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Abstract. This research work is dedicated to an investigation for a new kind of boundary
value problem of nonlinear fractional differential equation supplemented with general boundary
condition. A full analysis of existence and uniqueness of positive solutions is respectively
proved by Leray—Schauder nonlinear alternative theorem and Boyd—Wong’s contraction principles.
Furthermore, we prove the Hyers—Ulam (HU) stability and Hyers—Ulam—Rassias (HUR) stability
of solutions. An example illustrating the validity of the existence result is also discussed.
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1 Introduction

Fractional calculus (FC) has a history of more than 300 years, there are some appli-
cations of FC within various fields of mathematics itself. During the last few decades,
FC has obtained vigorous development in the applied sciences and gained considerable
popularity. Compared with classical integer-order models, fractional derivatives and in-
tegrals are more suitable to describe the memory and hereditary properties of various
materials, fractional derivatives are more advantageous in simulating mechanical and
electrical properties of real materials and describing rheological properties of rocks and
many other fields. Based on the description of their properties in terms of fractional
derivatives, fractional differential equations (FDEs) are generated naturally, and how
to solve these equations is also very necessary. For example, some new models that
involve FDEs have been applied successfully, e.g., in mechanics (theory of viscoelasticity
and viscoplasticity [6,24]), (bio-)chemistry (modelling of polymers and proteins [11]),
electrical engineering (transmission of ultrasound waves [3,28]), medicine (modelling of
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human tissue under mechanical load [31])... Accordingly, more and more researchers
and scholars devote themselves to the study of various problem of FDEs. In particular,
study of boundary value problems for nonlinear FDEs is particularly concerned among
these problems.

The aim of this paper is to investigate the following fractional differential equation:

D§, 9(x) + g(x,9(x), Dy, I(x), D, ¥(x)) =0, 0<z <1, (1)

subjected to boundary condition

m

9(0) =0,  M\Dy 9(1) + N D, (1) Zb /h )

where ]l < a <2,0< < a—-1K 1<’)/<0£.)\1,/\220,/\14-)\2:1,@‘20
(i =1,2,...,m), h; € C(I;) N L*(I;) (i = 1,2,...,m) is nonnegative, I; C [0, 1] is
measurable, m > 1 is an integer. g is singular at z = 0. Dg, is the standard Riemann—
Liouville fractional derivative of order « defined by

D3 0() = (iﬁ) / (z—5)" 2 (s)ds, n =[] +1,

where T" denotes the Gamma function, and [a] denotes the integer part of number «,
provided that the right side is pointwise defined on (0, 00); see [14,25].

When A2 = 0,0 < 8 < 1, there has been a great deal of literature on the fractional
differential equation of such boundary conditions; see [2,4,9,15,16,30]. As for 8 = 0,
for example, in [2],

Du(t) + f(t,u(t), D u(t)) =0, ae. 0<t<1,
u(0) = u(l) =0,

where 1 < v < 2,0 < pu < « — 1, f satisfies the Carathéodory conditions on [0, 1] x 95,
B = (0,00) xR, f(t,z,y) is positive and singular at z = 0. Based on regularization and
sequential techniques, the existence of a positive solution was obtained.

By Schauder fixed point theorem and the Banach contraction principle, Rehman et al.
[26] investigated existence and uniqueness of solutions for a class of nonlinear multipoint
boundary value problems for fractional differential equation

Diy(t) = f(t,y(t), D]y(t)),

m—2
y(0)=0,  Dly(1)- > GD/y&) =
=1

where ] < « < 2,0< 8 <1,0<&<10@=12,....m—2),¢ =0,
S g <
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In [15], the author studied the nonlinear fractional differential equation
D§ u(t) = f(tu),v' (1)), ae.te(0,1),

subjected with the boundary conditions u(0) = w(1) = 0. Under Carathéodory con-
ditions, using the Leray—Schauder continuation principle, the existence of at least one
solution was obtained.

KyuNam et al. [16] discussed the existence and uniqueness of solutions for a class of
integral boundary value problems of nonlinear multiterm fractional differential equation

D, y(z) = f(t,y(x),Dgiy(x), . ,ng;y(x)), t€(0,1),
1

y(0)=0,  y(1)= / g(s,5(s)) ds,

0

where 1 < a <2,0< 1 << B, <l,a—fB,>1,f:[0,1] x R"* - R, and
g : [0,1] x R — R are continuous. The existence results are established by the Banach
fixed point theorem, and approximate solutions are determined by the Daftardar-Gejji and
Jafari iterative method (DJIM) and the Adomian decomposition method (ADM).

In this article, we will deal with singular nonlinear fractional differential equation
with a new boundary condition, which is a generalization of many previous researches.
To the best of our knowledge, when Ao # 0, neither A\; = 0 nor A\; # 0 was studied
like this type of boundary condition. Furthermore, the nonlinear term contained not only
lower derivative of order /3, but also another lower derivative of order . In comparison
with the above literature, our results about the difference include both & — 5 > 1 and
0 < a — v < 1, this has never been seen before.

The stability of differential equations has grown to be one of the considerable areas in
the field of mathematical analysis, and we find many different types of stability, such as
exponential [7,17,23], Mittag-Leffler [20,27], Hyers—Ulam (HU) stability and other types
of stability [13,18,19,21,22]. Among these kinds of stability, Hyers—Ulam stability and its
various types provide a bridge between the exact and numerical solutions, so researchers
devoted their work to the study of different kinds of HU stability for nonlinear fractional
differential equation; see [5, 10, 12,29].

The paper is organized as follows. In Section 2, we will present some useful lemmas
and give some valuable preliminary results. In Section 3, we prove the existence and
uniqueness of positive solution to problem (1), (2) by using Leray—Schauder nonlinear
alternative theorem and Boyd—Wong’s contraction principles. In Section 4, we investigate
various kinds of HU stability of solutions.

2 Auxiliary results

To simplify our statements, we introduce the following spaces:

e ([0, 1] be the Banach space of all continuous functions from [0, 1] to R equipped
with the norm defined by ||z||cc = max{|z(z)|, = € [0,1]}.

https://www.journals.vu.lt/nonlinear-analysis
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o Co+[0,1] ={2:(0,1] = R | zT7~>z € C[0, 1]} endowed the norm

Izl = max |17z ().

o LF_[0,1]={z:(0,1] = R | z'™"~*z€ L?[0,1]} endowed the norm

1 1/p
HZHLZ_W = </|z1+waz(z)|p dx) )
0

where 0 < 1/p < a — 7.

First, we introduce some fundamental facts of the fractional calculus theory, which
are used in this paper; see [14,25].

Property 1. Let o, 8 > 0.

() If f € L(0, 1), then I 15, [ (1) = I f (1), D§LIg (1) = (1)
(i) Ifn —1<a<mn, f(xr) € Li(a,b) has a summable derivative Dg f, then

(@ —a)* ey
15 Day f = f(z) - Z an—a (a),
k=0

where fn_o(x) = (177 f)(x);
(i) I§, Dg, f(t) = f(t), 0 < a <1, where f € C[0,1], Dg, f € C(0,1) N L(0,1);
(iv) Dy, u(t) = D'DJ; Yu(t) (v > 1), where D* = d/dt, provided that Dy u(t)
exists;

(v) Let oo > 0. Assume that { fi,}32 , is a uniformly convergent sequence of continu-
ous functions on [a,b] and that D§ fy, exists for every k. Moreover, assume that
{D i}l converges unzformly on [a + €, b] for every € > 0. Then for every

(a b, we have

(klggo D‘?*'fk) (z) = (D‘?Jr i fk) (z).
Next, for the sake of readers’ convenience, we present some necessary lemmas, which
will be used in the main results that follow.
Lemma 1. Suppose ¢ € L, [0,1]and0< f<a—-1<1<y<a<?2,

o )\11"(a) Agr i a1
'_r(a—ﬁ) Zbl/hz ds # 0.

i=1 1

i

Then the linear fractional boundary value problem

Dy d(x) + ¢(x) =0, 0<z<1,

90)=0,  MDLI() +0DLo(1) =S b / hi(s)0(s)ds

i=1 I;
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has a unique solution given by ¥(x) = fol G(z, 8)p(s) ds, where

xa—l m
G = ) .
(w,5) = K (2,5) + — sz / Ko(7, $)hi() dr ()
=1 I;
and
2 K(s) — (m_s)ail, 0<s<z<l,
K(z,s) = I(a)
2% 1k(s), 0<z<s<1,
A (1= 8)2 B 4 (1 — )71 — (z —s)° 7Y,
Ko(z. s) 1 0<s<e <],
T,8) = ——
’ T(a) | 2 1[Ar (1 — 8) A1 4 Mg(1 — 5)27-1],
0<r<s<l,
in which
K(s) = Aipa(l — 3)0‘7’871 + Aap1 (1 — s)“*"’*l,
and

1 M 11
. r(a)_w(r(aﬂ) F(av))’
1 h 1
pZ_F(a)+w(F(a—ﬁ) F(Oé—“Y)).

Proof. Itis very well known that the equation D, ¥(x) + ¢(x) = 0 is equivalent to the
following integral equation:

I(z) = —I§, ¢(z) + cr1a® ' + oz 2.

The boundary condition ¢#(0) = 0 implies that c; = 0. Using the property of Riemann—
Liouville fractional derivative, we know

_ T a—p-1
DY 9(x) = —I57P () + Cl(ra()(f—ﬁ)’

_ r a—y—l
Dg+19($) = —Ig_,’_fy (Z‘) +Cl:(|-_‘a()0?‘_,y)

Combining the boundary condition in (3), it follows that

o= % MISTP (1) + XIS (1) — Zbi/hi(s)I&FqS(s) ds}_
=1

I;

https://www.journals.vu.lt/nonlinear-analysis
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Therefore the unique solution of problem (3) is given by

1
I(z) = —I d(x +/ AMpaz® N (1—8)* P71 4 Mopra® H(1—5)* 7 ] B(s) ds
0

+ IG5 o(1) = Aoprz® ™t [ (1 —s)* 77 (s) ds

1
)\1370‘ ! « a—1 a—pB—1
" 185P6(1) — Mparet [ (1= )27 14(s) ds
0
1
g /
0

(Zb /K()TS dT)(/)()ds. 0

Lemma 2. Let G be the Green function related to problem (3), which is given by expres-
sion(@). Thenfor0 < f<a—-1<1<y<a<2 w>1/T(a—-08)—1/T(a—7)
G, K, K have the following properties:

1
0 0

(i) G, K, K are nonnegative and continuous on [0, 1] x [0,1);
(i) K(0,s) = Ko(0,s) = 0 forall s € [0,1), K(x,0) = Ko(x,0) = 0 for all
x € [0,1], and

K(z,s),Ko(xz,s) >0 Vz e (0,1], s € (0,1);
(iii) For (x,s) €[0,1] x [0,1),

B pets(1 - 52 < K, ), Kol 5) < o
190 ’ I'(a)

(v) Let M =1+ (1/w) 37, by [} hi(T)7 d7, then for (x,5) € [0,1] x [0,1),

s
I'(«)

(1—s)2 771

2 s(1 — 5)* P < Qe s) < =—— a1 (1 — )27 7L,

Nonlinear Anal. Model. Control, 27(6):1068—-1090, 2022
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Proof. From the condition @ > 1/T'(ac — ) — 1/T'(a — ) we easily get

_ M 1
= Ta) w(rwm F(av))>0'

In addition, we also have a relation Aop; + A1p2 = 1/T().
(i) For0 <z < s<1,K(z,s) > 0isobvious. For0 < s <z < 1,

T(a)
+ doprz® (1= 9)* 77 = (1—s)* 7

= 0.

K(LC, S) > ((1 — 3)04_5—1 _ (1 _ S)a—l)

In the same way, we get K is nonnegative, then we have G > 0. It is obvious that
G, K, K are continuous on [0, 1] x [0, 1).

(i1) The conclusion is obvious, we omit it.

(iii) First, we introduce an inequality. For A\, 1 € (0, 00) and a, x € [0, 1], we have

min{l,/;}(l—axk) <1-—az” <max{1,/;}(l—ax/\). 5)

When s < z, using inequality (5), we obtain

K(z,8) > Aipez® ' ((1— s)e A1 (1 - 57
+ Aop1z® (1 =s)* 7 = (1 =57 1)

> BAipaa® (1= 9)* s + min{y, 1P Aaprz® (1 - 6)* 7 s
> Bhapaa® Tt s(1 = 8)* P 4 BhapratThs(1 - 5)* 0
B s o
— = @ 1— o )
F(a)x s(1 =)
When z < s,

K(z,8) 2 Bhipaa® " s(1—8)* 77 4 Bhopra®s(1 —)* P!
B

= _polg(1—s)* AL
() (I—s)

In addition,
K(z,8) < Mpez® 1 (1 —8)* 7 4 Aopraz® (1 —s)> 7!
1

= @xa* (1—s)*7"" VY(z,s) €[0,1] x [0,1).

Again, we can get the property of Ky, that is,

Bz ts(1 —5)* P < T(a)Ko(z,s) < 27 1(1 — 5)* 7L,

https://www.journals.vu.lt/nonlinear-analysis
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Therefore,

(D .
< | Ko(rys)hi(r)dr € ———— | 77 " hy(7)dr.
/ I'(a) /

(iv) By substituting the two inequalities (iii) into formula (4) we naturally come to
the conclusion. O

Consider the problem ¥ = G4, where operator G is defined by

1

GI(z) = ~I3g0(o) + 01 [ K(s)ga()ds

j(Zb/KoTs dT) o(5) ds

0

1
/GQ?Sgﬁ s, (6)
0

where gy(s) = g(s,9(s), Dy, 9(s), D§,9(s)), G is defined in (4). In order to prove that
problem (1), (2) has a solution, we just have to show that operator G has a fixed point.
Take the fractional derivative of order 5 for G, we have

a)g>—h-1
D, Gi() = 137 g () + T2 / #()go(s) ds

I'a—pB)
1 m
+F(QF_ e 1/(261/[3078 d¢> o(s)ds
1 0
:/Gl(x,s)glg(s) ds, (7
0
where
F(a)a:a A=l m
Gi(z,s) = Ky(z, ) + o /KO 7,8)h;(T)dT, (8)
I'a 2o P lk(s) — = (z—)* Pl 0<s<a <],
Ky(w,s) = r(a(_)b’) {xaﬁmgs;, e 0<z<s<l ®

Nonlinear Anal. Model. Control, 27(6):1068—-1090, 2022
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Similarly, we have

o)x -1
D3, Gol) = ~ 15 g0 + F(F()a_w [ #1005

where
T a—y—1 m
GQ(LL‘, S) = KQ(Z‘,S) + IS(CY)LE /K() T, S d
INGY xavl(s)f—(x )77l 0<s ,
Ks(w,5) = 1 ) 1 ) (10)
(@ =7) |z 7 1k(s), 0<z<s
Then

a—n w/(Zb/KMS dT) o(s) ds. (an

By simple deduction we can get the following properties.

Lemma3. Lt 0 < f<a—-1<1<y<a<2 w>1/T(a—B)—1/T(a—"). The
functions K;, G; (i = 1,2) defined in (8), (9) and (10) have the following properties:

(i) K1,G1 are nonnegative and continuous on [0,1] x [0,1);
(ii) Forany (z,s) € [0,1] x [0,1),
min{y — 3, 1}I'(«) —B-1 —v-1
A o 1—s)*7
Ta-p) v o=

< Kl(xﬂs) <

xafﬁfl(]_ _ 8)(17')/71
I(a—=p)

(iii) For any (z,s) € [0,1] x [0, 1),

a—[F— a—pB—
‘??a = ﬂ; s(1 =) <Gz, 5) < 3’?& = 5)1 (1—s)77,

https://www.journals.vu.lt/nonlinear-analysis
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where
m = min{y — 8, 1}T'(a)\ap1 + — Zb/ yre~ldr,

and M is defined in Lemma 2,
(iv) Ka(z,8) >0, 0<ax<s<1,and Ky(x,8) <0,0<s<z<l.

Lemma 4. Integral operators I§,, ](Hfﬁ Iy T 7 have properties:
)] I{ﬁ,]gﬁ:ﬁ : Lb,_,[0,1] — C10, 1] are continuous;
(i) Ioy "« LE,_,]0,1] = Co—[0,1] is continuous.

Proof. (i) Since 1 < a—f < a < 2, we only show the continuity of I§, . First, we prove
that I, : L¥,__ [0, 1] — C[0, 1] is well defined, that is, for any f € L?__[0,1], we have
I, f € C0,1]. Notice that (o« —y —1)g + 1 > 0 because of the condition 1/p < o — 1.
Forany 0 < 23 <22 <1,

’I&rf(xQ) - Ig+f(x1)’

Wlee (7 P
< Ty [(0/«@—5) — (a1 — 5)* 1) >ds>

T2 1/q
_%</@Q_lemgawlmd§ :

T1

£z 7 e v
< L o=y — oyl (a=v—=1)q / (a—v=1)q
S T l(xg x1) (/s ds) + ( s ds
0

T

||f|\ p (a—y—1)g+1 1/q

Wy (22 — xl)a—l (%)
[(a) (a—=v—1)g+1

N xgawfl)qﬂ _ xga71)q+1>1/q}
(@—v-1)g+1 ’

then we naturally get the continuity of I, f(x) as x2 — 1.
Let { f.} be convergent sequence in the space L?, . [0, 1], i.e., there exists a function
fo € Li,_[0,1] such that || f, — fol[z» _ — 0 (n — 00). In order to show that operator

I§, is continuous, we have to prove || I, f,, — I, follco — 0(n — 00). In fact,

Jwax |18 () = I8 fo(a)]

x

1/q
1
< _ _ \(a=1)g (a—y—1)q _ .
\‘&2i§1r(a)<h/kx sy s ds | lfn = follez_,
0

_ 0 a—l+a—vy—1/p _
_Ogla?gl F(Oz)m an_f0||LZ7W _@”fn_fOHLZi,w

Nonlinear Anal. Model. Control, 27(6):1068—-1090, 2022
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where

0 = (F((a —Dg+ DI ((a —y—1)g+ 1))1/q
I'((2a—v—2)g+2) '
According to the inequality above, we have || 1§, f,, — I§, follcc — 0asn — oo,
(ii) Forany f € L __[0,1], denote F(z) = z' =I5 f(x), = € [0,1].

g g o
@) < fo [@= 90 as
0
x 1/q
xl—&-’y—a
< _ g\(a=r=1gla=r=-1)q 4 v
e ( / (¢ — )15 s) ol
Qma_’y_l/p
= |Ifller_, (12)

(o —7) v
where

._ (F((a —v=Dg+ DI =7 —1)g + 1))l/q
¢= T(2(a—~—1)g +2) '
From this inequality we know F' is continuous on ¢ = 0 if one supplies the definition of F'
ont=0: F(0)=0.
Forany 0 < 21 < 22 <1,

‘F(xg) — F(JJ1)|

< a7 =y T[T ()| 2y TG (@) — 16 f ()]

1+y—a y—a 7
To — Ty | a—y—1
S T(a —7) 0/(””2—8) " f(s)|ds (13)

I+v—« o

Mo / (@1 = 5771 = (a2 — )77 1) £(s)] ds (14
l+y—a 2

ZCI a—vy—1

m/@z—s) £ (s)] ds (1)

x1

Now, we will evaluate these formulae (13)—(15), respectively.

e 1
(z2 — $)* 77 f(s)| ds
I'a— /
(=) )
Thy— T4ry—
|x2+’Y a_xl-i-’y a‘gxaf’yfl%»ozf’yfl/p”f“ )
S T(e-9) 2 Fary
il 2 R
P .
X F(O[ . "Y) La—w 2 1

https://www.journals.vu.lt/nonlinear-analysis
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Choose a constant 7 satisfying 0 < n < min{l +v — a,« — vy — 1/p}, then

1+~y— T

Mo/ (21 =) = (w2 — )77 1) | f(s)] ds

1+v—a 1 1+y—a
x 1 1
<A — d
F(a—v)/(xl—s x2—3> |f(s)| 5
0
1

—« z 1+v—a— 1/‘1
. 2t / ( 11 >( ¥ n)q< To—21 >nq5(aw1)q N
I'a—~) ) \t1=s  w2—s (x2—s)(x1—3)

< fllze_,
1 1/q
(2 — 1), 7" (/ —r=1- Y1
< (21 — s)(@7-t=magla=r=Da g4 £ e
I'a — =y
(=) /
1 —«
_ (1‘2—1'1)77C51+’y /ﬂjl’l —y—1—-n4+a—y— 1/p||f||LP
F(a—v) ==
k(2
S m”f”Lg , (w2 = x1),
where

K= (F((a—’v—n—1)q+1)F((a—7—1)q+1)>1/q
L(2(a—v—=1)—n)g+2)
In the end, as for (15), let x5 — x1, then

x}+77a T To—5 a—y—1 s s (I'Q_xl)ai’Yil/p
F(a—7) [ s s < o) ((@——Dg+ 1)

T

el 0.

Taking all the conclusions above into (13)—(15), we can get |F (xg) F(z1)] — 0 a
xy — x1, which implies that F'(z) is continuous on [0, 1] and I, " f € Co—4[0,1].

Combining (12), we easily infer the continuity of integral operator I, . O
We define a normed vector space

X={9eC0,1] | Dy, 0 € C[0,1], D§, 0 € Co—s[0,1]}

equipped with the norm [|9|| = max{||?| o, ||D0+19||007 Doy 91l }-

Lemma 5. (X, ||||) is Banach space.

Proof. Let {¥,} be Cauchy sequence in (X,|-||). Clearly, {0,}, {D0+19 } are also
Cauchy sequence in the space C[0,1]. Therefore, {1, },{Dy, ¥,} converge to some
¥, u € C[0, 1]. By similar work of Su and Liu [30], we have u = Dg_ 9.

Let U, (t) = t'*7~2DJ, ¥,(t). Evidently, {U,(t)} is Cauchy sequence in C[0, 1],
then there exists ;1 € C[0, 1] such that U, (t) — p(t) in C[0, 1]. That is to say, for any

Nonlinear Anal. Model. Control, 27(6):1068—-1090, 2022
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€ > 0, there is a positive integer NV,

|Un(t) — p(t)| = |£" 77 DJ 00 (t) — p(t)| <& VYn >N, tel0,1].
Choose arbitrary positive number a < 1, we will prove { D 4 Un} uniformly converges to
t*=7=1u(t) on [a, 1]. In fact, forall n > N, t € [a, 1], we have

| DY 0 (t) =t ()| = e T DE L0, — p(t)| < a7 e

By property of fractional calculus, for every ¢ € (0,1], we have (lim,, oo DJ 05)(t) =
(Dgylimy, 005, )(t), Hence, t*~ 7 1u(t) = D], 9(t) for all ¢ € (0,1]. So, D, 9(t) €
C(0, 1] and limy o4 t*77=*Dg, 9(t) =limy 04 p(t) =p(0),ie., DJ, I(t) € Ca—r[0,1].
The proof is completed.

O

Let K={¢ € X | ¥(x) >0, D§+19(x) >0, z € [0,1]}. Apparently, K is a cone of X.

3 Existence and uniqueness results

This section deals with existence and uniqueness of solutions for problem (1), (2). The
nonlinear term g satisfies the following assumptions:
(Cl) g:(0,1] x RT x R* x R — R is continuous, g(z, 0,0, 0) does not vanish on
any compact interval of (0, 1]. Furthermore, there exist nonnegative functions
o; € Lﬁ_W[O, 1] (¢ = 1,2, 3) and continuous and nondecreasing functions ¥J; :
R* — R™ (i = 1,2, 3) such that for any z € (0,1], u,v € R, w € R,

g(z,u,v,w) < o1(2)91 () + 02(2)92(v) + o3(x)d5 (277 |w]).
(C2) There exists a positive number I such that
1 1
max{r(a)’ I(a—p)
where 7; = g||c71-||Lz;77 (i=1,2,3).

(C3) There exist L; € Co—~[0,1] (i = 1,2,3) and x; : RT — Rt (i = 1,2,3)
are upper semicontinuous from the right and nondecreasing such that for any
x € (0,1], u;,v; € RT, w; € R (i = 1,2), we have

}(sm 4+ 1)[5191(R) + 3395(R) + 9305(R)] < R,

|9z, ur,v1,w1) — g(, uz, vz, w2)|
<Ly (x)x1 (Jur —uz]) + La(x)x2 (|1 —v2]) + Ly () x3 (2177 [wy —ws).
(C4) Denote

1 1 — — —_
() == (M+1) max{ T(a) T(a—5) } (Lixa(z) + Laxa(z) + Laxs(x)).
It satisfies &(x) < z for all z > 0, where L; = olLillzy  (i=1,2,3).
(C4’) Denote o o o
®(x) == Lix1(x) + Laxa(z) + Laxs(z),
it satisfies ¢(z) < z forall x > 0.
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Lemma 6. Suppose that (C1) holds, and 0 < f < a—-1<1<y<a<2 w>
1/T(a— B) — 1/T(av — 7). Then G : K — K is completely continuous.

Proof. Let us first show that the operator G is well defined. For any 9 € K, from (C1),
since o; € Lf,_[0,1] (i = 1,2,3), we know gy € Li,_[0,1]. Whereupon according

to Holder 1nequa11ty and Lemma 2, we have fo (1—s)~ 5~ 1919( ds, fo (1—-s)> 71 x
go(s)ds < oo and fo >oisy bi [ Ko(7,8)hi(1) d7)gs(s) ds < oo, and we deduce that
Io+gg( x) € C0,1] from Lemma 4. Then by (6) we get G19 € C[o,1]. Slmllarly, using
Lemma 4 and formulae (7), (11), we get the concluswns D +Gv € C[0,1], D G19 €
Ca—~[0,1]. Furthermore, we naturally get G(x), Dy G19( ) >0,z €0,]1] from the
fact that g and Green’s functions G, G; are nonnegatlve So, Gv € K.
Suppose that ¥,, — Jp(n — o0) in cone K, then there exists a constant M > 0

such that |9, || < M(n = 0,1,...). In order to get the conclusion that operator G is
continuous, let us start w1th the fact that 99, = goo(n — o0) in LE__[0,1], where
g9, (x) = gz, 9, (x), D} +Un(x), D 9y (x)) (n = 0,1,...). By condition (C1) it

follows that

|99, (%) = g0, ()| < 2(01(2)91 (M) + o2(2)02(M) + 03(2)93(M)), = € (0,1].

Moreover, on the basis of the continuity of g, we deduce that gy, (x) — gy, (x), n — o0,
for all z € (0,1]. Taking advantage of Lebesgue dominated convergence theorem, we
know f |21+ =%(gy, (z) — go,(x))[P dz — 0, n — oco. Thereupon, by Lemma 4, we
have I, 919 convergence to I§ gy, in C[O 1]. In addition, by Holder inequality, we can
alsogetfo )*7F 7 gs,.(5) = g, (s Ids Jo (=527 gy (5) — g, (s)| ds — 0
and fo b fli Ko(r, s)hi(7)dT)|gs,, (5) — go, (s )\ds — 0 as n — oo. Synthesiz-
ing the above conclusions, from the e é)resswn of G19 (6), we have GY,, — GV in
C[0, 1]. Analogously, we can deduce Dy, G1J,, — D0+G190 in C[0,1] and Dj, GY,, —
DJ,.GYyg in Co—[0,1]. To wit, GV, — Gﬂg(n — o0) in K.

In the end, Ascoli—Arzela theorem guarantees operator G : K — K is compact. That
is to say, we can deduce that G(B) is bounded and equicontinuous for any bounded subset
B C K. The proof can be obtained by the conventional procedure, so we omit this step.

From the above we conclude that the operator G is completely continuous. O

Theorem 1. (See [1].) Let E be a Banach space with C c FE closed and convex. Assume
that U is relatively open subset of C with0 € U and A : U — C'is a continuous compact
map. Then either

() A has a fixed point in U or

(i) There exists u € OU and X\ € (0,1) with u = AAu.

Theorem 2. Assume that (C1), (C2) hold, and0 < f<a—-1<1<y<a<2,w >
1/T(a — B) — 1/T (v — 7). Then BVP (1), (2) has at least one positive solution.

Proof. By applying nonlinear alternative of Leray—Schauder-type fixed point theorem
(Theorem 1), we will prove that G has a fixed point. Let Bg = {u € K| |ju| < R}, Ris
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given in condition (C2). Consider the following integral equation:
1
o / Gla 3(s), DE,9(s), Dy, 9(s)) ds, (16)
0

where A € (0,1). We claim that any solution of (16) for any A € (0,1) must satisfies
[9]] # R. Otherwise, assume that ¢ is a solution of (16) for some A € (0, 1) such that
||¥]| = R. Hence, from condition (C1) and Lemma 2(iv), for any x € [0, 1], we have

1

/ 1= )21 (0 ()9, (9(5)) + 0 ()92 (DE, 9(5))

+ o3(s)05(s" 7| Dy 9(s)|)) ds

< fry (@01 (R) + 7202(R) + 7393(R)).

CK

M

SO,

am
I(«)

Similarly, in view of Lemma 3 and (7), we have

19l < (@191(R) + 7202(R) + 7393(R)).

0 < D, () < e =) 191 (R) +5202(R) + 7ada(R)),

then
M

”D 19”00 X m

(@101 (R) + 5292(R) + 7393(R)).
According to (11), we have

|27 DY, GI(z)|

< )‘/ F(l;(i[)’y)Oqu(l —5)* P 4 Aapr(1—8)* 7 ) gg(s) ds

1+’y [
/ ) gy (s) ds

0

o) [ (&

A +1),_ _ _
< m(o’ﬂ%(fz) + 02192(R) + 0'3193(R))a

then
AN +1)
D9 <

< Fa ) (T0(R) +720a(R) + 7505 (R)).
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Therefore,
R =9
1 1
< Amaxq ——, ————
{F(a) (o= p)

This is a contradiction and the claim is proved. Leray-Schauder nonlinear alternative
theorem guarantees that operator G has a fixed point § € Bg. Since g(z,0,0,0) does
not vanish on any compact interval of (0, 1), we know ¢ must be positive. O

}(zm +1)[6191(R) + 0392(R) 4+ 5393(R)] < R.

Next, our uniqueness result for problem (1), (2) relies on Boyd—Wong’s contraction
principle [8].

Theorem 3. Let X be a complete metric space and suppose T : X — X satisfies
d(Tz,Ty) < @(d(x, y)) foreachz,y € X,

where @ : [0,00) — [0,00) is upper semicontinuous function from the right (i.e.,
rj L r > 0= limsup; . D(r;) < D(r), and forx > 0, 0 < &(x) < z for x > 0).
Then T has a unique fixed point x € X.

Theorem 4. Assume that (C3), (C4) hold, and0 < f<a—-1<1<y<a<2,w >
1/T(a — B) — 1/T(cv — 7y). Then BVP (1), (2) has a unique positive solution.

Proof. For any ¥, y €K and z € [0, 1], by using Lemma 2(iv) and condition (C3), we get

|G(x) - Gy(a)|

1
Fﬂ/ )7 (L ( )Xl(’x(s)—y(S)D—I—Lg Xz(‘Do.MC s)— Dg+y(s)‘)
’ + Ls(s )Xs( A a‘DV I(s)— D0+y( )|))d5

< gy (ol =l + Loxa (10 = oll) + Laxs (119 — ll)),

SO

=

1GV = Gylloo

< a7 (E0u (19 = ul) + Taxa (19 = 1) + Zaxa (19 = )

Similarly,
| Dy, GY — D, Gyl|

<m0 = ul) + Taxa(19 - ol) + Zaxa(10 — ).

| D§+GY — DY, Gyl|,

s % (Toa (119 = wl) + Zaxa (19 = yl) + Zaxs (19— wl)).

Nonlinear Anal. Model. Control, 27(6):1068—-1090, 2022


https://doi.org/10.15388/namc.2022.27.29420

1084 W. Liu, L. Liu

Synthesizing the above three inequalities and combining with condition (C4), we get

G0~ Gl < @+ Dmax s gt b (T (19 - o)

+ Lax2 (19 = yll) + Laxa (9 = vll))
=o(l0 —yll) < 19—yl

Then Boyd—Wong’s contraction principle can be applied and G has a unique fixed point
which is the unique solution of problem (1), (2). O

Example.
DYt 9(@) + 24 [9()] " + 21 [DgPo(@)] 7 + 2 [DYP0(@)) " = o,
0<zx <1,

MD29(1) + XDy 29(1)

1/4 3/4 1
:0.1/5*1/219(5) ds+0.05/s*lﬁ(s)dsw.l/5*1/419(s)ds (17)
) 1/4 3/4
+002/51/419
0

9(0) =0,

Leta = 7/4, B = 1/27 = 3/2, I = [071/4]7 Iy = [1/473/4]713 = [3/471]’ I, =
(0,1], by = 0.1, by = 0.05, b3 = 0.1, by = 0.02, hi(s) = s~ Y2, hy(s) = s71,
ha(s) = 5714, hy(s) = s'/4, A\; = 0.9, Ay = 0.1. A simple calculation yields

_ Al(a) Aol () i ‘ e ~
- T(a—5) " Tla—7) ;b’ / hi(s)s*~ ! ds ~ 0.86084

and 1/T(a — B) — 1/T(a — ) ~ 0.82741, then w > 1/T(a — ) — 1/T(ax — 7).

Let g(z,u,v,w) = x~Y2(1 + u'/?) + 2= /44 4 x=V%4?/3, then g : (0,1] x
RT x RT x R — RT is continuous, and g(x,0,0,0) does not vanish on any compact
interval of (0,1]. Let oy (2) = 27 /2, o9(2) = 274, 03(2) = 273/4, 91 (u) = 1+ul/?,
9a(v) = 14+ v/, 93(w) = w?/3, then for x € (0,1], u,v € RT, w € R.

9@, 1,0, w) < 01(2)01 (1) + 02() 2 (v) + o3(2)0s (2 *u]).

Furthermore, 77 = 8.5634, 75 = 8.0337, o3 = 9.8240,

M=1+ — Zb/ )71 dr & 1.09028.
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Take R = 2'® = 262144,
ma { 1 1
Xy =, v
I(a) (e = B)
~ 103328 < R.

}(93“( + 1) [0’1’[91(R) + 0'2192(R) + 03193(R)]

Hence, conditions (C1), (C2) in Theorem 2 hold, then problem (17) has a positive solu-
tion.

4 Stability analysis

In this section, we consider the Banach space X = {u € C|0, 1] | DB+u € C[0,1], D"u €
Ca—~[0,1]} equipped with the norm |ju|| = [ju« + ||D0+u||OO + || Dy, ull«. Let us
introduce some definitions related to Ulam stability.

Suppose that function H € C,_,[0,1] is nonnegative and ¢ > 0. Consider the
inequalities given below:

| DG, 9(x) +g(t,1‘}(x),Dg () I(z))| <e, x € (0,1], (18)
|D§, 9(x) + g(,9(x), Dy, I(a J(x))| < H(z)e, =z € (0,1], (19)
|D§, 9(x) + g(z,9(x), D I(x 9(z))| < H ze(0,1].  (20)

Definition 1. We say that ¥ € X is a solution of inequality (18): if there is Ny € C(0,1]
which depends on ¢, such that | N3(z)| < € and D§, J(z) + g5(z) = Ny(z), meanwhile
9J(z) satisfies boundary condition (2), where

g5(x) = g(=,9(x), D§, D(x), D§, V().
Remark 1. The solution of inequalities (19), (20) can be defined as well.

Definition 2. BVP (1), (2) is Hyers-Ulam stable: if there is a constant C' > 0 such that
for any € > 0 and for each solution ¥ € X of inequality (18), there exists a unique solution
¥ € X of BVP (1), (2) satisfying

|0(x) —d(z)| < Ce, x€[0,1]. 1)

Definition 3. BVP (1), (2) is generalized Hyers—Ulam stable: if there is a fungtion v e
C([0,1],RT) with ¥(0) = 0 such that for any ¢ > 0 and for each solution ¥ € X of
inequality (18), there exists a unique solution 9 € X of BVP (1), (2) with

|0(z) — I(z)| <¥(x), =z €]0,1].

Definition 4. BVP (1), (2) is Hyers—Ulam—Rassias (HUR) stable w.r.t. nonnegative func-
tion H € C,_,[0,1]: if there is a constant C' > 0 such that for any ¢ > 0 and for
each solution ¥ € X of inequality (19), there is a unique solution ¢ € X of BVP (1), (2)
satisfying

[9(z) = V()| < CH(z)e, x € (0,1].
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Definition 5. BVP (1), (2) is generalized Hyers—Ulam-Rassias stable w.r.t. H € C((0, 1],
RT): if there is a constant C' > 0 such that for each solution ¥ € X of inequality (20),
there is a unique solution ¢ € X of BVP (1), (2) satisfying

|0(z) = 9(x)| < CH(z), =< (0,1].
Theorem 5. Assume that (C3), (C4") hold, and 0 < f<a—-1<1<y<a<2,@>
1/T(a—B) —1/T(a—7). Let A = M/T () + M/T(x — B) + M+ 1/T(ax — ). If
A < 1, then BVP (1), (2) is HU stable.

Proof For any € > 0, suppose U € X be the solution of inequality (18), then J(z) =

fo g5(s) — Ng(s)) ds, where |N5(s)| < e. Just like the proof method in Theo-
rem 4 we also know that BVP (1) (2) has a umque solution ¥ € X under the new norm
and ¥ can be expressed by ¥(z fo (z,5)g9(s) ds by Lemma 1.
On the basis of Lemma 2 we have
1
||5—19H <max/G:L‘s (s) |ds+max/Gazs‘N ‘ds
o o<zl
0
o 1
S N —
0

b La(oa(|DTE) — D0t
+ L3(s)x3 (51+7 O“D&E(s) — Dg+19(s)‘)) ds

L m
[(a)(a =)
m _ _
< ——(Lixa (]9 = Y|x) +L2X2(HDB J— Dﬁ o)
[(a)
7 Y 5 Y em
+L3X3(||D0+19 D0+19||*)) + T'(a)(a—7)
m - em
< T+
1”1 T =)
Similarly, we can get
m — em
D’@ 9 — Dﬁ Y Y-+ =,
| I < a5 I e e
M+ 1)
DL g- Dy < OBED g gy R ED
19600 = Dl < m g 17 =1 e =)
Hence, ||J — 9| < A[|9 — 9| + (¢/(a — 7)) A, then
— eA
Y- —— 22)
=< e=Ha=2

Let C = A/((ov — v)(1 — A)), clearly,
[9(z) = V(x)| < Ce Va €0,1].
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In other words, conclusion (21) in Definition 2 is satisfied, i.e., BVP (1), (2) is Hyers—
Ulam stable. O

Theorem 6. Suppose that (C3), (C4) hold,and 0 < f<a—-1<1<vy<a<2,@w>
1/T(a—B)—1/T(a— 7). Let A = M/T () + M/T(a — B) + (9)?4— D/ T(a—7). If
A < 1, then BVP (1), (2) is generalized HU stable.

Proof. For any ¢ > 0, for convenience, let us assume 0 < ¢ < 1. Suppose ¥ € X be the
solution of inequality (18), ¥ € X be a unique solution of BVP (1), (2). Following the
method of Theorem 5, we know that (22) holds. Thereupon, for any x € [0, 1],

1

|0(z) — d(z)| < /G(x, $)|gg(s) — go(s)|ds + / G(z, s)|Ng(s)|ds
0

0
M 1 mxa—l
<T@ P+ e
gzmxa—l eA L€ >
Dla) \(a=7(1-4) a-v
m*txocfl

< =V(x).
Taa-na-a @
It is obvious that ¥(0) = 0. Then by Definition 3, BVP (1), (2) is generalized HU
stable. O

Theorem 7. Let the conditions of Theorem 6 be satisfied, moreover, there exists a nonneg-
ative function H € Cy,_ [0, 1] satisfying x>~ < H(z) for all z € (0, 1]. Then BVP (1), (2)
is HUR stable.

Proof. For any € > 0, suppose ¥ € X be the solution of inequality (19), then J(z) =
fol G(x,5)(gg(s) — Ng(s)) ds, where | Ny(z)| < H(x)e. ¥ € Xis a unique solution of
BVP (1), (2). On the similar way of Theorem 5, one can prove

1

_ m - em

— < — _ _ Na—y—1

17—l < g 17— 911+ Fas [ (1= 9" () as,
0

1D, 7 — D, v|| (;ﬁ_ﬁ)|1919||+r(;mjﬁ)/(ls)“71H(s) ds,
0
M+ 1 eM+1) / Y
1039~ D3 9], < el ol + S [0 sy (s) s
b= P8l < ra ) e |

So, combining with these three inequalities, we have

19— <

1
/1—sa“H()d (23)
0
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For any z € (0, 1], from (23), we get

; 1
|9(z) — 9(z)| < /G(x,s)|%(s) — go(s)|ds +/0 G(z, s)|Ng(s)|ds
0

M-t eMzo—1

g W”ﬁ — 19” -+ TO{) 0/(1 — S)ai’yi H(S) dS

mH
_E (1 - s) T H(s) ds

: o\»—'

EmH(l’) Oé*’)/)l—‘(ozf")/)H ||
ST()(1—-4) T'(2a-—27)

Ko

Let
M (o — )l (e — )
(1-A)T(a)l(2c — 27)

C:= ||H||*>

then
|0(x) —¥(z)| < CH(z)e Ve (0,1].

By Definition 4, BVP (1), (2) is HUR stable. O]

Remark 2. Under the condition of Theorem 7, imitating the process, we can prove that
BVP (1), (2) is generalized HUR stable.
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