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Abstract. This paper investigates the existence of a unique positive solution for a class of boundary
value problems of p-Laplacian fractional differential equations, where its nonlinearity is sign-
changed and involves a fractional derivative term, and its boundary involves a nonlinear fractional
integral term. By constructing an appropriate auxiliary boundary value problem and applying
a generalized fixed point theorem of sum operator and properties of Mittag-Leffler function, some
sufficient conditions for the existence of a unique positive solution are presented, and a monotone
iterative sequence uniformly converging to the unique solution is constructed. In addition, an
example is given to illustrate the main result.

Keywords: fractional boundary value problem, p-Laplacian operator, positive solution, fixed point
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1 Introduction and preliminaries

Because of the extensive application in many fields such as physics, biology and engi-
neering, etc., fractional differential equation has attracted considerable attention and has
become an important area of investigation in differential equation theories. For a small
sample of such work, we refer the reader to [1–3,11,13,16,20] and the references therein.
At the same time, the differential equations with p-Laplacian operator are recognized as
important mathematical models in various fields of non-Newtonian mechanics, population
biology, elasticity theory, and so forth. More and more emphases have been put on the
research of positive solutions for fractional boundary value problems with p-Laplacian
operator, and excellent results from research into it emerge continuously. For some recent
works on the subject, readers can see [4, 7, 8, 10, 12, 14, 15, 17, 18, 24] and the references
therein. In these literature, there are a few papers on the existence of a unique positive
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Unique positive solutions for BVP of p-Laplacian FDE 1111

solution [7, 17, 24]. Xu and Dong [24] investigated the existence and uniqueness for
the following Riemann–Liouville fractional boundary value problem with p-Laplacian
operator

Dα
0+

(
φp
(
Dβ

0+x(t)
))

= f
(
t, x(t)

)
, t ∈ (0, 1),

x(0) = x(1) = x′(0) = x′(1) = 0, Dβ
0+x(0) = 0,

Dβ
0+x(1) = bDβ

0+x(η),

where α ∈ (1, 2], β ∈ (3, 4], η ∈ (0, 1), b ∈ (0, η(1−α)/(p−1)), f ∈ C([0, 1]×R+, R+).
Their analysis based on the Schauder fixed point theorem, the upper and lower solutions
method and the idea of concave and increasing operator theory. But to our knowledge,
there are few papers reported on the existence of a unique positive solution for p-Laplacian
fractional boundary value problems involving a fractional derivative term in the nonlin-
earity and a nonlinear integral term in the boundary conditions.

As is well known, the existence of a unique positive solution for nonlinear boundary
value problems plays a very important role in theory and application, and the fixed point
theory of operators with monotonicity and concavity (convexity) is an effective tool to
deal with such problems. Many researchers have studied the existence and uniqueness
of positive solutions by using different fixed point theorems of operators with mono-
tonicity and concavity (convexity), for example, fixed point theorems of concave (such
as ϕ-concave, δ-concave, u0-concave, ψ − (h, r)-concave) and increasing operators, see
[5, 7, 17, 25]; fixed point theorems of generalized δ-concave and increasing (generalized
−δ-convex and decreasing) operators, see [22]; the fixed point theorem of sum operators
(i.e., Lemma 7), see [26] and [27]; fixed point theorems of sum operators with concavity–
convexity and mixed monotonicity, see [9,28,29]. As usual, while using this tool to study
unique positive solutions of a boundary value problem, it is essential to require its non-
linearity to be nonnegative and satisfy monotonicity conditions and concavity (convexity)
conditions. But, when the nonlinearity of the boundary value problem is a sign-changed
function without monotonicity and concavity (convexity), we want to know whether the
boundary value problem has a unique positive solution. More specifically, under what
conditions and how to use this tool to prove the existence of the unique positive solution?
To the best of authors’ knowledge, there are no answers to these questions.

Motivated by the above literature, this paper will investigate the following p-Laplacian
fractional boundary value problem (BVP) involving a fractional derivative term in the
nonlinearity and a nonlinear integral term in the boundary conditions

Dα
0+

(
φp
(
−Dβ

0+x(t)
))

= f
(
t, x(t),−Dβ

0+x(t)
)
, t ∈ (0, 1),

x(0) = 0, φp
(
Dβ

0+x(0)
)

= 0,

Dβ−1
0+ x(1) = Iω0+g

(
ξ, x(ξ)

)
+ k,

(1)

whereDα
0+ is the Riemann–Liouville fractional derivative of order α, Iω0+ is the Riemann–

Liouville fractional integral of order ω; 0 < α 6 1 < β 6 2, 0 < ξ 6 1, ω, k > 0;
f ∈ C([0, 1]×R+×R+,R), g ∈ C([0, 1]×R+,R+), R+ = [0,+∞); φp(s) = |s|p−2s,
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p > 1. Obviously, (φp)
−1 = φq , 1/p+ 1/q = 1. Basic notations on Riemann–Liouville

fractional integral and fractional derivative can be found in [11].
The purpose of this paper is to establish some sufficient conditions for the existence

of a unique positive solution of BVP (1) where the nonlinearity f(t, x, y) may be sign-
changed and has neither monotonicity nor concavity (convexity), and construct a mono-
tone iterative sequence uniformly converging to the unique positive solution. Our analysis
relies on the cone theory, properties of Mittag-Leffler function, and a generalized fixed
point theorem of a sum operator defined on an equivalence class in cone.

For convenience, we first list hypotheses used in this article as follows:

(H1) f(t, 0, 0) > 0, t ∈ [0, 1]; there exists L > 0 such that

f(t, x1, y1)− f(t, x2, y2) 6 −L
(
φp(y1)− φp(y2)

)
(2)

for t ∈ [0, 1], 0 6 x1 6 x2, 0 6 y1 6 y2; there exists δ ∈ (0, 1) such that

f(t, rx, ry) + Lφp(ry) > φp
(
rδ
)(
f(t, x, y) + Lφp(y)

)
(3)

for r ∈ (0, 1), t ∈ [0, 1], x, y ∈ R+.
(H2) there exists µ > 0 satisfying Γ(β + ω) > µξβ+ω−1 such that

g(t, x2)− g(t, x1) > µ(x2 − x1), t ∈ [0, 1], 0 6 x1 6 x2; (4)

there exists a function ϕ > 0, ϕ ∈ L[0, 1], satisfying
∫ ξ
0

(ξ− s)ω−1ϕ(s) ds > 0
such that

g(t, x)− µx 6 ϕ(t), t ∈ [0, 1], x ∈ R+. (5)

(H3) g(t, τx) > τg(t, x) for τ ∈ (0, 1), t ∈ [0, 1], x ∈ R+.

Remark 1. Clearly, it is a special case of (2) in (H1) with L = 0 that f(t, x, y) is
increasing with respect to x and y. In addition, (H1) implies that f(t, x, y) + Lφp(y) >
f(t, 0, 0) > 0 for t ∈ [0, 1], x, y ∈ R+, and (H2) implies that g(t, x)− µx > g(t, 0) > 0
for t ∈ [0, 1], x ∈ R+.

Remark 2. In [21], authors studied the existence of a unique positive solution for the
following problem:

CDα
0+x(t) + λf

(
t, x(t)

)
= 0, 0 < t < 1,

ax(0)− bx′(0) = 0, x(1) =

1∫
0

k(s)g
(
x(s)

)
ds+ µ

when the nonlinear function g(x) was bounded and increasing. Different from [21], the
nonlinear function g(t, x) satisfying (H2) in BVP (1) may be unbounded.
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Remark 3. When (H1), (H2), and (H3) are satisfied, it is difficult to prove the existence of
a unique positive solution for BVP (1). Firstly, due to (2) and (4), the common method of
constructing equivalent operator equations used in [5,7,17,21,22,24–29] fails to BVP (1).
Secondly, since f involves Dβ

0+x, the partially order used in this paper is related to
Dβ

0+x. In addition, note that BVP (1) involves φp and Iω0+g(ξ, x(ξ)), so it is difficult
to construct a valid equivalence class in cone, but it is essential for our work. Finally, to
our knowledge, fixed point theorems in the existing literature can not be directly applied
to our analysis.

The paper is organized as follows. In Section 2, we recall some useful preliminaries
and lemmas. In particular, we generalize a fixed point theorem of sum operators on cone.
In Section 3, based on the generalized fixed point theorem, some results on the existence
of a unique positive solution for BVP (1) are presented and proved. In Section 4, an
example is given to illustrate our main result.

2 Preliminaries and fixed point theorems

Lemma 1. (See [11].) Let n − 1 < α 6 n, L ∈ R, h : R+ → R, then the fractional
equation

Dα
0+v(t)− Lv(t) = h(t), t > 0,

is solvable, and its general solution is given by

v(t) =

t∫
0

(t− s)α−1Eα,α
[
L(t− s)α

]
h(s) ds+

n∑
j=1

cjt
α−jEα,α+1−j

(
Ltα

)
,

where c1, c2, . . . , cn ∈ R, provided the above integral exists.

Here Eα1,α2
(u) =

∑∞
i=0 u

i/Γ(iα1 + α2), α1, α2 > 0, is the Mittag-Leffler function.

Lemma 2. (See [23].) Let 0 < α 6 1, then

Eα,α(u) > 0,
dEα,α(u)

du
=

∞∑
i=0

iui−1

Γ((i+ 1)α)
> 0, u ∈ R.

The following result can be easily derived by Lemma 1.

Lemma 3. Let 0 < α 6 1, h ∈ C[0, 1], L ∈ R, then the unique solution of the initial
value problem

Dα
0+v(t) + Lv(t) = h(t), t ∈ (0, 1],

v(0) = 0

is given by

v(t) =

t∫
0

(t− s)α−1Eα,α
[
−L(t− s)α

]
h(s) ds, t ∈ [0, 1].

Arguing similarly to the proof of Lemma 1 in [19], we can show the following result.
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Lemma 4. Let z ∈ C[0, 1], µ, λ ∈ R, 1 < β 6 2, ω > 0, 0 < ξ 6 1. If Γ(β + ω) 6=
µξβ+ω−1, then the following problem

−Dβ
0+x(t) = z(t), t ∈ (0, 1),

x(0) = 0, Dβ−1
0+ x(1) = µIω0+x(ξ) + λ

has a unique solution

x(t) =

1∫
0

H(t, s)z(s) ds+
Γ(β + ω)λtβ−1

ρ
,

where

ρ = Γ(β)
(
Γ(β + ω)− µξβ+ω−1

)
,

H(t, s) =
1

ρ



[Γ(β + ω)− µ(ξ − s)β+ω−1]tβ−1

−[Γ(β + ω)− µξβ+ω−1](t− s)β−1, s 6 t, s 6 ξ,

[Γ(β + ω)− µ(ξ − s)β+ω−1]tβ−1, t 6 s 6 ξ,

Γ(β + ω)[tβ−1 − (t− s)β−1]

+µξβ+ω−1(t− s)β−1, ξ 6 s 6 t,

Γ(β + ω)tβ−1, s > t, s > ξ.

(6)

Remark 4. Lemma 4 is Lemma 2.2 in [8] when β 6= 2.

Lemma 5. Let h ∈ C[0, 1], 0 < α 6 1 < β 6 2, ω > 0, L, µ, λ ∈ R. If Γ(β + ω) 6=
µξβ+ω−1, then the fractional boundary value problem

Dα
0+

(
φp
(
−Dβ

0+x(t)
))

+ Lφp
(
−Dβ

0+x(t)
)

= h(t), t ∈ (0, 1),

x(0) = 0, Dβ
0+x(0) = 0, Dβ−1

0+ x(1) = µIω0+x(ξ) + λ
(7)

has a unique solution

x(t) =

1∫
0

H(t, s)φq

( s∫
0

(s− τ)α−1Eα,α
[
−L(s− τ)α

]
h(τ) dτ

)
ds

+
Γ(β + ω)λtβ−1

ρ
, t ∈ [0, 1].

Proof. Set φp(−Dβ
0+x(t)) = v(t). Note that (φp)

−1 = φq , then BVP (7) is equivalent to
the following problem:

−Dβ
0+x(t) = φq

(
v(t)

)
, t ∈ (0, 1),

Dα
0+v(t) + Lv(t) = h(t), t ∈ (0, 1),

x(0) = 0, v(0) = 0, Dβ−1
0+ x(1) = µIω0+x(ξ) + λ.

(8)
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By Lemma 3 the unique solution of the initial value problem

Dα
0+v(t) + Lv(t) = h(t), t ∈ (0, 1],

v(0) = 0

can be written as

v(t) =

t∫
0

(t− s)α−1Eα,α
[
−L(t− s)α

]
h(s) ds.

By Lemma 4 the unique solution of the boundary value problem

−Dβ
0+x(t) = φq

(
v(t)

)
, t ∈ (0, 1),

x(0) = 0, Dβ−1
0+ x(1) = µIω0+x(ξ) + λ

is given by

x(t) =

1∫
0

H(t, s)φq
(
v(s)

)
ds+

Γ(β + ω)λtβ−1

ρ
.

Consequently, problem (8) has a unique solution

x(t) =

1∫
0

H(t, s)φq

( s∫
0

(s− τ)α−1Eα,α
[
−L(s− τ)α

]
h(τ) dτ

)
ds

+
Γ(β + ω)λtβ−1

ρ
, t ∈ [0, 1],

which is the unique solution of BVP (7). The proof is complete.

Remark 5. According to the proof of Lemma 5, if x is a solution of BVP (7), then

Dβ
0+x(t) = −φq

( t∫
0

(t− s)α−1Eα,α
[
−L(t− s)α

]
h(s) ds

)
, t ∈ [0, 1].

Lemma 6. Let 1 < β 6 2, ω > 0, µ > 0. If Γ(β + ω) > µξβ+ω−1, then H(t, s) given
by (6) is continuous and

0 6 H(t, s) 6
Γ(β + ω)tβ−1

ρ
, t, s ∈ [0, 1].

It is obvious that Lemma 6 follows from (6).
In the sequel, we present some concepts in ordered Banach spaces, which can be

found in [6] and [26].
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Let (E, ‖·‖) be a real Banach space which is partially ordered by a cone P ⊂ E,
that is, x 4 y iff y − x ∈ P . If x 4 y and x 6= y, then we denote x ≺ y or y � x.
By θ we denote the zero element of E. A cone P is said to be normal if there exists a
constant N > 0 such that θ 4 x 4 y implies ‖x‖ 6 N‖y‖. In this case, the smallest
constant satisfying this inequality is called the normality constant of P . For all x, y ∈ E,
the notation x ∼ y means that there exist l1 > 0, l2 > 0 such that l1x 4 y 4 l2x. Clearly,
∼ is an equivalence relation. Given e � θ (i.e., e ∈ P and e 6= θ), and the equivalence
class of the element e is denoted by the set Pe, that is,

Pe =
{
x ∈ E

∣∣ ∃l1(x) > 0, l2(x) > 0 such that l1(x)e 4 x 4 l2(x)e
}
. (9)

Let D ⊂ E. An operator T : D → E is said to be increasing if x, y ∈ D,x 4 y ⇒
Tx 4 Ty. An element x∗ ∈ D is called a fixed point of T if Tx∗ = x∗.

In [26], Zhai and Anderson obtained the following result.

Lemma 7. (See [26].) Let P be a normal cone in E, A : P → P and B : P → P be
increasing operators. Assume that

(G1) there is e � θ such that Ae ∈ Pe and Be ∈ Pe;
(G2) there exists a constant δ ∈ [0, 1) such that A(τx) < τ δAx and B(τx) < τBx

for x ∈ P and τ ∈ (0, 1);
(G3) there exists a constant σ0 > 0 such that Ax < σ0Bx for x ∈ P .

Then the operator equation Ax+Bx = x has a unique solution x∗ in Pe. Moreover, for
any initial value x0 ∈ Pe, constructing successively the sequence xn = Axn−1 +Bxn−1
(n = 1, 2, . . . ), we have limn→+∞ ‖xn − x∗‖ = 0.

However, in this paper, the operator B defined by (18) does not satisfy condition (G1)
since Be /∈ Pe for any e � θ. Therefore, we need to simply generalize Lemma 7.

Set
P e =

{
x ∈ E

∣∣ ∃l(x) > 0 such that θ 4 x 4 l(x)e
}
. (10)

Clearly, Pe ⊂ P e ⊂ P . So, the following condition (G1′) is more extensive than (G1).

(G1′) there is e � θ such that Ae ∈ Pe, Be ∈ P e.

In order to complete our analysis, we present the following result.

Theorem 1. Let P be a normal cone in E, A : P → P and B : P → P be increasing
operators. Assume that (G1′), (G2), and (G3) hold. Then the operator equation Ax +
Bx = x has a unique solution x∗ in Pe. Moreover, for any initial value x0 ∈ Pe,
constructing successively the sequence xn = Axn−1 + Bxn−1 (n = 1, 2, . . . ), we have
limn→+∞ ‖xn − x∗‖ = 0.

Proof. Since Ae ∈ Pe and Be ∈ P e, it is follows from (9) and (10) that there exist
constants l1 > 0, l2 > 0 and l3 > 0 such that l1e 4 Ae 4 l2e and 0 4 Be 4 l3e, which
implies that

l1e 4 Ae+Be 4 (l2 + l3)e.
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So, Ae+Be ∈ Pe. Define an operator T = A+B by Tx = Ax+Bx, then T : P → P
and Te ∈ Pe. Next, to show that T (Pe) ⊂ Pe. It is easy to see from (G2) that

A
(
τ−1x

)
4 τ−δAx and B

(
τ−1x

)
4 τ−1Bx for τ ∈ (0, 1), x ∈ P.

For any x ∈ Pe, we can choose a sufficiently small number τ0 ∈ (0, 1) such that

τ0e 4 x 4 τ−10 e.

Noticing that T : P → P is increasing, we have

Tx 4 A
(
τ−10 e

)
+B

(
τ−10 e

)
4 τ−δ0 Ae+ τ−10 Be 4

(
l2τ
−δ
0 + l3τ

−1
0

)
e,

Tx < A(τ0e) +B(τ0e) < τ δ0Ae+ τ0Be < l1τ
δ
0 e.

Since l2τ−δ0 + l3τ
−1
0 > 0, l1τ δ0 > 0, we get Tx ∈ Pe, that is, T (Pe) ⊂ Pe. The rest of

the proof is almost the same as that of Theorem 2.1 in [26]. The proof is complete.

3 Main results

In this section, by constructing an auxiliary boundary value problem and applying Theo-
rem 1 we obtain some new results on unique positive solution for BVP (1).

Set X = {x | x ∈ C[0, 1], Dβ
0+x(t) ∈ C[0, 1]}, then it is a Banach space with the

norm

‖x‖ = max
t∈[0,1]

∣∣x(t)
∣∣+ max

t∈[0,1]

∣∣Dβ
0+x(t)

∣∣.
Let

P =
{
x ∈ X

∣∣ x(t) > 0, Dβ
0+x(t) 6 0, t ∈ [0, 1]

}
.

Clearly, P is a cone, and X is endowed with a partial order given by the cone P , that is,

x, y ∈ X, x 4 y ⇐⇒ x(t) 6 y(t), −Dβ
0+x(t) 6 −Dβ

0+y(t), t ∈ [0, 1].

Moreover, P is a normal cone and the normality constant is 1.

Definition 1. Let x be a solution of BVP (1). x is called a positive solution of BVP (1) if
x(t) > 0 for t ∈ (0, 1).

Theorem 2. Assume that (H1), (H2), and (H3) hold. Then BVP (1) has a unique positive
solution x∗, and there exist two constants γ∗ > 0 and η∗ > 0 such that for t ∈ [0, 1],

γ∗
(
2tβ−1 − tα/(p−1)+β

)
6 x∗(t) 6 η∗

(
2tβ−1 − tα/(p−1)+β

)
, (11)

γ∗Γ( α
p−1 + β + 1)

Γ( α
p−1 + 1)

tα/(p−1) 6 −Dβ
0+x
∗(t) 6

η∗Γ( α
p−1 + β + 1)

Γ( α
p−1 + 1)

tα/(p−1). (12)
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Moreover, for any x0 ∈ P , constructing successively the sequence

xn+1(t) =

1∫
0

H(t, s)φq

( s∫
0

(s− τ)α−1Eα,α
(
−L(s− τ)α

)
×
[
f
(
τ, xn(τ),−Dβ

0+xn(τ)
)
+Lφp

(
−Dβ

0+xn(τ)
)]

dτ

)
ds

+
Γ(β+ω)

ρ
tβ−1

[
Iω0+
(
g
(
ξ, xn(ξ)

)
−µxn(ξ)

)
+k
]
, n = 0, 1, 2, . . . , (13)

we have

lim
n→+∞

max
t∈[0,1]

∣∣xn+1(t)− x∗(t)
∣∣ = 0,

lim
n→+∞

max
t∈[0,1]

∣∣Dβ
0+xn+1(t)−Dβ

0+x
∗(t)

∣∣ = 0.
(14)

Proof. For any given x ∈ P , consider the auxiliary boundary value problem

Dα
0+

(
φp
(
−Dβ

0+y(t)
))

= f
(
t, x(t),−Dβ

0+x(t)
)
+L
[
φp
(
−Dβ

0+x(t)
)
− φp

(
−Dβ

0+y(t)
)]
, t ∈ (0, 1),

y(0) = 0, Dβ
0+y(0) = 0,

Dβ−1
0+ y(1) = Iω0+

(
g
(
ξ, x(ξ)

)
+ µ

[
y(ξ)− x(ξ)

])
+ k,

(15)

where L and µ are given in (H1) and (H2), respectively. By Lemma 5, BVP (15) has
a unique solution given by

y(t) =

1∫
0

H(t, s)φq

( s∫
0

(s− τ)α−1Eα,α
(
−L(s− τ)α

)
×
[
f
(
τ, x(τ),−Dβ

0+x(τ)
)

+ Lφp
(
−Dβ

0+x(τ)
)]

dτ

)
ds

+
Γ(β+ω)tβ−1Iω0+(g(ξ, x(ξ))−µx(ξ))

ρ
+

Γ(β+ω)ktβ−1

ρ
, t ∈ [0, 1]. (16)

Define two operators A and B by

(Ax)(t) =

1∫
0

H(t, s)φq

( s∫
0

(s− τ)α−1Eα,α
(
−L(s− τ)α

)
×
[
f
(
τ, x(τ),−Dβ

0+x(τ)
)

+ Lφp
(
−Dβ

0+x(τ)
)]

dτ

)
ds

+
Γ(β + ω)ktβ−1

ρ
, t ∈ [0, 1], x ∈ P, (17)

https://www.journals.vu.lt/nonlinear-analysis
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(Bx)(t) =
Γ(β + ω)Iω0+(g(ξ, x(ξ))− µx(ξ))

ρ
tβ−1, t ∈ [0, 1], x ∈ P. (18)

In view of Remark 5, we have

−Dβ(Ax)(t)

= φq

( t∫
0

(t− τ)α−1Eα,α
(
−L(t− τ)α

)[
f
(
τ, x(τ),−Dβ

0+x(τ)
)

+ Lφp
(
−Dβ

0+x(τ)
)]

dτ

)
, t ∈ [0, 1], x ∈ P,

−Dβ
0+(Bx)(t) = 0, t ∈ [0, 1], x ∈ P.

Moreover, according to Lemmas 2, 6 and Remark 1, it is easy to show that A : P → P
and B : P → P . In addition, from (15)–(18) we can assert that x∗ ∈ P is a fixed point of
A+B if and only if x∗ is a solution of BVP (1) in P .

In order to get the conclusions, we verify that operators A and B satisfy all assump-
tions of Theorem 1 in the sequel.

Firstly, we show that operators A and B are increasing. For all x1, x2 ∈ P with
x1 4 x2, we have

0 6 x1(t) 6 x2(t), 0 6 −Dβ
0+x1(t) 6 −Dβ

0+x2(t), t ∈ [0, 1].

Furthermore, by (2) and (4) we obtain

(Ax1)(t) =

1∫
0

H(t, s)φq

( s∫
0

(s− τ)α−1Eα,α
(
−L(s− τ)α

)
×
[
f
(
τ, x1(τ),−Dβ

0+x1(τ)
)

+ Lφp
(
−Dβ

0+x1(τ)
)]

dτ

)
ds

+
Γ(β + ω)ktβ−1

ρ

6

1∫
0

H(t, s)φq

( s∫
0

(s− τ)α−1Eα,α
(
−L(s− τ)α

)
×
[
f
(
τ, x2(τ),−Dβ

0+x2(τ)
)

+ Lφp
(
−Dβ

0+x2(τ)
)]

dτ

)
ds

+
Γ(β + ω)ktβ−1

ρ

= (Ax2)(t), t ∈ [0, 1],
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−Dβ
0+(Ax1)(t) = φq

( t∫
0

(t− τ)α−1Eα,α
(
−L(t− τ)α

)
×
[
f
(
τ, x1(τ),−Dβ

0+x1(τ)
)

+ Lφp
(
−Dβ

0+x1(τ)
)]

dτ

)

6 φq

( t∫
0

(t− τ)α−1Eα,α
(
−L(t− τ)α

)
×
[
f
(
τ, x2(τ),−Dβ

0+x2(τ)
)

+ Lφp
(
−Dβ

0+x2(τ)
)]

dτ

)
= −Dβ

0+(Ax2)(t), t ∈ [0, 1],

(Bx1)(t) =
Γ(β + ω)tβ−1Iω0+

(
g(ξ, x1(ξ))− µx1(ξ)

)
ρ

6
Γ(β + ω)tβ−1Iω0+

(
g(ξ, x2(ξ))− µx2(ξ)

)
ρ

= (Bx2)(t), t ∈ [0, 1],

−Dβ
0+(Bx1)(t) = 0 = −Dβ

0+(Bx2)(t), t ∈ [0, 1],

that is, Ax1 4 Ax2 and Bx1 4 Bx2.
Secondly, we prove that there exists e � θ such that Ae ∈ Pe and Be ∈ P e, that is,

assumption (G1′) holds. Set

e(t) = 2tβ−1 − tα/(p−1)+β , t ∈ [0, 1],

then

−Dβ
0+e(t) = mtα/(p−1), t ∈ [0, 1],

where

m =

(
Γ

(
α

p− 1
+ 1

))−1
Γ

(
α

p− 1
+ β + 1

)
.

Clearly,

0 6 tβ−1 6 e(t) 6 2tβ−1 6 2, t ∈ [0, 1],

0 6 −Dβ
0+e(t) = mtα/(p−1) 6 m, t ∈ [0, 1],

(19)

which means that e � θ.
Define Pe and P e as (9) and (10), respectively. In view of Lemma 2, it is obvious that

Eα,α
(
−L
)
6 Eα,α

(
−Ltα

)
6

1

Γ(α)
, t ∈ [0, 1],
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which, together with Lemma 6, (H1) and (19), yields

(Ae)(t) 6
Γ(β + ω)

ρ

{
φq

(
1

Γ(α+ 1)

[
max
s∈[0,1]

f(s, 2,m) + Lφp(m)
])

+ k

}
tβ−1

6
Γ(β + ω)

ρ

{
φq

(
maxs∈[0,1] f(s, 2,m) + Lφp(m)

Γ(α+ 1)

)
+ k

}
e(t), t ∈ [0, 1],

(Ae)(t) >
Γ(β + ω)ktβ−1

ρ
>

Γ(β + ω)k

2ρ
e(t), t ∈ [0, 1],

−Dβ
0+(Ae)(t) 6 φq

(
maxs∈[0,1] f(s, 2,m) + Lφp(m)

Γ(α)

t∫
0

(t− s)α−1 ds

)

= φq

(
maxs∈[0,1] f(s, 2,m) + Lφp(m)

Γ(α+ 1)

)
tα/(p−1)

=
1

m
φq

(
maxs∈[0,1] f(s, 2,m) + Lφp(m)

Γ(α+ 1)

)(
−Dβ

0+e(t)
)
, t ∈ [0, 1],

−Dβ
0+(Ae)(t) > φq

(
Eα,α(−L)

t∫
0

(t− s)α−1f(s, 0, 0) ds

)

> φq

(
Eα,α(−L) mins∈[0,1] f(s, 0, 0)

α

)
tα/(p−1)

=
1

m
φq

(
Eα,α(−L) mins∈[0,1] f(s, 0, 0)

α

)(
−Dβ

0+e(t)
)
, t ∈ [0, 1].

Consequently,

γ0e(t) 6 (Ae)(t) 6 η0e(t), γ0
(
−Dβ

0+e(t)
)
6 −Dβ

0+(Ae)(t) 6 η0
(
−Dβ

0+e(t)
)

for t ∈ [0, 1], where

γ0 = min

{
Γ(β + ω)k

2ρ
,

1

m
φq

(
Eα,α(−L) mins∈[0,1] f(s, 0, 0)

α

)}
> 0,

η0 = max

{
Φ0

m
,

Γ(β + ω)

ρ
[Φ0 + k]

}
, Φ0 = φq

(
maxs∈[0,1] f(s, 2,m) + Lφp(m)

Γ(α+ 1)

)
,

which means that Ae ∈ Pe.
On the other hand, from (5) and (19) we have

0 6 (Be)(t) 6
Γ(β + ω)Iω0+ϕ(ξ)

ρ
tβ−1 6

Γ(β + ω)Iω0+ϕ(ξ)

ρ
e(t), t ∈ [0, 1],

0 = −Dβ
0+(Be)(t) 6

Γ(β + ω)Iω0+ϕ(ξ)

ρ

(
−Dβ

0+e(t)
)
, t ∈ [0, 1].

So, θ 4 Be 4 (Γ(β + ω)Iω0+ϕ(ξ)/ρ)e, that is, Be ∈ P e.
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Next, we demonstrate that assumption (G2) of Theorem 1 is satisfied. For any r ∈
(0, 1), x ∈ P , and t ∈ [0, 1], from (3) we obtain that

A(rx)(t) > rδ
1∫

0

H(t, s)φq

( s∫
0

(s− τ)α−1Eα,α
(
−L(s− τ)α

)
×
[
f
(
τ, x(τ),−Dβ

0+(x)(τ)
)

+ Lφp
(
−Dβ

0+x(τ)
)]

dτ

)
ds

+
Γ(β + ω)ktβ−1

ρ
> rδ(Ax)(t),

−Dβ
0+

(
A(rx)

)
(t) > rδφq

( t∫
0

(t− τ)α−1Eα,α
(
−L(t− τ)α

)
×
[
f
(
τ, x(τ),−Dβ

0+x(τ)
)

+ Lφp
(
−Dβ

0+x(τ)
)]

dτ

)
= rδ

(
−Dβ

0+(Ax)(t)
)
.

That is, A(rx) < rδAx for r ∈ (0, 1) and x ∈ P . Also, for any r ∈ (0, 1), x ∈ P , and
t ∈ [0, 1], by (H3) we have

B(rx)(t) >
rΓ(β + ω)tβ−1Iω0+(g(ξ, x(ξ))− µx(ξ))

ρ
= r(Bx)(t),

−Dβ
0+

(
B(rx)

)
(t) = 0 = r

(
−Dβ

0+(Bx)(t)
)
.

That is, B(rx) < rBx for r ∈ (0, 1) and x ∈ P .
Further, we prove that assumption (G3) of Theorem 1 is also satisfied. It follows from

(H2) that

σ :=
Iω0+ϕ(ξ)

k
=

∫ ξ
0

(ξ − s)ω−1ϕ(s) ds

kΓ(ω)
> 0.

Moreover, set σ0 = 1/σ, then for any x ∈ P , (5), together with (17) and (18), yields that

(Bx)(t) =
Γ(β + ω)tβ−1

ρΓ(ω)

ξ∫
0

(ξ − s)ω−1
(
g
(
s, x(s)

)
− µx(s)

)
ds

6
Γ(β + ω)tβ−1

ρΓ(ω)

ξ∫
0

(ξ − s)ω−1ϕ(s) ds =
σΓ(β + ω)ktβ−1

ρ

6 σ(Ax)(t), t ∈ [0, 1],

−Dβ
0+(Bx)(t) = 0 6 σ

(
−Dβ

0+(Ax)(t)
)
, t ∈ [0, 1].

Hence, Ax < (1/σ)Bx = σ0Bx for x ∈ P .
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Finally, applying Theorem 1, we obtain that A + B has a unique fixed point x∗

in Pe, and for any x0 ∈ Pe, setting xn+1 = Axn + Bxn, n = 0, 1, 2, . . . , we have
limn→∞ ‖xn+1 − x∗‖ = 0. In addition, by using similar arguments as the proof of
γ0e 4 Ae, we can get γ0e 4 Ax for x ∈ P . Moreover, (A + B)(P ) ⊂ Pe. Therefore,
BVP (1) has a unique positive solution x∗ satisfying (11) and (12), and for any x0 ∈ P ,
we construct successively the sequence {xn+1} as (13), then (14) is tenable. This ends
the proof.

The following results can be derived from Theorem 2.

Corollary 1. Assume (H2), (H3) and suppose that

(H4) for every t ∈ [0, 1], f(t, 0, 0) > 0 and f(t, x1, y1) 6 f(t, x2, y2) for 0 6
x1 6 x2, 0 6 y1 6 y2; there exists δ ∈ (0, 1) such that f(t, rx, ry) >
φp(r

δ)f(t, x, y) for r ∈ (0, 1), x, y ∈ R+, t ∈ [0, 1].

Then BVP (1) has a unique positive solution x∗ satisfying (11) and (12). Moreover, for
any initial value x0 ∈ P , set

xn+1(t) =

1∫
0

H(t, s)φq

(
1

Γ(α)

s∫
0

(s− τ)α−1f
(
τ, xn(τ),−Dβ

0+xn(τ)
)

dτ

)
ds

+
Γ(β + ω)tβ−1

ρ

[
Iω
(
g
(
ξ, xn(ξ)

)
− µxn(ξ)

)
+ k
]
, n = 0, 1, 2, . . . .

Then (14) holds.

Corollary 2. Assume (H1), (H3) and suppose that

(H5) g(t, x) is increasing with respect to x, and there exists a nonnegative function
ϕ ∈ L[0, 1] satisfying

∫ ξ
0

(ξ − s)ω−1ϕ(s) ds > 0 such that g(t, x) 6 ϕ(t) for
t ∈ [0, 1] and x ∈ R+.

Then BVP (1) has a unique positive solution x∗ satisfying (11) and (12). Moreover, for
any initial value x0 ∈ P , set

xn+1(t) =

1∫
0

H0(t, s)φq

( s∫
0

(s− τ)α−1Eα,α
(
−L(s− τ)α

)
×
[
f
(
τ, xn(τ),−Dβ

0+xn(τ)
)

+ Lφp
(
−Dβ

0+xn(τ)
)]

dτ

)
ds

+
tβ−1

Γ(β)

[
Iωg

(
ξ, xn(ξ)

)
+ k
]
, n = 0, 1, 2, . . . ,

where

H0(t, s) =
1

Γ(β)

{
tβ−1 − (t− s)β−1, 0 6 s 6 t 6 1,

tβ−1, 0 6 t 6 s 6 1.

Then (14) is also valid.
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Corollary 3. Assume that (H3), (H4), and (H5) hold. Then BVP (1) has a unique positive
solution x∗ satisfying (11) and (12). Moreover, for any initial value x0 ∈ P , set

xn+1(t) =

1∫
0

H0(t, s)φq

(
1

Γ(α)

s∫
0

(s− τ)α−1f
(
τ, xn(τ),−Dβ

0+xn(τ)
)

dτ

)
ds

+
tβ−1

Γ(β)

[
Iωg(ξ, xn(ξ)

)
+ k
]
, n = 0, 1, 2, . . . .

Then (14) holds.

Remark 6. Corollary 1 is the special case of Theorem 2 whereL = 0 in (H1), Corollary 2
is the special case of Theorem 2 where µ = 0 in (H2), and Corollary 3 is the special case
of Theorem 2 where L = 0 in (H1), and µ = 0 in (H2). Although the above three
corollaries are the special cases of Theorem 2, they are still new results.

4 Example

Consider the following fractional p-Laplacian boundary value problem:

D
1/2
0+

(
φ10/3

(
−D3/2

0+ x(t)
))

=
√
t
[
x2(t) + x5/6(t)

]
− t sin t

5

(
D

3/2
0+ x(t)

)1/3
+ 3
(
D

3/2
0+ x(t)

)7/3
+
t+ 1

99
, t ∈ (0, 1),

x(0) = 0, D
3/2
0+ x(0) = 0,

D
1/2
0+ x(1) =

1

Γ( 7
2 )

3/4∫
0

(
3

4
− s
)5/2

x(s)(5ses + 63(1 + x(s)))

3(1 + x(s))
ds+

3

1000
,

(20)

that is, in BVP (1), α = 1/2, β = 3/2, ω = 7/2, ξ = 3/4, k = 3/1000, p = 10/3;

f(t, x, y) =
√
t
(
x2 + x5/6

)
+
t sin t

5
y1/3 − 3y7/3 +

t+ 1

99
, t ∈ [0, 1], x, y ∈ R+,

g(t, x) =
5tetx+ 63(x2 + x)

3(1 + x)
, t ∈ [0, 1], x ∈ R+.

Obviously, f ∈ C([0, 1]× R+ × R+,R), g ∈ C([0, 1]× R+,R+). Put

e(t) = 2tβ−1 − tα/(p−1)+β = 2
√
t− t12/7, t ∈ [0, 1],

then

−Dβ
0+e(t) =

(
Γ

(
17

14

))−1
Γ

(
19

7

)
t3/14, t ∈ [0, 1].
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Take L = 3, then for any 0 6 x1 6 x2, 0 6 y1 6 y2, t ∈ [0, 1], we have

f(t, x1, y1)− f(t, x2, y2) 6 −3
(
y
7/3
1 − y7/32

)
= −L

(
φp(y1)− φp(y2)

)
.

Moreover, set δ = 6/7, then for any r ∈ (0, 1), x > 0, y > 0, t ∈ [0, 1], we get

f(t, rx, ry) + Lφp(ry) > φ10/3
(
r6/7)

(
f(t, x, y) + Lφp(y)

)
= φp

(
rδ
)(
f(t, x, y) + Lφp(y)

)
.

In addition, it is clear that f(t, 0, 0) > 0 for t ∈ [0, 1]. Hence, condition (H1) is satisfied.
Take µ = 21, then Γ(β + ω) = 24 > 21 > µξβ+ω−1. Further, for any 0 6 x1 6 x2,

t ∈ [0, 1], it is obvious that

g(t, x2)− g(t, x1) > 21(x2 − x1) +
5tet

3

(
x2

1 + x2
− x1

1 + x1

)
> µ(x2 − x1).

Now, we take ϕ(t)=(5/3)tet, t∈ [0, 1]. It is easy to check that
∫ ξ
0

(ξ− s)ω−1ϕ(s) ds>0,
and

g(t, x)− µx =
5tetx

3(1 + x)
6 ϕ(t), t ∈ [0, 1], x > 0.

Noticing that

g(t, rx)− µrx =
5rtetx

3(1 + rx)
>

5rtetx

3(1 + x)

= r
(
g(t, x)− µx

)
, t ∈ [0, 1], x > 0,

we can get
g(t, rx) > rg(t, x), t ∈ [0, 1], x > 0.

Consequently, conditions (H2) and (H3) are satisfied.
Since all the conditions of Theorem 2 are satisfied, we obtain that BVP (20) has

a unique positive solution x∗, and there exist γ∗ > 0 and η∗ > 0 such that

γ∗
(
2
√
t− t12/7

)
6 x∗(t) 6 η∗

(
2
√
t− t12/7

)
, t ∈ [0, 1],

γ∗
(

Γ

(
17

14

))−1
Γ

(
19

7

)
t3/14

6 −D3/2
0+ x∗(t) 6 η∗

(
Γ

(
17

14

))−1
Γ

(
19

7

)
t3/14, t ∈ [0, 1].
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Moreover, for any x0 ∈ P , constructing successively the sequence

xn+1(t) =

1∫
0

H(t, s)φ10/7

( s∫
0

(s− τ)−1/2E1/2,1/2(−3
√
s− τ )

×
[√

τ
(
x2n(τ) + x5/6n (τ)

)
− τ sin τ

5

(
D

3/2
0+ xn(τ)

)1/3
+
τ + 1

99

]
dτ

)
ds

+
24
√
t

ρ

( 3/4∫
0

8ses( 3
4 − s)

5/2xn(s)

9
√
π(1 + xn(s))

ds+
3

1000

)
, n = 0, 1, 2, . . . ,

here

H(t, s) =
1

ρ


[24− 21(ξ − s)4]

√
t− 4443

256

√
t− s, s 6 t, s 6 3

4 ,

[24− 21( 3
4 − s)

4]
√
t, t 6 s 6 3

4 ,

24
[√
t−
√
t− s

]
+ 1701

256

√
t− s, 3

4 6 s 6 t,

24
√
t, s > t, s > 3

4 ,

ρ = Γ(β)
(
Γ(β + ω)− µξβ+ω−1

)
=

4443
√
π

512
,

we have

lim
n→+∞

max
t∈[0,1]

∣∣xn(t)− x∗(t)
∣∣ = 0

and
lim

n→+∞
max
t∈[0,1]

∣∣D3/2
0+ xn(t)−D3/2

0+ x∗(t)
∣∣ = 0.
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