
Nonlinear Analysis: Modelling and Control, Vol. 27, No. 6, 1168–1188
https://doi.org/10.15388/namc.2022.27.29535

Press

Dynamics in diffusive Leslie–Gower prey–predator
model with weak diffusion*

Xiao Wua , Mingkang Nib,c,1

aCollege of Science, Donghua University,
Shanghai 200000, China
bSchool of Mathematical Sciences,
East China Normal University,
Shanghai 200000, China
cShanghai Key Laboratory of Pure Mathematics
and Mathematical Practice,
Shanghai 200000, China
xiaovikdo@163.com

Received: January 14, 2022 / Revised: July 14, 2022 / Published online: November 1, 2022

Abstract. This paper is concerned with the diffusive Leslie–Gower prey–predator model with weak
diffusion. Assuming that the diffusion rates of prey and predator are sufficiently small and the
natural growth rate of prey is much greater than that of predators, the diffusive Leslie–Gower prey–
predator model is a singularly perturbed problem. Using travelling wave transformation, we firstly
transform our problem into a multiscale slow-fast system with two small parameters. We prove the
existence of heteroclinic orbit, canard explosion phenomenon and relaxation oscillation cycle for the
slow-fast system by applying the geometric singular perturbation theory. Thus, we get the existence
of travelling waves and periodic solutions of the original reaction–diffusion model. Furthermore,
we also give some numerical examples to illustrate our theoretical results.

Keywords: Leslie–Gower prey–predator model, geometric singular perturbation theory, relaxation
oscillation, canard explosion phenomenon, heteroclinic orbit.

1 Introduction

The abundant dynamical feature of interacting species is a hot issue in the research of
ecological system. Based on laboratory experiments and observations, researchers have
proposed many realistic biological models such as prey–predator model. Among these
models, a typical one is the Leslie–Gower prey–predator model, which is firstly proposed
in [19]. In the Leslie–Gower prey–predator model, the density of prey can influence
the carrying capacity of predators such that the density of predators obeys a logistic
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Table 1. Parameters in model (2), where N represent the number of individual per unit area.

Parameter Interpretation Unit

K Carrying capacity of the prey N
r1 Natural growth rate of the prey time−1

r2 Natural growth rate of the predator time−1

b1 The maximum value of the per capita reduction rate of the prey time−1

b2 The maximum value of the per capita reduction rate of the predator time−1

m1 Environment protection to the prey N
m2 Environment protection to the predator N

dynamics with a changing capacity proportional. Collings [7] highlights that the Leslie–
Gower prey–predator model is sufficient in population dynamics because it can avoid
the biological control paradox of classical prey–predator models—a prey density is low
in a stable coexistence equilibrium. The modified Leslie–Gower predator–prey model is
proposed as

dU

dT
= r1U

(
1− U

K

)
− b1UV

U +m1
,

dV

dT
= r2V

(
1− b2V

U +m2

)
,

(1)

where U and V separately stand for the total numbers of preys and predators, all parame-
ters are positive constants and their interpretations are described in Table 1.

The distributions of prey and predators are not homogeneous in real world. Thus, we
introduce the diffusive terms into model (1), which describe the movement of preys and
predators, and obtain the following modified Leslie–Gower reaction–diffusion model:

∂U

∂T
= d1

∂2U

∂X2
+ r1U

(
1− U

K

)
− b1UV

U +m1
,

∂V

∂T
= d2

∂2V

∂X2
+ r2V

(
1− b2V

U +m2

)
,

(2)

where d1 and d2 are diffusion rate of the prey and predators, respectively.
In recent years, many researchers have investigated the modified Leslie–Gower pred-

ator–prey model (1) and its reaction–diffusion case [1, 2, 14, 15, 25, 26, 29, 33]. By using
the perturbation methods, they derived some interesting conclusions such as the stability
of equilibriums, bifurcations, travelling waves, periodic solutions and so on.

For mathematical simplicity, using the following scaling transformations

T =
t

r1
, X =

√
1

r1
x, U = Ku, V =

r1K

b1
v,

δ =
r2
r1
, m̄1 =

m1

K
, m̄2 =

m2

K
, b =

b2r1
b1
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and denoting m̄1 and m̄2 by m1 and m2, we can get nondimensional model (2) as

∂u

∂t
= d1

∂2u

∂x2
+ u(1− u)− uv

u+m1
,

∂v

∂t
= d2

∂2v

∂x2
+ δv

(
1− bv

u+m2

)
.

(3)

We study model (3) under assumption that the diffusion rates of predators and prey are
similar and sufficiently small and prey grow much faster than predators. It is clear that this
assumption is reasonable such as hares and coyotes. In this article, we mainly investigate
the travelling waves and periodic solutions of model (3). Hence, using the travelling wave
transformation ξ̃ = x− ct [9, 10], we get

−cdu

dξ̃
= d1

d2u

dξ̃2
+ u(1− u)− uv

u+m1
,

−cdv

dξ̃
= d2

d2v

dξ̃2
+ δv

(
1− bv

u+m2

)
,

(4)

where c stands for the velocity of travelling waves. Note that the solution of (4) with c = 0
represents standing waves, which is not our main focus in this article. Since system (4) is
invariant under transformation (ξ̃, c)→ (−ξ̃,−c), then we only need to consider the case
c > 0. Furthermore, in this paper, we are keen on the travelling waves with c > 1, which
means the velocity c is larger than the week diffusion rate d1 and d2. Hence, by transform
ξ = ξ̃/c, the equivalent system of (4) reads

−du

dξ
=
d1
c2

d2u

dξ2
+ u(1− u)− uv

u+m1
,

−dv

dξ
=
d2
c2

d2v

dξ2
+ δv

(
1− bv

u+m2

)
.

(5)

Under our assumption, we introduce following new notations:

ε =
d1
c2
, d =

d2
d1
, u1 = u, u2 =

du

dξ
, v1 = v, v2 =

dv

dξ
,

and we rewrite (5) as a singularly perturbed system

du1
dξ

= u2, ε
du2
dξ

= −u2 +
u1v1

u1 +m1
− u1(1− u1),

dv1
dξ

= v2, ε
dv2
dξ

= −1

d
v2 −

δ

d
v1

(
1− bv1

u1 +m2

)
,

(6)

where ε and δ are sufficiently small parameters, and ξ is called the slow variable. Further-
more, we assume that ε and δ satisfy 0 < ε� δ � 1.
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For the fast variable ζ = ξ/ε, we get

du1
dζ

= εu2,
du2
dζ

= −u2 +
u1v1

u1 +m1
− u1(1− u1),

dv1
dζ

= εv2,
dv2
dζ

= −1

d
v2 −

δ

d
v1

(
1− bv1

u1 +m2

)
.

(7)

Note that systems (6) and (7) are separately called the slow system and the fast system,
and their dynamics are equivalent.

The slow-fast system is an important component in biological models and investigated
by many investigators, who obtained some new dynamics. For prey–predator model,
Ambrosio et al. [3] and Zhang and Wang [32] separately studied the relaxation oscillation
cycle of system (1) with one small parameter. In [20], Li and Zhu investigated the canard
cycles and relaxation oscillation cycle of a slow-fast prey–predator system with Holling
III and IV response functions. Furthermore, in [28], Shen investigated the dynamics of
similar model with Holling IV response function. Atabaigi and Barati [4] also investigate
the relaxation oscillation cycle and canard explosion phenomenon of a slow-fast Holling–
Tanner model with Holling IV response function. Indeed, Zhang and Wang [31] studied
the dynamics of a slow-fast Holling–Tanner model with Holling III response function.
For high dimension model, Liu, Xiao and Yi [23] considered the relaxation oscillation
cycle of a slow-fast prey-predator model with one prey and two competing predators,
and Shen, Hsu and Yang [27] studied the dynamics of a slow-fast intraguild predation
model. For reaction–diffusion cases, Ducrot, Liu and Magal [11] studied the large speed
traveling waves for the diffusive Rosenzweig–MacArthur predator–prey model, and Cai,
Ghazaryan and Manukian [5] studied the travelling waves for the diffusive Rosenzweig–
MacArthur and Holling–Tanner models with two small parameters. Furthermore, the
geometric singular perturbation theory is an useful analysis method in these paper.

Recently, the geometric singular perturbation theory has been a main method in the
analysis of a slow-fast system and it contains many mathematical tools such as the Fenichel
theory [12, 18], the exchange lemma [21, 22], the blow-up method [16, 17] and the entry-
exit function [8,30] and so on. Whereas, the foundation of geometric singular perturbation
theory is the Fenichel theory about locally invariant manifolds. Its main conclusion is that,
when 0 < ε� 1, there is a locally invariant slow manifold Mε in O(ε)-neighborhood of
a normally hyperbolic sub-manifold of the critical manifold M0.

In this article, we will apply the methods and conclusions in geometric singular theory
to analyse (6) and (7). We obtain the existence of heteroclinic orbits corresponding to
travelling waves and canard cycles and relaxation oscillation cycle corresponding to peri-
odic solutions of system (3). Furthermore, compared with the result for two-dimensional
space in [3, 32], we analyse the canard cycles and relaxation oscillation cycle of the four-
dimensional slow-fast system (6) with two small parameters. Indeed, we also illustrate
the canard explosion phenomenon which is the changing process from a small limit cycle
in the singular Hopf bifurcation to the relaxation oscillation cycle.

The rest of this article is organized as follows. In Section 2, we reduce system (6) to
the plane (u1, v1). We analyse the existence of travelling waves in Section 3 and prove the

Nonlinear Anal. Model. Control, 27(6):1168–1188, 2022

https://doi.org/10.15388/namc.2022.27.29535


1172 X. Wu, M. Ni

existence of canard explosion phenomenon and relaxation oscillation cycle in Section 4.
Finally, we give the conclusion in Section 5.

2 Equilibriums and critical manifold

Under our assumption 0 < ε � δ � 1, it is clear that system (6) is a multiscale slow-
fast system. Thus, using the method in [5, 13, 24], we reduce the multiscale slow-fast
system (6) twice by the geometric singular perturbation. The first reduction is respect to
smaller parameter ε, and the second is respect to δ.

For ε = 0, the degenerate system of (6) reads

du1
dξ

= u2, 0 = −u2 +
u1v1

u1 +m1
− u1(1− u1),

dv1
dξ

= v2, 0 = −1

d
v2 −

δ

d
v1

(
1− bv1

u1 +m2

)
,

and we have the critical manifold

Mε=0 =

{
(u1, u2, v1, v2)

∣∣∣ u2 =
u1v1

u1 +m1
−u1(1−u1), v2 = −δv1

(
1− bv1

u1 +m2

)}
,

which is the set of equilibriums for the layer system of (7) as

du1
dζ

= 0,
du2
dζ

= −u2 +
u1v1

u1 +m1
− u1(1− u1),

dv1
dζ

= 0,
dv2
dζ

= −1

d
v2 −

δ

d
v1

(
1− bv1

u1 +m2

)
.

It is easy to verify each point of Mε=0 has eigenvalues −1 and −1/d besides the two
zero eigenvalues. Hence, the critical manifoldMε=0 is normally hyperbolic and attracting
based on the Fenichel theory [12, 18]. Furthermore, the dynamics in critical manifold
Mε=0 are defined by the limiting system

du1
dξ

=
u1v1

u1 +m1
− u1(1− u1),

dv1
dξ

= δv1

(
bv1

u1 +m2
− 1

)
,

(8)

which is a slow-fast system respect to small parameter 0 < δ � 1.
Based on the geometric singular perturbation theory [6,18], there is a two dimensional

stable slow manifoldMε for ε > 0, which is viewed as a ε-order perturbation of the critical
manifold Mε=0, i.e., Mε = Mε=0 + O(ε). Furthermore, the flows on Mε are govern by
the δ-perturbation of system (8). Hence, we only need to investigate system (8).

In order to simplify our analysis processes, we make the following scale transforma-
tion:

dξ = −(u1 +m1)(u1 +m2)dξ′. (9)
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We still denote ξ′ by ξ. Hence, system (8) reads

du1
dξ

= u1(u1 +m2)
[
(1− u1)(u1 +m1)− v1

]
, u1f(u1, v1, η),

dv1
dξ

= δv1(u1 +m1)
[
(u1 +m2)− bv1

]
, δg(u1, v1, η),

(10)

where η = (m1,m2, b). Note that the orbit direction of system (10) is reversed to that of
system (8) because of the transformation (9) and (u1 +m1)(u1 +m2) > 0. Furthermore,
system (10) has a invariant region {(u1, v1) | 0 6 u1 6 1, v1 > 0}.

It is easy to see that system (10) is a slow-fast system with respect to fast variable ξ.
Hence, rescaling τ = δξ, we get the slow system of (10) as

δ
du1
dτ

= u1(u1 +m2)
[
(1− u1)(u1 +m1)− v1

]
,

dv1
dτ

= v1(u1 +m1)
[
(u1 +m2)− bv1

]
,

(11)

where τ is the slow variable. Similarly, let δ → 0 in system (10) and (11). We obtain the
degenerate system

0 = u1(u1 +m2)
[
(1− u1)(u1 +m1)− v1

]
,

dv1
dτ

= v1(u1 +m1)
[
(u1 +m2)− bv1

]
,

(12)

which is defined on the critical manifold

Mε=0, δ=0 = M0
ε=0, δ=0 ∪M

p
ε=0, δ=0

=
{

(u1, v1)
∣∣ u1 = 0

}
∪
{

(u1, v1)
∣∣ v1 = h1(u1), 0 6 u1 6 1

}
with v1 = h1(u1) = (1− u1)(u1 +m1), and the layer system

du1
dξ

= u1(u1 +m2)
[
(1− u1)(u1 +m1)− v1

]
,

dv1
dξ

= 0. (13)

Clearly, the critical manifold Mε=0, δ=0 consists of four normally hyperbolic submani-
folds

M0r
ε=0, δ=0 =

{
(u1, v1)

∣∣ u1 = 0, 0 6 v1 < m1

}
,

M0a
ε=0, δ=0 =

{
(u1, v1)

∣∣ u1 = 0, v1 > m1

}
,

Mpr
ε=0, δ=0 =

{
(u1, v1)

∣∣∣ 0 6 u1 <
1−m1

2
, v1 = h1(u1)

}
,

Mpa
ε=0, δ=0 =

{
(u1, v1)

∣∣∣ 1−m1

2
< u1 6 1, v1 = h1(u1)

}
.
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Furthermore, it is clear that M0a
ε=0, δ=0 and Mpa

ε=0, δ=0 are attracting; M0r
ε=0, δ=0 and

Mpr
ε=0, δ=0 are repelling; (0,m1) is a turning point, and M = (uM , vM ) = ((1−m1)/2,

((1 +m1)/2)2) is a generic fold point.
Through a straight calculation, we can get the following theorem about the existence

and stability of equilibriums of system (10).

Theorem 1. For system (10), the following conclusions hold:

(i) System (10) has three trivial equilibriums A1(0, 0), A2(0,m2/b) and A3(1, 0).
Furthermore, A1(0, 0) is a unstable node and A2(0,m2/b) and A3(1, 0) are
saddle points if m2 < bm1.

(ii) Ifm2 < bm1, system (10) has a unique positive equilibriumA∗(u∗, v∗) satisfying
v∗ = h1(u∗) = h2(u∗), where h2(u1) = (u1 +m2)/b. Furthermore, A∗(u∗, v∗)
is a stable node located in the right branch of function v = h1(u) for η ∈ D1 and
is an unstable node located in the left branch of function v = h1(u) for η ∈ D2;
see Fig. 1. Here

D1 =

{
(m1,m2, b)

∣∣∣ m1 < 1, m2 < b

(
1 +m1

2

)2

− 1−m1

2
, m2 < bm1

}
and

D2 =

{
(m1,m2, b)

∣∣∣ m1 < 1, b

(
1 +m1

2

)2

− 1−m1

2
< m2 < bm1

}
.

Note that the equilibriums in Theorem 1 are the spatially homogeneous equilibriums
of model (3). In what follows, we will investigate the travelling waves about spatially
homogeneous equilibrium A∗ and the periodic solutions of model (3). In other words,
we will study the heteroclinic orbits about equilibrium A∗, canard cycles and relaxation
oscillation cycle of system (10).

1 u

v

O

1m

)0,1(3A
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2
b

m
A
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b
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v

O
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2
b

m
A

)0,0(1A

b
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Figure 1. The location of positive equilibrium A∗(u∗, v∗).
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3 Travelling waves analysis

In this section, we investigate the heteroclinic orbits of system (10) with η ∈ D1, where
A∗(u∗, v∗) is located in the right branch of function v1 = h1(u1).

On Mp
ε=0, δ=0, system (12) is reduced to

du1
dτ

=
b(u1 +m1)2(u1 − 1)(h2(u1)− h1(u1))

2u1 +m1 − 1
, (14)

which allows assert that the value of u1 decreases on segment (0, uM ) and (u∗, 1) and
increases on segment (uM , u

∗). Hence, system (14) has a stable equilibrium u1 = u∗ cor-
responding to A∗(u∗, v∗) and an unstable equilibrium u1 = 1 corresponding to A3(1, 0).
Indeed, there exists a singular orbit from A3(1, 0) to A∗(u∗, v∗).

With similar analysis, we can get the dynamics of (12) on M0
ε=0, δ=0. Hence, the

dynamics of (10) and (11) with δ = 0 are shown in Fig. 2(a). Moreover, we have the
following lemma about the heteroclinic orbits of positive equilibrium A∗(u∗, v∗).

Lemma 1. For any fixed η = (m1,m2, b) ∈ D1, there is δ0 = δ(η) > 0 such that for all
0 < δ < δ0, the following conclusions hold:

(i) System (11) has a heteroclinic orbit from saddleA3(1, 0) to stable nodeA∗(u∗, v∗)
and a heterocilinc orbit from unstable node A1(0, 0) to saddle A2(0,m2/b).

(ii) System (11) has a heteroclinic orbit from saddle A2(0,m2/b) to stable node
A∗(u∗, v∗).

(iii) System (11) has infinitely many heteroclinic orbits from unstable node A0(0, 0)
to stable node A∗(u∗, v∗).

Proof. (i) SinceMpa
ε=0, δ=0 is a normally hyperbolic manifold, then, based on the Finichel

theory [12, 18], there is a slow manifold Mpa
ε=0,δ in the O(δ)-neighborhood of Mpa

ε=0, δ=0

when δ is sufficiently small. Furthermore, the equilibriumsA∗(u∗, v∗) andA3(1, 0) lie in
the slow manifoldMpa

ε=0,δ , and the flows onMpa
ε=0,δ can be viewed as δ-order perturbation

of the flows determined by (14). For (11) with δ = 0, it is clear that the stable manifold of
A∗(u∗, v∗) transversally intersects the unstable manifold of A3(1, 0) based on dimension
counting. Indeed, this means that the singular orbit between A∗(u∗, v∗) and A3(1, 0)
persists under perturbation 0 < δ � 1.

Furthermore, we can similarly prove the heteroclinic orbit between unstable node
A1(0, 0) and saddle point A2(0,m2/b).

(ii) Clearly, there exists a singular orbit from A2(0,m2/b) to A∗(u∗, v∗) because
of W s(Mpa

ε=0, δ=0) ∩ Wu
0 (A2) 6= ∅. Note that the intersection of Wu(Mpa

ε=0, δ=0) and
Wu

0 (A2) is transverse by dimension counting. According to the Finechel theory [12, 18],
Wu(Mpa

ε=0, δ=0) is perturbed to two dimensional stable manifold W s
δ (A∗), and Wu

0 (A2)
is perturbed to the unstable manifold Wu

δ (A2) of saddle A2(0,m2/b). Furthermore, the
intersection of W s

δ (A∗) and Wu
δ (A2) is persist because of the transverse intersection

W s(Mpa
ε=0, δ=0) ∩Wu

0 (A2).
(iii) The proof process is similar to that of (ii).
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Figure 2. (a) The dynamics of systems (10) and (11) with δ = 0; (b) the heteroclinic orbits of system (10) with
0 < δ � 1.

Note that the picture of Lemma 1 is shown in Fig. 2(b). Furthermore, for system (8),
we have the following remark.

Remark 1. Since the transformation (9), the flows of system (8) are reversed to that of
system (10). Hence, the positive equilibriumA∗(u∗, v∗) of system (8) is unstable, and the
heteroclinic orbits in Lemma 1 are also heteroclinic orbits of system (8) with oppositive
direction.

Since Mε=0 is normally hyperbolic attracting manifold, then there exists a attracting
slow manifold Mε near Mε=0 for sufficiently small ε > 0. Moreover, the heteroclinic or-
bits in Lemma 1 are transversal, then they persist on slow manifoldMε. Indeed, according
to Remark 1, we have the following theorem for system (6).

Theorem 2. For any fixed η = (m1,m2, b) ∈ D1, there exist δ0 = δ0(η) > 0 and ε0 =
ε0(η, δ) > 0 such that for all 0<δ<δ0 and 0<ε<ε0, the following conclusions hold:

(i) System (6) has a heteroclinic orbit from saddle (u∗, 0, v∗, 0) to saddle (1, 0, 0, 0)
and a heterocilinc orbit from saddle (0, 0,m2/b, 0) to stable node (0, 0, 0, 0).

(ii) System (6) has a heteroclinic orbit from saddle (u∗, 0, v∗, 0) to saddle (0, 0,
m2/b, 0).

(iii) System (6) has infinite heteroclinic orbits from saddle (u∗, 0, v∗, 0) to stable node
(0, 0, 0, 0).

Note that these heteroclinic orbits in Theorem 2 are corresponded to different travel-
ling waves of model (3). The biological explanation is that, if η = (m1,m2, b) ∈ D1,
the predators will be eventual extinction, and the prey will extinct or attach the carrying
capacity. Furthermore, we give the following example to verify our conclusions.

Example 1. Set δ = 0.02, m1 = 0.6, m2 = 0.1 and b = 0.8 in (8). It is clear that
there exist the positive equilibrium A∗(0.38471, 0.60588) and the heteroclinic orbits in
Lemma 1; see Fig. 3. The travelling waves of model (3) are shown in Fig. 4, which
correspond to the heteroclinic orbits in Theorem 2.
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Figure 3. The heteroclinic orbits of system (10) with δ = 0.02, m1 = 0.6, m2 = 0.1 and b = 0.8.

(a) (b)

(c) (d)

Figure 4. The travelling waves of model (3) with δ = 0.02, m1 = 0.6, m2 = 0.1 and b = 0.8, where
(a) A∗ to A1, (b) A∗ to A2, (c) A∗ to A3 and (d) A1 to A2.

4 Periodic solutions analysis

In this section, we mainly investigate the existence of periodic solutions for model (3)
with sufficiently small parameters 0 < ε � δ � 1. This means that we are interested in

Nonlinear Anal. Model. Control, 27(6):1168–1188, 2022
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the periodic orbits of the slow-fast system (6). However, the canard explosion is the most
important periodic orbit phenomenon in a slow-fast system. In [16, 17], this phenomenon
is described as a small cycle arising in a singular Hopf bifurcation grows through a se-
quence canard cycles without head and canard cycles with head to a relaxation oscillation
cycle. Canard cycles come from the perturbation of a singular slow-fast cycles, which
consist of the attracting and repelling part of critical manifold Mε=0, δ=0 and the fast
orbits of layer system (13). Hence, we will give some results about the canard cycles,
canard explosion phenomenon and relaxation oscillation cycle in this section.

To begin with, we give a result about the exit-entry function of system (10).

Lemma 2. For system (10) and fixed v0 ∈ (m1,+∞), there is an unique v̂∗ ∈ (m2/b,m1)
such that

v̂∗∫
v0

f(0, v1, η)

g(0, v1, η)
dv1 = 0. (15)

Proof. Let

I(v̂) =

v̂∫
v0

f(0, v1, η)

g(0, v1, η)
dv1 =

v̂∫
v0

v1
m1
− 1

v1( bv1m2
− 1)

dv1.

It is clear that limv̂→m2/b I(v̂) = +∞ and I(m1) < 0. Indeed, we also have I ′(v̂) < 0,
v̂ ∈ (m2/b,m1). Hence, we can conclude that there is an unique v̂∗ ∈ (m2/b,m1) such
that I(v̂∗) = 0.

4.1 Canard cycle and canard explosion

In order to find the canard cycles, we need to ensure that the generic fold pointM(uM , vM )
satisfies the canard point condition, i.e., g(uM , vM , η) = 0, which means that the equilib-
rium of degenerate system (12) coincides with M(uM , vM ); see Fig. 5(a). With a similar
analysis, we obtain the dynamics of (10) and (11) with δ = 0; see Fig. 5(b).

Hence, we can construct a family of singular slow-fast cycles Γ c0 (s) (see Fig. 6(a)) as

Γ c0 (s) =
{

(u1, v1)
∣∣ v1 = h1(u1), u1 ∈

[
α(s), ω(s)

]}
∪
{

(u1, v1)
∣∣ v1 = vM − s, u1 ∈

[
α(s), ω(s)

]}
,

where s ∈ (0, vM −m1), and α(s), ω(s) are two roots of the equation h1(u1) = vM − s,
and a family of singular slow-fast cycles Γ ch0 (s) (see Fig. 6(b)) as

Γ ch0 (s) =
{

(u1, v1)
∣∣ v1 = h1(u1), u1 ∈

[
α(s), ω(s)

]}
∪
{

(u1, v1)
∣∣ v1 = vM − s, u1 ∈

[
0, α(s)

]}
∪
{

(u1, v1)
∣∣ v1 ∈ [v̄(s), vM − s

]
, u1 = 0

}
∪
{

(u1, v1)
∣∣ v1 = v̄(s), u1 ∈

[
0, ω(s)

]}
,
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Figure 5. (a) Canard point M(uM , vM ); (b) the dynamics of (10) and (11) with δ = 0 when M(uM , vM ) is
a canard point.
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Figure 6. (a) Canard cycles without head, where the pink line is a singular slow-fast cycle Γ c0 (s), and the
orange line is a canard cycle without head Γ cδ (s) near Γ c0 (s); (b) canard cycles with head, where the pink line
is a singular slow-fast cycle Γ ch0 (s), and the orange line is a canard cycle with head Γ chδ (s) near Γ ch0 (s).

where s ∈ (0, vM −m1), v̄(s) defined by (15) in Lemma 2 when v0 = vM − s. α(s)
is the smaller root of the equation h1(u1) = vM − s, and ω(s) is the larger root of the
equation h1(u1) = v̄(s).

For the dynamics of system (10) near canard pointM(uM , vM ), we alignM(uM , vM )
to origin point by transformation ū = u1 − uM and v̄ = v1 − vM and denote (ū, v̄) by
(u1, v1). Then we rewrite system (10) as

du1
dξ

= −v1
[
uM (uM +m2) +O(u1)

]
− u21

[
uM (uM +m2) + (2uM +m2)u1 + u21

]
,

dv1
dξ

= δ
[
P0 + P1u1 + P2u

2
1 + v1(P3 + P4u1 + P5v1) +O(3)

]
,

(16)
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where

P0 = (uM +m1)vM (uM +m2 − bvM ), P1 = vM (m1 +m2 + 2uM − bvM ),

P2 = vM , P3 = (uM +m1)(uM +m2 − 2bvM ),

P4 = m1 +m2 + 2uM − 2bvM , P5 = −b(uM +m1).

Note that we can choose suitable value of b such that P1 > 0.
In order to use the conclusions in [16, 17], by a straightforward calculation, we can

obtain the slow-fast normal form of (16) as

du1
dξ

= −v1h1(u1, v1, λ, δ) + u21h2(u1, v1, λ, δ) + δh3(u1, v1, λ, δ),

dv1
dξ

= δ
[
u1h4(u1, v1, λ, δ)− λh5(u1, v1, λ, δ) + v1h6(u1, v1, λ, δ)

]
,

(17)

where

h1(u1, v1, λ, δ) = 1 +O(1),

h2(u1, v1, λ, δ) = 1− (2uM +m2)P
1/2
1 u1

u
3/2
M (uM +m2)3/2

+
P1u

2
1

u2M (uM +m2)2
,

h3(u1, v1, λ, δ) = 0,

h4(u1, v1, λ, δ) = 1− P2u1√
uM (uM +m2)P1

,

h5(u1, v1, λ, δ) = 1,

h6(u1, v1, λ, δ) =
P3√

uM (uM +m2)P1

− P4u1
uM (uM +m2)

− P5

√
P1v1

u
3/2
M (uM +m2)3/2

and

λ =

√
uM (uM +m2)P0

P
3/2
1

. (18)

Clearly, λ = 0 implies that P0 = 0, which is equal to b = (uM +m2)/vM .
Hence, according to [16, 17], we obtain

a1 =
∂h3
∂u1

(0, 0, 0, 0) = 0, a2 =
∂h1
∂u1

(0, 0, 0, 0) = 0,

a3 =
∂h2
∂u1

(0, 0, 0, 0) = −
v
1/2
M (uM +m1)1/2(2uM +m2)

u
3/2
M (uM +m2)3/2

,

a4 =
∂h4
∂u1

(0, 0, 0, 0) = −
√

vM
uM (uM +m1)(uM +m2)

,

a5 = h6(0, 0, 0, 0) = −

√
(uM +m1)(uM +m2)

vMuM
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and

A = −a2 + 3a3 − 2a4 − 2a5 =
Â√

u3M (uM +m2)3(1− uM )
,

where
Â = 2uM (1 +m2)(uM +m2)− 3vM (2uM +m2).

Then the singular Hopf bifurcation curve λH(
√
δ) and maximal canard curve λc(

√
δ) of

system (17) are

λH(
√
δ) = −a1 + a5

2
δ +O

(
δ3/2

)
=

1

2

√
(uM +m1)(uM +m2)

vMuM
δ +O

(
δ3/2

)
and

λc(
√
δ) = −

(
a1 + a5

2
+
A

8

)
δ +O

(
δ3/2

)
=

4uM (uM +m2)2 − Â
8
√
u3M (uM +m2)3(1− uM )

δ +O
(
δ3/2

)
.

Since

λ′(b) = −
u
1/2
M (uM +m2)1/2v

1/2
M (uM +m1)(2m1 −m2 + uM + bvM )

2(m1 +m2 + 2uM − bvM )
5
2

< 0,

then the equations λ(b) = λH(
√
δ) and λ(b) = λc(

√
δ) have unique solutions as

bH(
√
δ) =

uM +m2

vM
− 2

1−m2
1

δ +O
(
δ3/2

)
(19)

and

bc(
√
δ) =

uM +m2

vM
− 4uM (uM +m2)2 − Â

8u2M (uM +m2)2(1− uM )
δ +O

(
δ3/2

)
. (20)

Hence, we have the following theorems about singular Hopf bifurcation from Theo-
rem 3.1 in [17].

Theorem 3. For fixed η = (m1,m2, b) ∈ D1∪D2, suppose the vertex pointM(uM , vM )
of curve v1 = h1(u1) is a canard point, and b and λ satisfy the relationship (18). Then
there are 0 < δ0 � 1 and b0 > 0 such that for each 0 < δ < δ0 and |b − (uM + m2)/
vM | < b0, system (16) has unique positive equilibrium A∗(u∗, v∗) in the small neigh-
borhood of canard point M(uM , vM ) and A∗(u∗, v∗) → M(uM , vM ) as (δ, b) →
(0, (uM +m2)/vM ). Furthermore, A∗(u∗, v∗) is stable with b > bH(

√
δ) and unstable

with b < bH(
√
δ), where bH(

√
δ) is shown in (19). So a Hopf bifurcation occurs when

b passes through bH(
√
δ). It is supercritical if Â > 0 and subcritical if Â < 0.
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Proof. Let ηM be the parameters η = (m1,m2, b) satisfying bvM = uM + m2. Hence,
we have

f(uM , vM , ηM ) = 0, g(uM , vM , ηM ) = 0,

∂(uf)

∂u
(uM , vM , ηM ) = 0,

∂2(uf)

∂u2
(uM , vM , ηM ) = −2uM (uM +m2) < 0,

fv(uM , vM , ηM ) = −(uM +m2) < 0,

∂g

∂u
(uM , vM , ηM ) = vM (uM +m1) > 0,

∂g

∂b
(uM , vM , ηM ) = −v2M (uM +m1) < 0.

Then the vertex point M(uM , vM ) is a nondegenerate canard point. Furthermore, system
(17) is the normal form of system (10) in the neighborhood of the nondegenerate canard
point M(uM , vM ). Thus, it is clear that the origin point is a nondegenerate canard point
of system (17).

According to Theorem 3.1 in [17], for suitable ε and λ, there is a equilibrium pe of
system (17) near (0, 0), which satisfy pe → (0, 0) as (ε, λ) → (0, 0). Furthermore, there
exists a singular Hopf bifurcation curve λH(

√
ε) such that pe is stable for λ < λH(

√
ε)

and unstable for λ > λH(
√
ε).

Since dλ/db < 0, then equation λ(b) = λH(
√
δ) has unique solution b = bH(

√
δ),

and λ > λH(
√
δ) is equal to b < bH(

√
δ). Hence, we complete the proof.

Moreover, from Lemma 2 and Theorems 3.3 and 3.5 in [17], the canard cycles are
shown as follows.

Theorem 4. For fixed η = (m1,m2, b) ∈ D1∪D2, suppose the vertex pointM(uM , vM )
of curve v1 = h1(u1) is a canard point, and b and λ satisfy the relationship (18). Then
for s ∈ (0, vM −m1) and 0 < δ � 1, there exists b = b(s,

√
δ) such that system (16)

has a family of canard cycle Γ cδ (s)(Γ chδ (s)) emerges from Γ c0 (s)(Γ ch0 (s)); see Fig. 6.
Moreover, the family Γ cδ (s)(Γ chδ (s)) uniformly converges to Γ c0 (s)(Γ ch0 (s)) in Hausdorff
distance as δ → 0, and there exists a curve bc(

√
δ) given in (20). For ν ∈ (0, 1), the

canard explosion occurs when s ∈ [δν , vM −m1 − δν ], where∣∣b(s,√δ)− bc(√δ)∣∣ < e−1/δ
ν

.

Proof. The proof is omitted because its main idea is similar to that of Theorem 3.

Remark 2. Theorem 4 shows that, for s ∈ (0, vM −m1) and 0 < δ � 1, there exists
b = b(s,

√
δ) such that the singular slow-fast cycles Γ c0 (s) or Γ ch0 (s) can be perturbed the

canard cycles Γ cδ (s) or Γ chδ (s) of system (16). Furthermore, the canard explosion occurs
when the parameter b changes in a exponential small neighborhood of the maximal canard
curve bc(

√
δ).
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(a) (b)

(c) (d)

Figure 7. The canard explosion phenomenon of system (10) with δ = 0.001, m1 = 0.6, m2 = 1.08, (a)
δ = 1.997; (b) δ = 1.995; (c) δ = 1.99; (d) δ = 1.98.

Indeed, we give an example to show the canard explosion phenomenon as follows.

Example 2. Set δ = 0.001, m1 = 0.6, m2 = 1.08 in (10). It is clear that the value of
maximal curve bc(

√
δ) = 1.9926, and system (10) has the canard explosion phenomenon;

see Fig. 7.

4.2 relaxation oscillation cycle

For η=(m1,m2, b)∈D2, we have the dynamics of (10) and (11) with δ=0; see Fig. 8(a).
Let (ū∗, v̄∗) be the intersection point of v1 = v̄∗ and v1 = h1(u1), where v̄∗ defined

by (15) in Lemma 2 when v0 = vM . We denote a singular slow-fast cycle as

Γ0 =
{

(u1, v1)
∣∣ v1 = h1(u1), uM 6 u1 6 ū∗

}
∪
{

(u1, v1)
∣∣ v1 = v̄∗, 0 6 u1 6 ū∗

}
∪
{

(u1, v1)
∣∣ v̄∗ 6 v1 6 vM , u1 = 0

}
∪
{

(u1, v1)
∣∣ v1 = vM , 0 6 u1 6 uM

}
,

which contains two slow segments and two fast segments; see Fig.8(b). Indeed, according
to Theorem 3.2 in [3, 32], we have the following theorem about relaxation oscillation
cycle.
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Figure 8. (a) The dynamics of system (10) and (11) with δ = 0; (b) the relaxation oscillation cycle of
system (10) with sufficiently small δ, where the pink curve is the singular slow-fast cycle Γ0, and the orange
curve is the relaxation oscillation cycle Γε.

Theorem 5. For any fixed η = (m1,m2, b) ∈ D2, there exists δ0 = δ(η) such that
for 0 < δ < δ0, system (10) has a unique relaxation oscillation cycle Γδ in the O(δ)-
neighborhood of Γ0, which is hyperbolic attracting; see Fig. 8(b). Furthermore, the cycle
Γδ converges to Γ0 in the Hausdorff distance as δ → 0.

Remark 3. Due to transformation (9), the direction of canard cycles and relaxation
oscillation cycle of system (8) is opposite to system (10).

Indeed, we give the following example to show the existence of relaxation oscillation
cycle.

Example 3. Set δ = 0.001, m1 = 0.6, m2 = 1.08 and b = 1.91 in (10). There exists
a relaxation oscillation cycle; see Fig. 9.

Since the critical manifold Mε=0 is a normally hyperbolic attracting manifold, then
for sufficiently small 0 < ε� 1, there is a slow manifold Mε near Mε=0 such that canard
cycles and relaxation oscillation cycle persist on it. Hence, we have the following theorem
about periodic solution of (3).

Theorem 6. There exist δ0 = δ0(m1,m2, b) > 0 and ε0 = ε0(m1,m2, b, δ) > 0 such
that for all 0 < δ < δ0 � 1 and 0 < ε < ε0 � 1, the following conclusions hold:

(i) For fixed η = (m1,m2, b) ∈ D1 ∪ D2, suppose the vertex point M(uM , vM )
of curve v1 = h1(u1) is a canard point. Then there exists b = b(s,

√
δ), s ∈

(0, vM −m1), such that model (3) has a family of periodic solutions correspond-
ing to canard cycles.

(ii) For fixed η = (m1,m2, b) ∈ D2, model (3) has a periodic solution correspond-
ing to relaxation oscillation cycle.

Note that the picture of a periodic solution of model (3) is given in Fig. 10, which
corresponds to the relaxation oscillation cycle shown in Fig. 9.
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Figure 9. The relaxation oscillation cycle of system (10) with δ = 0.001, m1 = 0.6, m2 = 1.08 and
b = 1.91.

Figure 10. The periodic solution of model (3), which corresponds to the relaxation oscillation cycle shown in
Fig. 9.

Remark 4. The periodic solution of system (3) in Fig. 9 means that the predators and
preys will coexit since the population of preys sometimes is very low.

5 Conclusion

In this paper, we investigate the diffusive Leslie–Gower prey–predator model (3) under
the assumption that both prey and predator diffuse small and prey grows much faster than
predator. Thus, this prey–predator model is a singular problem with two small parameters.
Using the travelling waves transformation, model (3) is transformed to a multiscale slow-
fast system (6) with 0 < ε� δ � 1. Applying the geometric singular perturbation theory,
we prove the existence of heteroclinic orbits of system (6) for η ∈ D1, which correspond
to the travelling waves of model (3). Indeed, we also prove the existence of relaxation
oscillation cycle of system (10) for η ∈ D2 and the canard explosion phenomenon of
system (10) when M(uM , vM ) is a canard point. These periodic cycles imply the exis-
tence of periodic solutions of model (3). We also give some numerical examples to show
illustration of our theoretical results. Our results have important theoretical significance
for the biological control of pests and the conservation of biodiversity. Meanwhile, our
method used in this paper can be applied into other similar models.
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