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Abstract. This paper studies a class of superlinear damped vibration equations with nonlocal
boundary conditions on time scales by using the calculus of variations. We consider the Cerami
condition, while the nonlinear term does not satisfy Ambrosetti–Rabinowitz condition such that the
critical point theory could be applied. Then we establish the variational structure in an appropriate
Sobolev’s space, obtain the existence of infinitely many large energy solutions. Finally, two
examples are given to prove our results.
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1 Introduction

Vibration is a common form of motion in daily life and engineering technology, such
as the reciprocating swing of a pendulum, the vibration of a spring, the vibration of
a string in a musical instrument, the vibration of the spindle of a machine tool, the
electromagnetic oscillation in a circuit, and so on. The study of vibration problem can
be reduced to the second-order constant coefficient differential equation under certain
conditions. Assuming that the pendulum is oscillating in a viscous medium, considering
the air resistance and the constant external force F (t) acting on the pendulum along its
direction of motion, the pendulum’s action called forced vibration, its damped forced
vibration equation is

d2ϕ

dt2
+
µ

m

dϕ

dt
+
g

l
ϕ =

1

ml
F (t).
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In recent papers, many authors studied the damped forced vibration problems with local
conditions, especially, two-point boundary conditions. Nieto and Xiao [16, 26] studied
the existence of weak solutions of the following damped Dirichlet problem:

−y′′(s) + g(s)y′(s) + λy(s) = h
(
s, y(s)

)
, a.e. s ∈ [0, T ],

−∆y′(sj) = Ij
(
y(sj)

)
, j = 1, 2, . . . , p,

y(0) = y(T ) = 0.

They used the classical Lax–Milgram theorem to reveal the variational structure of the
problem and get the existence and uniqueness of weak solutions as critical points. Bai et
al. [4] studied the following damped vibration problem:

−y′′(s) + g(s)y′(s) = h
(
s, y(s)

)
, a.e. s ∈ [0, T ],

−∆
(
(y′)i(sj)

)
= Iij

(
yi(sj)

)
, i = 1, 2, . . . , N, j = 1, 2, . . . , p,

y(0)− y(T ) = y′(0)− y′(T ) = 0.

They used the variational method and Brezis–Nirenberg critical point theorem to get the
existence of nonzero solutions of the problem. Barilla et al. [5] studied the second-order
dynamic Sturm–Liouville boundary value problem on time scale

−
(
p(s)xM(s)

)M
+ q(s)yσ(s) = h

(
s, yσ(s)

)
, s ∈ [0, T ]T,

α1y(0)− α2y
M(0) = 0, α3y

(
σ2(T )

)
+ α4y

M
(
σ(T )

)
= 0,

where p ∈ C1([0, σ(T )]T, (0,∞)), q ∈ C([0, T ]T, (0,∞)), h ∈ C([0, T ]T × R,R),
α1, α2, α3, α4, α1 + α2 > 0, α1 + α3, α3 + α4 > 0. They got the existence of solutions
by variational methods on time scales. More literatures we can see [2, 19].

However, we find it is better to impose nonlocal conditions in some problems [9, 14,
20, 21] because the measurements required by nonlocal conditions may be more accurate
than those given by local conditions. As example, the following second-order differential
equation:

y′′(s) + h
(
s, y(s), y′(s)

)
= 0

with Robin boundary condition y(0) = 0, y′(1) = 0. Let the nonlocal condition y(1) =
y(η) replace the local condition y′(1) = 0, then the problem can be transfer to a non-
local problem. Moreover, because in the actual conditions and the process of numerical
calculation, the value of (y(η) − y(1))/(η − 1) is easier to determine than the value
of y′(1) = 0, the effect of nonlocal problems is better than that of local problems.
Therefore, nonlocal problems can be considered as boundary value problems that include
continuous equations and one or more discrete multipoint boundary conditions. The origin
of nonlocal boundary value problems of differential equations is related to the mathe-
matical models of nonlinear problems in mathematics, physics, and other disciplines.
Many problems in elastic stability theory can also be treated as nonlocal boundary value
problems. Therefore, the damped forced vibration problems will be more accurate with
nonlocal boundary conditions. However, there are few literatures on solving nonlocal

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Superlinear damped vibration problems on time scales 1011

boundary value problems by using variational method. So far, we only know what we
have done recently [12, 22–24].

In this paper, we study a class of second-order damped vibration equations with three-
point boundary conditions on time scales

−yMM(s) + g(s)yM
(
σ(s)

)
+ λyσ(s) = h

(
σ(s), yσ(s)

)
, M -a.e. s ∈ J,

y(a) = 0, y(b) = ζy(η),
(1)

where g(s) ∈ L1(J,R+), λ ∈ R, J := [a, ρ(b))T is an arbitrary closed subinterval of
T, and T ⊂ R is an arbitrary bounded time scales, minT = a,maxT = b. Otherwise,
0 < ζ 6 1, η = k1/k2 ∈ Q ∩ (a, b)T with k1, k2 ∈ N, and they are relatively prime.

In fact, when the time scale T is equal to the real numbers R or integers Z, it represents
the classical theory of differential equations and difference equations. We assume that η is
a right-dense point, denote T1 = [a, ρ(η))T, T2 = [η, ρ(b))T, and let the nonlinearity
h(s, y) satisfies the following conditions:

(A) define the function H(s, y) =
∫ y
0
h(s, τ) dτ , and assume H : J × R → R

satisfies: H(s, y) is M-measurable in s for each y ∈ R and continuously dif-
ferentiable in y for M-a.e. s ∈ J , and there exist a ∈ C(J,R+), b ∈ L1

M(J,R+)
such that |H(s, y)| 6 a(|y|)b(s), |h(s, y)| 6 a(|y|)b(s) for all y ∈ R and M-a.e.
s ∈ J ;

(A1) lim inf |y|→∞ h(s, y)y/|y|µ=+∞ uniformly for M-a.e. s∈J and 26µ<∞;
(A2) |h(s, y)| 6 C(1 + |y|p−1) for M-a.e. s ∈ J and y ∈ R, where µ < p <∞;
(A3) there exists a constant θ > 0 such that for M-a.e. s ∈ J , there is h(s, y)y/|y|µ

increasing for y > θ and decreasing for y 6 −θ.

In order to find the existence of infinitely many solutions, the following superquadratic
conditions proposed by Ambrosetti and Rabinowitz [3] are needed:

(AR) there exists the constant µ > 2 such that

0 < µH(s, y) 6 yh(s, y) for all y ∈ R \ {0} and s ∈ Ω,

where h is the nonlinear term, H(s, y) =
∫ y
0
h(s, τ) dτ , and Ω ⊂ R.

The role of Ambrosetti–Rabinowitz (AR) condition ensure the compactness of Palais–
Smale (PS) condition. However, condition (AR) eliminates many nonlinearities and has
certain limitations. In fact, some examples show that the nonlinearity h(s, y) could not
satisfy the (AR) condition such as h(s, y) = 2y2 log(1 + |y|). Thus it is meaningful to
study problem (1) without (AR) condition.

The interesting points of this paper are the followings: (i) we establish the variational
structure of the superlinear damped vibration problem with nonlocal boundary conditions;
(ii) we consider the Cerami condition such that although the Palais–Smale sequence is
unbounded, the critical point theory could be applied; (iii) the existence of infinitely many
large energy solutions for the problem is obtained without (AR) condition by using the
mountain pass theorem and fountain theorem.

Nonlinear Anal. Model. Control, 27(6):1009–1029, 2022
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2 Preliminaries

In order to solve problem (1), the following definitions and lemmas are needed.

Definition 1. (See [1, Def. 2.3].) Let A ⊂ T and X ⊂ T. A is called M-null set if
µM(A) = 0. Say that property P holds for M-almost all (M-a.a.) s ∈ X if there is
a M-null set A ⊂ X such that P holds for all s ∈ X \ A. We say that property P holds
M-almost everywhere (M-a.e.) on X .

Definition 2. (See [7, Def. 1.1].) Suppose T be a time scale. If s ∈ T, define the forward
jump operator σ : T→ T by

σ(s) := inf{t ∈ T: t > s}

and define the backward jump operator ρ : T→ T by

ρ(s) = sup{t ∈ T: t < s},

where inf ∅ = supT and sup ∅ = inf T (here ∅ denotes the empty set). If σ(s) > s,
ρ(s) < s hold, then the point s ∈ T is called right-scattered, left-scattered, respectively.
Points are called isolated when they are right-scattered and left-scattered at the same time.
If s < supT and σ(s) = s, then s is called right-dense. If s > inf T and ρ(s) = s, then
s is called left-dense. Points are called dense when they are right-dense and left-dense at
the same time.

Definition 3. A function g : T → R is called rd-continuous if it is continuous on the
right-dense points of T and there exists the (finite) left limit on the left-dense points of T.

Then we give the following notations throughout this paper:

• Crd(T) = Crd(T,R) = {g : T→ R: g is rd-continuous},
• C1rd(T) = C1rd(T,R) = {g : T→ R: g is differentiable on T and gM ∈ Crd(T)},
• C10,rd(T1) = {g ∈ C1rd(T1,R): g(a) = g(η) = 0},
• C10,rd(T2) = {g ∈ C1rd(T2,R): g(η) = g(b) = 0}.

We denote byW1,q
M (J,R) = {y ∈ LqM(J0,R), yM ∈ LqM(J0,R)} the Sobolev’s space

on J with Lebesgue M-measure µM, where 1 6 q <∞. Then denote

H1,q
M (J,R) =

{
y ∈ W1,q

M (J,R): y(a) = 0, y(b) = ζy(η)
}
⊂ W1,q

M (J,R).

Lemma 1. (See [1].) For q ∈ R, q > 1, define

V1,q
M (J,R) =

{
y ∈ AC(J,R): yM ∈ LqM(J0,R), y(a) = 0, y(b) = ζy(η)

}
,

where y ∈ AC(J,R), that is, y is a absolutely continuous function. If we integrate y ∈
AC(J,R) by parts, we can get V1,q

M (J,R) ⊂ H1,q
M (J,R). In fact, sets V1,q

M (J,R) and
H1,q

M (J,R) are equivalent for a class of functions.

https://www.journals.vu.lt/nonlinear-analysis
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Definition 4. (See [1, Def. 3.1].) Let q ∈ R, q > 1, and y : Ti → R, i = 1, 2. We say
that y ∈ H1,q

M (Ti,R) if and only if y ∈ LqM(T 0
i ,R), and there exists g : Ti → R such that

g ∈ LqM(T 0
i ,R) and∫

T 0
i

(
y(s), ψM

)
∆s = −

∫
T 0
i

(
g(s), ψσ(s)

)
∆s ∀ψ ∈ C10,rd(Ti), i = 1, 2, (2)

where J = T1 ∪ T2.

Lemma 2. Let g ∈ L1
M(T 0

i ,R), i = 1, 2, then a necessary and sufficient condition for∫
T 0
i

(
g(s), ψM(s)

)
∆s = 0 ∀ψ ∈ C10,rd(Ti), i = 1, 2,

is that there exists a constant ci ∈ R such that h ≡ ci M-a.e. on T 0
i , i = 1, 2.

Lemma 3. (See [1, Lemma 3.3].) Assume g ∈ L1
M such that for any φ ∈ C∞0 (J0), there

is ∫
J0

(g · φ)(t)∆t = 0.

Then g(t) ≡ 0 for M-a.e. J0.

Lemma 4. (See [1, Thm. 3.4].) Assume y ∈ H1,q
M (J,R) with q ∈ R and q > 1, and (2)

holds for z ∈ LqM(J0). Then there exists a unique function ω ∈ V1,q
M (J,R) such that the

equations
ω = y, ωM = z M -a.e. on J0

are satisfied.

Lemma 5. (See [14, Lemma 2.5].) Let η = k1/k2 ∈ Q ∩ (a, b) and 0 < ζ 6 1 with
k1, k2 ∈ N, k1, k2 are relatively prime, and let

k∗2 := min
{
k̂2 ∈ N

∣∣ χ(ξ + 2k̂2π) = χ(ξ) ∀a ∈ R
}
,

where χ(ξ) = sin(ξ) − ζ sin(ηξ) and K = {s: χ(s) = 0, s ∈ (0, 2k∗2π]}. Suppose that
the sequence of positive solutions of χ(ξ) = 0 is

ξ1 < ξ2 < · · · < ξn < · · · .

Then

(i) The sequence of positive eigenvalues of system

−y′′(s) = λy(s), s ∈ [a, b],

y(a) = 0, y(b) = ζy(η),
(3)

is exactly given by λn = ξ2n, n = 1, 2, . . . .

Nonlinear Anal. Model. Control, 27(6):1009–1029, 2022
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(ii) For each n ∈ R, Φn(s) = sin(
√
λns) is the eigenfunction of λn.

(iii) For each n = dl + j with d ∈ N, l ∈ K and j ∈ {1, 2, . . . , l}, there is√
λld+j = 2dk∗2π +

√
λj .

Lemma 6. (See [28, Thm. 2.6].) Suppose q ∈ R and q > 1, thenH1,q
M (J,R) is a Banach

space with the norm

‖y‖H1,q
M

=

(∫
J0

∣∣y(s)
∣∣q∆s+

∫
J0

∣∣yM(s)
∣∣q∆s)1/q

∀y ∈ H1,q
M (J,R).

Lemma 7. (See [1, Prop. 2.7].) If q∈ R and q>1, assume q′∈ R̄ satisfies 1/q+1/q′=1.
Then for g1 ∈ LqM(J0) and g2 ∈ Lq

′

M (J0), g1 · g2 ∈ L1
M(J0) and the Hölder’s inequality

hold:

‖g1 · g2‖L1
M
6 ‖g1‖LqM‖g2‖Lq′M .

Moreover, when q = 2, the inequality is called Cauchy–Schwarz’s inequality.

For q ∈ R, q > 1, we set the space

LqM(J0,R) =

{
y : J0 → R:

∫
J0

∣∣g(s)
∣∣q∆s < +∞

}

with the norm ‖g‖LqM = (
∫
J0 |g(s)|q∆s)1/q .

Definition 5. Assume g : T → R is a regulated function. We define the Cauchy integral
by

τ∫
r

g(s) ∆s = G(τ)−G(r) ∀r, τ ∈ T.

Lemma 8. (See [8, Thm. 4.1].) If and only if g is M-differentiable M-a.e. on J and gM ∈
L1
M(J0,R) such that

g(s) = g(a) +

∫
[a,s)∩T

gM(s) ∆s ∀s ∈ J,

then g : J → R is the absolutely continuous function on J .

Definition 6. Let X be a real Banach space, Ψ ∈ C1(X,R). If any sequence {yj} ⊂ X
such that

Ψ(yj) being bounded and lim
j→∞

Ψ ′(yj)→ 0

contains a convergent subsequence, then the functional Ψ is called satisfying the Palais–
Smale (PS) condition.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Superlinear damped vibration problems on time scales 1015

Lemma 9. (See [15, Thm. 1.1].) If Ψ is weakly lower semicontinuous (w.l.s.c.) on a re-
flexive Banach space X and has a bounded minimizing sequence, then Ψ has a minimum
on X .

Lemma 10. (See [17].) Let X be a real Banach space, and let Ψ ∈ C1(X,R) satisfies
(PS) condition and the following conditions:

(P1) There are constants ρ, α > 0 such that Ψ |∂Bρ > α.
(P2) There is an r ∈ X \ ∂Bρ such that Ψ(r) 6 0.

Then there exists a critical value c > α, which can be characterized as

c = Ψ(y∗) = inf
h∈Γ

max
s∈[0,1]

Ψ
(
y(s)

)
,

where

Γ =
{
y
∣∣ y ∈ C([0, 1], X

)
, y(0) = 0, y(1) = r

}
.

Lemma 11 [Fountain theorem]. (See [6].)
(i) The compact group G acts isometrically on the Banach space X = ⊕j∈NXj and

is invariant; there exists a finite dimensional space V such that, for every j ∈ N,
Xj ' V ; and the action of G on V is admissible.

Under assumption (i), let Ψ ∈ C1(X,R) be an invariant functional and satisfies (PS)
condition. Let for every k ∈ N, there exits ρk > rk > 0 such that

(ii) ak := maxy∈Yk: ‖y‖=ρk Ψ(y) 6 0 for Yk = ⊕kj=0Xj ;
(iii) bk := infy∈Zk: ‖y‖=rk Ψ(y)→∞, k →∞, for Zk = ⊕∞j=kXj .

Then Ψ has an unbounded sequence of critical values.

3 Variational formulation of problem (1)(1)(1)

For this superlinear damped three-point boundary problem (1), the variational structure
due to the presence of the damped term g(s)yM(σ(s)) is not apparent. However, we will
be able to transform it into a variational formulation.

We assume that λ > −λ1m/M , where λ1 is the first eigenvalue of system (3) that is
the least positive parameter λn for system (3), and

m = min
s∈J

eG(s) and M = max
s∈J

eG(s), (4)

m,M > 0, and G(s) = −
∫ s
a
g(τ)∆τ , s ∈ J , where g(s) ∈ L1

M(J,R) and G′(s) = g(s),
thus G(s) is absolutely continuous. Multiplying the equation in (1) by eG(s), we transfer
the superlinear damped system (1) into the following equivalent form:

−
(
eG(s)yM(s)

)M
+ λeG(s)yσ(s) = eG(s)h

(
σ(s), yσ(s)

)
, M -a.e. s ∈ J,

y(a) = 0, y(b) = ζy(η).

Nonlinear Anal. Model. Control, 27(6):1009–1029, 2022

https://doi.org/10.15388/namc.2022.27.28343


1016 Y. Wei, Z. Bai

In this paper, consider the spaceH1
M = H1,2

M (J,R) with the inner product

〈y, ω〉 =

∫
J

eG(s)
(
yM(s), ωM(s)

)
∆s+

∫
J

λeG(s)
(
yσ(s), ωσ(s)

)
∆s

and the induced norm

‖y‖ =

(∫
J

eG(s)
∣∣yM(s)

∣∣2∆s+

∫
J

λeG(s)
∣∣yσ(s)

∣∣2∆s

)1/2

.

Define the functional inH1
M:

Ψ(y) =
1

2

∫
J

eG(s)
∣∣yM(s)

∣∣2∆s+
1

2

∫
J

λeG(s)
∣∣yσ(s)

∣∣2∆s

−
∫
J

eG(s)H
(
σ(s), yσ(s)

)
∆s, (5)

and let

A(y, ω) =

∫
J

eG(s)yM(s)ωM(s)∆s+ λ

∫
J

eG(s)yσ(s)ωσ(s) ∆s, y, ω ∈ H1
M.

Then the derivative is〈
Ψ ′(y), ω

〉
= A(y, ω)−

∫
J

eG(s)h
(
σ(s), yσ(s)

)
ωσ(s) ∆s. (6)

Lemma 12. If assumption (A3) are satisfied, then for any s ∈ J , I(s, y) is increasing for
y > θ and decreasing for y 6 −θ, where I(s, y) = h(s, y)y − µH(s, y). In particular,
there exists c1 > 0 such that

I(s, ω) 6 I(s, y) + c1 (7)

for s ∈ J and 0 6 ω 6 y or y 6 ω 6 0.

Proof. Assume θ 6 ω 6 y, there is

I(s, y)− I(s, y)

= µ

[
1

µ

(
h(s, y)y − h(s, ω)ω

)
−
(
H(s, y)−H(s, ω)

)]

= µ

[ y∫
θ

h(s, y)y

yµ
τµ−1∆τ −

ω∫
θ

h(s, ω)ω

ωµ
τµ−1∆τ −

y∫
ω

h(s, τ)

τµ−1
τµ−1∆τ

+
h(s, y)

µyµ
θµ − h(s, ω)

µωµ
θµ

]

https://www.journals.vu.lt/nonlinear-analysis
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= µ

[ y∫
ω

(
h(s, y)y

yµ
− h(s, τ)τ

τµ

)
τµ−1∆τ +

ω∫
θ

(
h(s, y)y

yµ
− h(s, ω)ω

ωµ

)
τµ−1∆τ

]

+ θµ
(
h(s, y)

yµ
− h(s, ω)

ωµ

)
> 0.

The case y 6 ω 6 −θ is similar. Finally, by assumption (A) we see that

c1 = 1 +
∑

(s,y)∈J×[−θ,θ]

I(s, y)− inf
(s,y)∈J×[−θ,θ]

I(s, y)

is finite. The proof is completed.

Remark 1. Condition (A1) when µ = 2, is originally from the famous (AR) condition.
This condition ensures the compactness of (PS) condition. However, some examples
show that the nonlinearity h(s, y) could not satisfy (AR) condition such as h(s, y) =
2y2 log(1 + |y|). But it satisfies conditions (A1)–(A3), and we say that Ψ satisfies the
Cerami condition if any sequence {yn} ∈ H1

M such that

Ψ(yn)→ c, and
(
1 + ‖yn‖

)
‖Ψ ′(yn)‖ → 0

has a convergent subsequence.

Actually, the deformation theorem under the Cerami condition has been given in [13].

Lemma 13. (See [13, Prop. 2.0].) Let Ψ be a functional of class C1(X,R) defined on
a real Banach space X . Denote Ψ c = {y ∈ X: Ψ(y) 6 c}, Ψc = {y ∈ X: Ψ(y) > c},
Bα = {y ∈ X: ‖y‖ 6 α}, Tc = {y ∈ X: Ψ(y) = c, Ψ ′(y) = 0}, Pr = {y ∈ X:
‖y − Tc‖ < r}, 0 < r 6 2. Let ε, δ1 > 0, c ∈ R be such that (1 + ‖y‖)‖Ψ ′(y)‖ > δ1,
y ∈ Ψ−1([c− 2ε], c+ 2ε) \ Pr/8. Then there exits η ∈ C([0, 1]×X,X) such that

(i) η(0, y) = y for all y ∈ X;
(ii) Ψ(η(·, y)) is nonincreasing for all y ∈ X;

(iii) Ψ(η(s, y)) < c for all s ∈ (0, 1], y ∈ Ψ c \ Pr;
(iv) η(1, (Ψ c+εc−ε \ Pr) ∩ Bα) ⊂ Ψ c−ε, α > 0;
(v) ‖η(s, y)− y‖ 6 r/2 for all s ∈ [0, 1], y ∈ X .

Here ‖y − Tc‖ denote the distance form y to Tc.

Remark 2. Since the deformation theorem is still valid under the Cerami condition, we
see that the mountain pass theorem and the fountain theorem are true under the Cerami
condition, more details can be found in [11, 18].

Lemma 14. There exists a constant δ > 0 satisfying the inequality

‖y‖∞ 6 δ‖y‖ ∀y ∈ H1
M,
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where ‖y‖∞ = maxs∈J |y(s)|, and the norm ‖·‖ is equivalent to ‖·‖1, where

‖y‖1 =

(∫
J

eG(s)
∣∣yM(s)

∣∣2∆s

)1/2

.

Proof. First, define the norm

‖y‖2 =

(∫
J

∣∣yM(s)
∣∣2∆s+

∫
J

∣∣yσ(s)
∣∣2∆s

)1/2

.

By (4) there is m 6 eG(s) 6M . Then by Poincaré’s inequality and λ > −(λ1m)/M we
can get that the norms ‖·‖ and ‖·‖2 are equivalent, and∣∣y(s)

∣∣2 6 s

∫
[a,s)T

∣∣yM(τ)
∣∣2∆τ.

After integrating the above formula, we get∫
J

∣∣y(s)
∣∣2∆s 6

b2 − a2

2

∫
J

∣∣yM(τ)
∣∣2∆τ.

Thus the norm ‖·‖1 is equivalent to ‖·‖2. Then the norm ‖·‖ is equivalent to ‖·‖1.
Besides, there is constant c > 0 such that

∣∣y(s)
∣∣ 6 ∫

J

|yM(τ)|∆τ 6

(∫
J

1

eG(τ)
∆τ

)1/2(∫
J

eG(τ)
∣∣yM(τ)

∣∣2∆τ

)1/2

6

√
|b− a|
m
‖y‖1 6

√
c|b− a|
m

‖y‖.

We can assume that δ =
√

(c|b− a|)/m > 0, then the proof is completed.

Lemma 15. Let condition (A) holds, and let λ > −λ1m/M . Then the functional Ψ :
H1

M → R defined by (5) is continuously differentiable, and the derivative defined by (6)
can be obtained.

Proof. For every point y ∈ H1
M, it suffices to prove that Ψ has a directional derivative

Ψ ′(y)∈(H1,2
M (J,R))∗ given by (6) and that the mapping Ψ ′ :H1,2

M (J,R)→(H1,2
M (J,R))∗

is continuous.
(i) It follows from condition (A) that Ψ is everywhere finite onH1,2

M (J,R). Then, for
y and ω fixed inH1

M, s ∈ J , ξ ∈ [−1, 1], let

L
(
σ(s), yσ(s), yM(s)

)
=

1

2
eG(s)

∣∣yM(s)
∣∣2 +

1

2
λeG(s)

∣∣yσ(s)
∣∣2

− eG(s)H
(
σ(s), yσ(s)

)
,

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Superlinear damped vibration problems on time scales 1019

Q(ξ, s) = L
(
σ(s), yσ(s) + ξωσ(s), yM(s) + ξωM(s)

)
,

and

ψ(ξ) =

∫
J

Q(ξ, s) ∆s = Ψ(y + ξω).

Then by condition (A) there is∣∣DξQ(ξ, s)
∣∣ =

∣∣(DyL
(
σ(s), yσ(s) + ξωσ(s), yM(s) + ξωM(s)

)
, ωσ(s)

)
+
(
DωL(σ(s), yσ(s) + ξωσ(s), yM(s) + ξωM(s)

)
, ωM(s)

)∣∣
=
∣∣(−eG(s)h

(
σ(s), yσ(s) + ξωσ(s)

)
, ωσ(s)

)
+
(
λeG(s)

∣∣yσ(s) + ξωσ(s)
∣∣, ωσ(s)

)
+ eG(s)

(∣∣yM(s) + ξωM(s)
∣∣, ωM(s)

)∣∣
6Ma

(∣∣yσ(s) + ξωσ(s)
∣∣)bσ(s)

∣∣ωσ(s)
∣∣+ λM

∣∣yσ(s) + ξωσ(s)
∣∣∣∣ωσ(s)

∣∣
+M

∣∣yM(s) + ξωM(s)
∣∣∣∣ωM(s)

∣∣
6Mābσ(s)

∣∣ωσ(s)
∣∣+ λM

(∣∣yσ(s)
∣∣+
∣∣ωσ(s)

∣∣)∣∣ωσ(s)
∣∣

+M
∣∣yM(s) + ωM(s)

∣∣∣∣ωM(s)
∣∣

, d(s),

where ā = max(λ,s)∈[−1,1]×J a(|yσ(s) + λωσ(s)|), b ∈ L1
M(J,R+), (|yM| + |ωM|) ∈

L2
M(J,R), and (|yσ(s)| + |ωσ(s)|) ∈ L2

M(J,R). Then we have |DξQ(ξ, s)| 6 d(s) ∈
L1
M(J,R). Thus applying the Leibniz formula, we have

ψ′(0) =

∫
J

DξQ(0, s) ∆s

=

∫
J

[(
DuL

(
σ(s), yσ(s), yM(s)

)
, ωσ(s)

)
+
(
DvL

(
σ(s), yσ(s), yM(s)

)
, ωM(s)

)]
∆s

=

∫
J

eG(s)
[(
−h
(
σ(s), yσ(s)

)
, ωσ(s)

)
+λ
(
yσ(s), ωσ(s)

)
+
(
yM(s), ωM(s)

)]
∆s.

Moreover, let a(|yσ(s)|)bσ(s) + |yσ(s)| , ψ1(s) and |yM(s)| , ψ2(s), thus ψ1 ∈
L1
M(J,R+), ψ2 ∈ L2

M(J,R+), then by Lemma 14∫
J

[(
DuL

(
σ(s), yσ(s), yM(s)

)
, ωσ(s)

)
+
(
DvL

(
σ(s), yσ(s), yM(s)

)
, ωM(s)

)]
∆s

=

∫
J

eG(s)
[(
−h
(
σ(s), yσ(s)

)
, ωσ(s)

)
+ λ
(
yσ(s), ωσ(s)

)
+
(
yM(s), ωM(s)

)]
∆s

6M

∫
J

(
a
(∣∣yσ(s)

∣∣)bσ(s) + λyσ(s), ωσ(s)
)
∆s+M

∫
J

(
yM(s), ωM(s)

)
∆s

6 c1‖ω‖∞ + c2‖ωM‖ 6 c3‖ω‖,
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where c1, c2, c3 are positive constants, and Ψ has a directional derivative at y and Ψ ′(y) ∈
(H1

M)∗ given by (6).
(ii) By a theorem of Krasnosel’skii, conditions (A) and (A3) imply the mapping from

H1,2
M (J,R) into L1

M(J,R)× L2
M(J,R) defined by

y →
(
DyL

(
·, yσ, yM

)
, DωL

(
·, yσ, yM

))
is continuous. So Ψ ′ is continuous from H1,2

M (J,R) into (H1,2
M (J,R))∗, and the proof is

completed.

Lemma 16. If y ∈ H1,2
M (J,R) is a critical point of the functional Ψ , then y = y(s) is

a solution of problem (1).

Proof. By Lemma 15 the functional Ψ is continuously differentiable, and the assumption
that y is a critical point of Ψ means that 〈Ψ ′(y), ω〉 = 0 for all ω ∈ H1

M. Obviously, there
is C10,rd(Ti,R) ⊂ H1,2

M (J,R), i = 1, 2, then we have〈
Ψ ′(y), z

〉
= 0 ∀z ∈ C10,rd(Ti,R), i = 1, 2.

Then by Definition 4 there is

0 =

∫
Ti

eG(s)yM(s)zM(s) ∆s+ λ

∫
Ti

eG(s)yσ(s)zσ(s) ∆s

−
∫
Ti

eG(s)
(
h(σ(s), yσ(s)), zσ(s)

)
∆s

= −
∫
Ti

(
eG(s)yM(s)

)M
zσ(s)∆s+ λ

∫
Ti

eG(s)yσ(s)zσ(s) ∆s

−
∫
Ti

eG(s)
(
h
(
σ(s), yσ(s)

)
, zσ(s)

)
∆s.

Since z ∈ C10,rd(Ti,R) is arbitrary and by Lemma 3 we can deduce

−
(
eG(s)yM(s)

)M
+ λeG(s)yσ(s) = eG(s)h

(
σ(s), yσ(s)

)
, M -a.e. s ∈ Ti, i = 1, 2,

then it holds that

−
(
eG(s)yM(s)

)M
+ λeG(s)yσ(s) = eG(s)h

(
σ(s), yσ(s)

)
, M -a.e. s ∈ J,

that is,

−yMM(s) + g(s)yM
(
σ(s)

)
+ λyσ(s) = h

(
σ(s), yσ(s)

)
, M -a.e. s ∈ J.

Thus y = y(s) is a solution of problem (1).
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4 Main results

Theorem 1. Assume condition (A) holds, and λ > −λ1m/M , then problem (1) has at
least one solution.

Proof. By the functional Ψ defined in (5) let

Ψ1(y) =
1

2

∫
J

eG(s)
∣∣yM(s)

∣∣2∆s+
1

2

∫
J

λeG(s)
∣∣yσ(s)

∣∣2∆s.

Since Ψ1 is continuous and convex, Ψ1 is weakly lower semicontinuous, and

Ψ2(y) =

∫
J

eG(s)H
(
σ(s), yσ(s)

)
∆s.

By condition (A), Ψ2 is a weakly continuous functional. Thus, Ψ is weakly lower semi-
continuous.

For any y ∈ H1
M, there exists a enough large constant c > 0 such that

Ψ(y) =
1

2

∫
J

eG(s)
∣∣yM(s)

∣∣2∆s+
1

2

∫
J

λeG(s)
∣∣yσ(s)

∣∣2∆s−
∫
J

eG(s)H
(
σ(s), yσ(s)

)
∆s

>
1

2
‖y‖2 −M

∫
J

a
(
|y|
)
b(s) ∆s >

1

2
‖y‖2 −Mc.

This implies that lim‖y‖→∞ Ψ(y) = +∞, that is, Ψ is coercive. Hence Ψ has minimum
by Lemma 9, which is also the critical point of Ψ . Therefore, problem (1) has at last one
solution.

Theorem 2. Assume conditions (A), (A1), (A2), and (A3) hold, and let λ > −λ1m/M .
Then the functional Ψ satisfies the Cerami condition.

Proof. First, suppose a subsequence {yi} of sequence {yn} such that yi ⇀ y inH1
M, then

yi → y in C(J,R). Thus when i→∞, there are〈
Ψ ′(yi)− Ψ ′(y), yi − y

〉
→ 0,∫

J

[
h(s, yi)− h(s, y)

]
(yi − y) ∆s→ 0.

Thus 〈
Ψ ′(yi)− Ψ ′(y), yi − y

〉
=

∫
J

eG(s)
(∣∣yMi (s)− yM(s)

∣∣2 + λ
∣∣yσi (s)− yσ(s)

∣∣2)∆s
−
∫
J

eG(s)
[
h
(
σ(s), yσi (s)

)
− h
(
σ(s), yσ(s)

)](
yσi (s)− yσ(s)

)
∆s
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> m

∫
J

(∣∣yMi (s)− yM(s)
∣∣2 + λ

∣∣yσi (s)− yσ(s)
∣∣2)∆s

−M
∫
J

[
h
(
σ(s), yσi (s)

)
− h
(
σ(s), yσ(s)

)](
yσi (s)− yσ(s)

)
∆s.

By Ψ ′(yi) → 0 in H1
M we have ‖yi − y‖ → 0 as i → ∞. That is, sequence {yn} has

a convergent subsequence.
Second, we show that the sequence {yn} ⊂ H1

M is bounded. If {yn} is unbounded,
then for some c ∈ R, we have

Ψ(yn)→ c, ‖yn‖ → ∞,
∥∥Ψ ′(yn)

∥∥·‖yn‖ → 0 as n→∞,

then

lim
n→∞

∫
J

(
1

2
h(s, yn)yn −H(s, yn)

)
∆s = lim

n→∞

{
Ψ(yn)− 1

2

〈
Ψ ′(yn), yn

〉}
= c. (8)

We consider vn := yn/‖yn‖, then up to the subsequence {vn} inH1
M, we get

vn ⇀ v inH1
M, vn → v in Lς(J) for 2 6 ς <∞,

vn(s)→ v(s), M -a.e. s ∈ J.

Case I. If v = 0, define a sequence {tn} ⊂ [0, 1] such that

Ψ(tnyn) := max
t∈[0,1]

Ψ(tyn).

For any m > 0, define v̄n := (4k)1/2vn. There is v̄n → 0 in L2(J), and by condi-
tion (A2) there exists D > 0 such that |H(s, y)| 6 D(|y| + |y|p). We see H(·, v̄n) → 0
in L1(J). Thus limn→∞

∫
J
H(s, v̄n) ∆s = 0. So for n large enough,

Ψ(tnyn) > Ψ(v̄n) = 2k −
∫
J

H(s, v̄n) ∆s > k,

which implies that limn→∞ Ψ(tnyn) = +∞. Then by Ψ(0) = 0 and Ψ(yn) → c get
tn ∈ (0, 1). Thus, if n big enough, then∫
J

eG(s)
(∣∣(tnyn)M(s)

∣∣2 + λ
∣∣tnyσn(s)

∣∣2)∆s− ∫
J

eG(s)h
(
σ(s), tny

σ
n(s)

)(
tny

σ
n(s)

)
∆s

=
〈
Ψ ′(tnyn), tnyn

〉
= tn

d

dt

∣∣∣∣
t=tn

Ψ(tyn) = 0,
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and, obviously, there is∫
J

eG(s)

(
1

2
h
(
σ(s), tny

σ
n(s)

)(
tny

σ
n(s)

)
−H

(
σ(s), tny

σ
n(s)

))
∆s

=
1

2

∫
J

eG(s)
(∣∣(tnyn)M(s)

∣∣2 + λ
∣∣tnyσn(s)

∣∣2)∆s
−
∫
J

eG(s)H
(
σ(s), tny

σ
n(s)

)(
tny

σ
n(s)

)
∆s

= Ψ(tnyn)→ +∞ as n→ +∞.

By (7) we have
I(s, yn) > I(s, tnyn)− c1,

then ∫
J

(
1

2
h
(
s, yσn(s)

)
yσn(s)−H

(
s, yσn(s)

))
∆s

>
∫
J

(
1

2
h
(
σ(s), tny

σ
n(s)

)(
tny

σ
n(s)

)
−H

(
σ(s), tny

σ
n(s)

))
∆s− c1

2
|b− a|

= Ψ(tnyn)− c1
2
|b− a| → ∞ as n→ +∞,

which contradicts with (8).
Case II. If v 6= 0, we have that∫

J

eG(s)
(∣∣yMn (s)

∣∣2 + λ
∣∣yσn(s)

∣∣2)∆s− ∫
J

eG(s)h
(
σ(s), yσn(s)

)
yσn(s) ∆s

=
〈
Ψ ′(yn), yn

〉
,= o(1)

then there is

1− o(1) =

∫
J

h(σ(s), yσn(s))yσn(s)

‖yn‖2
∆s

=

( ∫
v=0

+

∫
v 6=0

)
h(σ(s), yσn(s))yσn(s)

|yn|2
|vn|2∆s.

For t ∈ Θ := {t ∈ J : v(t) 6= 0}, we have |yn(t)| → ∞. Then by condition (A1) there is∫
v 6=0

h(σ(s), yσn(s))yσn(s)

|yn|2
|vn|2∆s→ +∞ as n→∞,
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and there exists ϑ > −∞ such that

h(σ(s), yσn(s))yσn(s)

|yn|2
> ϑ for M -a.e. s ∈ J.

Then we have

1− o(1) =

( ∫
v=0

+

∫
v 6=0

)
h(σ(s), yσn(s))yσn(s)

|yn|2
|vn|2∆s

>
∫
v 6=0

h(σ(s), yσn(s))yσn(s)

|yn|2
|vn|2∆s+ ϑ

∫
v=0

|vn|2∆s,

which is a contradiction.
Therefore ‖yn‖ is bounded, and Ψ satisfies Cerami condition.

Remark 3. The technology we used in Theorem 2 to eliminate the case v 6= 0, is derived
from Jeanjean [10]. We proved that although there may be unbounded (PS) sequence,
every Cerami sequence of the functional Ψ is bounded. To prove the boundedness of
Cerami sequence, we refer to Zou [29].

Theorem 3. Assume λ > −λ1m/M , conditions (A), (A1)–(A3), and
aa

(A′) h(s, y) : J × R → R satisfies h(s, y) = o(|y|) as y → 0 uniformly for M-a.e.
s ∈ J

hold. Then problem (1) has a nontrivial solution.

Proof. By Theorem 2, Ψ satisfies Cerami condition. Given ε1 = 1/(4Mδ2(b− a)) > 0,
where M, δ > 0 and b > a, then by condition (A′) there exists r > 0 such that H(s, y) 6
ε1|y|2 for all |y| 6 r, and by Lemma 14 there is

Ψ(y) =
1

2

∫
J

eG(s)
∣∣yM(s)

∣∣2∆s+
1

2

∫
J

λeG(s)
∣∣yσ(s)

∣∣2∆s

−
∫
J

eG(s)H
(
σ(s), yσ(s)

)
∆s

>
1

2
‖y‖2 −M

∫
J

ε1|y|2∆s >
1

2
‖y‖2 −M · ε1(b− a)‖y‖2∞

>
1

2
‖y‖2 −M · ε1 · δ2(b− a)‖y‖2 =

(
1

2
−Mε1δ

2(b− a)

)
‖y‖2

=
1

4Mδ2(b− a)
r2.
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Taking into account Lemma 10 and setting ρ = r, α = 1/(4Mδ2(b− a))r2 > 0, one has
that (P1) holds.

On the other hand, by condition (A1), for any ε2 > 0, there exists Cε2 > 0 such that
H(s, y) > Cε2(|y|µ + 1) for |y| > r. Because in finite-dimensional normed spaces, all
norms are equivalent, and 2 6 µ <∞. Let Cε2 satisfies

1

2
‖y‖2 6 mCε2‖y‖

µ
Lµ .

Then

Ψ(y) =
1

2

∫
J

eG(s)
∣∣yM(s)

∣∣2∆s+
1

2

∫
J

λeG(s)
∣∣yσ(s)

∣∣2∆s

−
∫
J

eG(s)H
(
σ(s), yσ(s)

)
∆s

6
1

2
‖y‖2 −mCε2

∫
J

(
|y|µ + 1

)
∆s

=
1

2
‖y‖2 −mCε2 · ‖y‖

µ
Lµ −mCε2 |b− a|

by µ > 2, and Ψ(y) → −∞ as ‖y‖ → ∞, hence (P2) holds. It is clear that Ψ(0) = 0,
then by Lemma 10 the proof is completed.

Theorem 4. Assume λ > −λ1m/M , conditions (A), (A1)–(A3), and the following
condition are satisfied:

(A′′) h(s,−y) = −h(s, y) for M-a.e. s ∈ J and y ∈ R.

Then problem (1) has an unbounded sequence {yk} as solutions satisfying

1

2

∫
J

eG(s)
∣∣yMk (s)

∣∣2∆s+
1

2

∫
J

λeG(s)
∣∣yσk (s)

∣∣2∆s

−
∫
J

eG(s)H
(
σ(s), yσk (s)

)
∆s→∞ as k →∞.

Proof. We know that X = H1
M is a reflexive and separable space, then by [27] there exits

{τn}n∈N ⊂ X and {Ψn}n∈N ⊂ X ∗ such that

〈Ψn, τm〉 =

{
1, n = m;

0, n 6= m,
and span{τn, n ∈ N} = X .

We choose to define Xj := Rτj as j ∈ N, and let

X = ⊕j∈NXj , Yk = ⊕kj=0Xj , and Zk = ⊕∞j=kXj .
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By assumption (A′′) there is Ψ(−y) = Ψ(y), y ∈ H1
M, and Ψ satisfies the Cerami

condition by Theorem 2. On the one hand, by condition (A2), for any (s, y) ∈ J × R,
there existsD > 0 such that |H(s, y)| 6 D(|y|+|y|p). Let βk := supy∈Zk: ‖y‖=1 ‖y‖Lp ,
then βk → 0 as k →∞ (cf. [25]). Therefore, for y ∈ Zk,

Ψ(y) =
1

2
‖y‖2 −

∫
J

eG(s)H
(
σ(s), yσ(s)

)
∆s

>
1

2
‖y‖2 −M

∫
J

D
(
|y|+ |y|p

)
∆s

>
1

2
‖y‖2 −DM‖y‖∞ −DM‖y‖pLp

>
1

2
‖y‖2 −DMδ‖y‖ −DβpkM‖y‖

p,

then for y ∈ Zk with ‖y‖ = rk := (βk)−1,

Ψ(y) >
(βk)−2

2
−DMδ(βk)−1 −DM := b̄k,

which implies bk := infy∈Zk: ‖y‖=rk Ψ(y) > b̄k →∞ as k →∞.
By condition (A1), for any ε2 > 0, there exists Dε2 > 0 such that H(s, y) >

Dε2(|y|µ + 1) and ‖y‖2/2 6 Dε2‖y‖2L2 as y ∈ Yk, then there is

Ψ(y) =
1

2
‖y‖2 −

∫
J

eG(s)H
(
σ(s), yσ(s)

)
∆s

6
1

2
‖y‖2 −

∫
J

eG(s)Dε2

(
|y|µ + 1

)
∆s

6
1

2
‖y‖2 −mDε2‖y‖

µ
Lµ −mDε2

by µ > 2, and all norms on the finite-dimensional space Yk are equivalent. Thus for
ρk > 0 large enough, there is ak := maxy∈Yk: ‖y‖=ρk Ψ(y) 6 0.

Thus by Lemma 11 there is the unbounded sequence {yk} such that Ψ(yk)→ +∞ as
k →∞. The proof is completed.

5 Examples

Example 1. Let T = {2/n, n ∈ N} and a = 0, b = 1, g(s) = 0, then consider the
following problem:

−yMM(s) + λy(s) = h(s, y(s)), M -a.e. s ∈ J,

y(0) = 0, y(1) = y

(
1

2

)
,
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https://www.journals.vu.lt/nonlinear-analysis


Superlinear damped vibration problems on time scales 1027

where h(s, y) = |y|3(5|y| + esin y − 1) and λ > −(2π/3)2/
√

e ≈ −2.66. Then all
assumptions in Theorem 3 are fulfilled.

Example 2. Let T = {1/n, n ∈ N} and a = 0, b = 2, g(s) = s2, there is the problem

−yMM(s) + s2yM(s) + λy(s) = h(s, y(s)), M -a.e. s ∈ J,

y(0) = 0, y(2) =
1

2
y

(
4

3

)
,

where h(s, y) = 2|y|2y log(1 + s2|y|) and λ > −λ1e−3/8. Then all assumptions in
Theorem 4 are fulfilled, and we can obtain the primitive function of h, but it is almost
impossible to check (AR) condition.

Remark 4. The eigenvalue of Example 1 had been investigated in [14]. We get λ1 =
(2π/3)2 as in Example 3.1 [14], and for more precise values of λ1 in Example 2, we refer
to Theorem 6 in [9].

6 Conclusion

In this paper, the key point in our proof is that although Ψ may possess unbounded Palais–
Smale sequences, under appropriate assumptions, the functional Ψ satisfies the Cerami
condition. Then by using the mountain pass theorem and fountain theorem, we get the
existence of infinitely many large energy solutions.

We give the variational structure of the nonlocal damped vibration problem, existence
and multiplicity of solutions for the superlinear equations are obtained without (AR) con-
dition. In addition, our results generalize previous results of others to nonlocal cases.
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