hyers–Rassias stable according to
Definition 6. Under the assumptions except (H6) of Theorem 5, we consider Eq. (2)
and inequality (3). One can show that Eq. (2) is Eq-Ulam–Hyers stable and generalized
Eq-Ulam–Hyers stable according to Definitions 3 and 4, respectively.

5 Examples

Example 1. Consider the following initial value problem for the fuzzy fractional differ-
ential equation

CD
1/2,1
0+ u(t) = u(t)

(
1

2
sin t ⊕ 1

)
⊕ etA, t ∈ (0, π],

u(0) = 0̂ ∈ RF .
(7)

where λ = 1, T = π, p = 1, f(t, u(t)) = (1/2)u(t) sin t ⊕ etA, andA = (1, 2, 3) ∈ RF
is a symmetric triangular fuzzy number. Take L = 1/2, clearly, conditions (H1)–(H3)
hold, then according to Theorem 3, problem (7) has a unique solution.

Assume that a fuzzy-valued function u : (0, π]→ RF satisfies

d

(
CD

1/2,1
0+ u(t), u(t)

(
1

2
sin t+ 1

)
⊕ etA

)
6 εt.

Take φ(t) = t and Cφ = (4π1/2/3)E1/2,1/2(π1/2). Then we have

E1/2,1/2(t1/2)

t∫
0

φ(s)

s1−p(tp − sp)1−q
ds =

4t3/2

3
E1/2,1/2(t1/2) 6 Cφφ(t),

which means condition (H6) holds. Thus Eq. (7) is Eq-Ulam–Hyers–Rassias stable ac-
cording to Theorem 5.
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Example 2. Consider the following initial value problem for fuzzy fractional differential
equation:

CD
1/2,1
0+ u(t) = −u(t) + t+ 1, t ∈ (0, π],

u(0) = u0 ∈ RF .
(8)

where λ = −1, p = 1, f(t, u(t)) = t + 1, and u0 = (1, 2, 3) ∈ RF is a symmetric
triangular fuzzy number. Take L = 1/2, obviously, conditions (H1)–(H3) holds, then
according to Theorem 4, problem (8) has a unique solution.

Assume that a fuzzy-valued function u : (0, π]→ RF satisfies

d
(
CD

1/2,1
0+ u(t), −u(t) + t+ 1

)
6 εt.

Take φ(t) = t and Cφ = (4π1/2/3)E1/2,1/2(π1/2). Then we have

E1/2,1/2

(
t1/2

) t∫
0

φ(s)

s1−p(tp − sp)1−q
ds =

4t3/2

3
E1/2,1/2

(
t1/2

)
6 Cφφ(t),

which means condition (H5) holds, thus Eq. (8) is Eq-Ulam–Hyers–Rassias stable ac-
cording to Theorem 6.

Acknowledgment. The authors thank the referees for valuable comments and sugges-
tions, which improved the presentation of this manuscript.
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