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Abstract. In this paper, by introducing a relativistic Schrödinger tempered fractional p-Laplacian
operator (−∆)s,mp,λ , based on the relativistic Schrödinger operator (−∆ + m2)s and the tempered
fractional Laplacian (∆ + λ)β/2, we consider a relativistic Schrödinger tempered fractional
p-Laplacian model involving logarithmic nonlinearity. We first establish maximum principle and
boundary estimate, which play a very crucial role in the later process. Then we obtain radial
symmetry and monotonicity results by using the direct method of moving planes.

Keywords: relativistic Schrödinger tempered fractional p-Laplacian operator, direct method of
moving planes, logarithmic nonlinearity, radial symmetry and monotonicity.

1 Introduction

In recent years, the study of the Schrödinger operators have attracted widespread attention
from researchers. These operators appear in a variety of different fields, for instance,
physics, wireless electronics, telecommunication technology, materials science, mechan-
ics, industrial communication technology, and automation technology. Fall and Felli in
[13] introduced the relativistic Schrödinger operator (−∆ + m2)s, which is for each
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s ∈ (0, 1) and u(x) ∈ C∞c (RN ),(
−∆ +m2

)s
u(x)

= CN,sm
(N+2s)/2 PV

∫
RN

u(x)−u(y)

|x−y|(N+2s)/2
K(N+2s)/2

(
m|x− y|

)
dy

+m2su(x),

where PV indicates the Cauchy principal value,

CN,s = 21−N/2+sπ−N/2 22s s(1− s)
Γ(2− s)

,

Kτ is the modified Bessel function of the second kind with order τ , meanwhile, they ob-
tained the asymptotics of solutions to relativistic fractional elliptic equations with Hardy-
type potentials. The properties of solution for a nonlinear pseudorelativistic Schrödinger
equation in RN were proved by Ambrosio [1]. Based on a singular homogeneous po-
tential, the essential self-adjointness of a relativistic Schrödinger operator was obtained
by Fall and Felli [14]. Dai, Qin, and Wu [10] studied the properties of solutions for
several types of equations with respect to the operator (−∆ + m2)s in two kinds of
domains, respectively. Some other research results about this operator can be found in the
literatures [5, 15, 19, 20] and the references therein.

As we all know, in a β-stable Lévy process, the nonlocal operator fractional Lapla-
cian (∆)β/2 as the infinitesimal generator is used to describe the anomalous dynamics.
For Lévy flights, the ξ with finite first moment and η with infinite second moment are
independent, leading to infinite propagation speed and the divergent second moments of
the distribution of the particles. This causes much difficulty in relating the models to
experimental data, especially when analyzing the scaling of the measured moments in
time. In order to overcome the shortcoming that it sometimes does not simulate some
real physical processes very well, [11] introduced a sufficiently small parameter λ to
exponentially temper the isotropic power law measure of the jump length, which generates
the tempered fractional Laplacian (∆ + λ)β/2 as follows:

(∆ + λ)β/2u(x) = −CN,β,λ PV
∫
RN

u(x)− u(y)

eλ|x−y||x− y|N+β
dy,

where 0 < β < 2, CN,β,λ = Γ(N/2)/(2πN/2|Γ(−β)|). This operator has attracted the
attention of many scholars, and many excellent results have emerged [12, 27, 28].

Based on the above work, we consider a relativistic Schrödinger tempered fractional
p-Laplacian operator defined by

(−∆)s,mp,λ u(x)

= CN,spm
(N+sp)/2 PV

∫
RN

|u(x)− u(y)|p−2[u(x)− u(y)]K(N+sp)/2(m|x− y|)
eλ|x−y||x− y|N+sp

dy

+mspu(x), (1)
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where PV represents the Cauchy principal value, λ is a sufficiently small positive con-
stant, m > 0 is a constant, Kτ denotes the modified Bessel function of the second kind
with order τ having the following property [18]:

Kτ (r) ∼
√
π√
2
r−1/2e−r for r →∞.

For integral (1) to make sense, let u ∈ C1,1
loc ∩ Lsp and

Lsp =

{
u : RN → R

∣∣∣ ∫
RN

e−|x||u(x)|
1 + |x|(N+1)/2+s

dx <∞
}
.

It is worth noting that the above operator can degenerate into the following different
operators when the parameters take different values.

(i) When p = 2, λ = 0, the relativistic Schrödinger tempered fractional p-Laplacian
(−∆)s,mp,λ becomes the relativistic Schrödinger operator (−∆ + m2)s; based on
this, when m → 0+, (−∆ + m2)s turns into the familiar fractional Laplacian
(−∆)s.

(ii) When p = 2, Kτ (·) = 1, m → 0+, (−∆)s,mp,λ turns into the tempered fractional
Laplacian (∆ + λ)β/2.

(iii) When λ = 0, Kτ (·) = 1, m → 0+, (−∆)s,mp,λ transforms the well-known
fractional p-Laplacian (−∆)sp.

Over the past decades, many scholars have done a lot of splendid work on fractional
Laplacian, nevertheless, in view of its nonlocality, conventional methods are no longer
effective. To surmount the difficulty of nonlocality, an extension method was introduced
for transforming the nonlocal problem into a local problem in higher dimensions by
Caffarelli and Silvestre [3], which provides a key to solve a class of nonlocal problems;
see [2, 4, 8]. An alternative way to overcome the nonlocality is to apply the integral
equations method [17, 18, 29].

Jarohs, Weth, Chen, C. Li, and Y. Li jointly introduced the direct method of moving
planes, then it was used to work out the different kinds of problems involving various non-
linear operators, there exist some results by applying this efficient and convenient method
to research the solutions of fractional Laplacian or fractional p-Laplacian equations and
systems; see [6, 7, 9, 16, 21–26].

Enlightened by the brilliant work above, in this paper, we consider the following
relativistic Schrödinger tempered fractional p-Laplacian equation with logarithmic non-
linearity:

(−∆)s,mp,λ u(x) =
[
lg(u(x) + 1)

]p+q
, (2)

here 0 < s < 1, 2 < p < ∞. At present, as far as we know, the research results
of the relativistic Schrödinger tempered fractional p-Laplacian model with logarithmic
nonlinearity by using analytical methods have hardly appeared. Next, we obtain the radial
symmetry of positive solution of Eq. (2) by the direct method of moving planes in the unit
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sphere and whole space, respectively. So this is also a new attempt to study the symmetry
of the solution of the equation involving this kind operator.

To get our main theorems, we need the following notations and lemmas in preparation,
which play a pivotal role in the process of moving planes.

2 Notations and lemmas

We define that

Tα =
{
x ∈ RN

∣∣ xN = α for some α ∈ R
}

is the moving plane,

Σα =
{
x ∈ RN

∣∣ xN < α
}

is the region to the left of Tα,

xα = (2α− x1, x2, . . . , xN ) is the reflection of x = (x1, x2, . . . , xN ) about Tα.

Meanwhile, we denote

uα(x) = u(xα), Wα(x) = u
(
xα
)
− u(x), Σ̃α =

{
x
∣∣ xα ∈ Σα}.

Lemma 1. Let Ω be a bounded region in Σ. Presume u ∈ Lsp ∩ C1,1
loc (Ω). If

(−∆)s,mp,λ uα(x)− (−∆)s,mp,λ u(x) > 0, x ∈ Ω,

W (x) > 0, x ∈ Σ \Ω,
(3)

then
W (x) > 0 in Ω.

Go a step further, provided that W (x) = 0 at certain point in Ω. Then

W (x) = 0 almost everywhere in RN .

When Ω is an unbounded region, the following further assumption is required:

lim
|x|→∞

W (x) > 0.

Then the same conclusions hold.

Proof. If W (x) > 0 in Ω is not true, then there exists a point x̂ ∈ Ω such that

W (x̂) = min
Ω

W < 0.

To simplify writing, let L(t) = |t|p−2t. Then L′(t) = (p−1)|t|p−2 > 0, same as follows:

(−∆)s,mp,λ uα(x̂)− (−∆)s,mp,λ u(x̂)

= CN,spm
(N+sp)/2

× PV
∫
RN

[L(uα(x̂)− uα(y))− L(u(x̂)− u(y))]K(N+sp)/2(m|x̂− y|)
eλ|x̂−y||x̂− y|N+sp

dy

+mspWα(x̂)
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= CN,spm
(N+sp)/2

× PV
{∫
Σ

[L(uα(x̂)− uα(y))− L(u(x̂)− u(y))]K(N+sp)/2(m|x̂− y|)
eλ|x̂−y||x̂− y|N+sp

dy

+

∫
Σ

[L(uα(x̂)− u(y))− L(u(x̂)− uα(y))]K(N+sp)/2(m|x̂− yα|)
eλ|x̂−yα||x̂− yα|N+sp

dy

}
+mspWα(x̂)

= CN,spm
(N+sp)/2

× PV

{∫
Σ

[
1

eλ|x̂−y||x̂− y|N+sp
− 1

eλ|x̂−yα||x̂− yα|N+sp

]
×
[
L
(
uα(x̂)− uα(y)

)
− L

(
u(x̂)− u(y)

)]
K(N+sp)/2

(
m|x̂− y|

)
dy

+

∫
Σ

L(uα(x̂)−uα(y))−L(u(x̂)−u(y))+L(uα(x̂)−u(y))−L(u(x̂)−uα(y))

eλ|x̂−yα||x̂−yα|N+sp

×K(N+sp)/2(m|x̂− yα|) dy

+

∫
Σ

[L(uα(x̂)− uα(y))− L(u(x̂)− u(y))]

eλ|x̂−yα||x̂− yα|N+sp

×
[
K(N+sp)/2

(
m|x̂− y|

)
−K(N+sp)/2

(
m|x̂− yα|

)]
dy

}
+mspWα(x̂)

= CN,spm
(N+sp)/2 PV {H1 +H2 +H3}+mspWα(x̂). (4)

To estimate H1, we observe the fact

1

eλ|x̂−y||x̂− y|N+sp
>

1

eλ|x̂−yα||x̂− yα|N+sp
∀x, y ∈ Σ

due to [
uα(x̂)− uα(y)

]
−
[
u(x̂)− u(y)

]
= W (x̂)−W (y) 6 0 but 6≡ 0.

In view of the strict monotonicity of L and K(N+sp)/2(m|x̂− y|) > 0, we have[
L
(
uα(x̂)− uα(y)

)
− L

(
u(x̂)− u(y)

)]
K(N+sp)/2

(
m|x̂− y|

)
6 0 but 6≡ 0.

Therefore,

H1 < 0. (5)
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To evaluate H2, by applying the mean value theorem, we obtain

H2 =

∫
Σ

[L(uα(x̂)−uα(y))−L(u(x̂)−u(y)) + L(uα(x̂)−u(y))− L(u(x̂)− uα(y))]

eλ|x̂−yα||x̂− yα|N+sp

×K(N+sp)/2(m|x̂− yα|) dy]

= W (x̂)

∫
Σ

[L′(ξ(y)) + L′(η(y))]

eλ|x̂−yα||x̂− yα|N+sp
dy 6 0. (6)

As for H3, by reason of the fact[
uα(x̂)− uα(y)

]
−
[
u(x̂)− u(y)

]
= W (x̂)−W (y) 6 0 but 6≡ 0,

|x̂− y| <
∣∣x̂− yα∣∣

and the monotonicity of L and K(N+sp)/2(·), we have

H3 < 0. (7)

Combining (4), (5), (6), and (7), one can deduce

(−∆)s,mp,λ uα(x̂)− (−∆)s,mp,λ u(x̂) < 0.

This inequality is in contradiction with the first condition in (3), therefore

W (x̂) > 0.

In case of W (x) = 0 at some point x ∈ Σ, equivalently, x is the minimum point of W in
Σ, so, H2 = 0 andH3 = 0. Now, in the light of the first inequality in (3), we getH1 > 0,
which stands for[

L
(
uα(x̂)− uα(y)

)
− L

(
u(x̂)− u(y)

)]
K(N+sp)/2

(
m|x̂− y|

)
> 0.

Considering the monotonicity of L and the fact of K(N+sp)/2(·) > 0, we have[
uα(x̂)− uα(y)

]
−
[
u(x̂)− u(y)

]
= W (x)−W (y) = −W (y) > 0 for almost all y ∈ Σ.

Consequently,
W (y) = 0 almost everywhere in Σ,

besides, since W (x) is antisymmetric with respect to x, W (y) = 0 is established almost
everywhere in RN . If Ω is unbounded, in this case, in view of assumption

lim
|x|→∞

W (x) > 0,

if
W (x) > 0, x ∈ Σ,

does not hold, there is a point x ∈ Σ such that x is the negative minimum point of
W (x). Being similar to the above discussion, one can find a contradiction. The proof is
completed.
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Lemma 2. If Wα0
> 0 for x ∈ Σα0

, there exist two sequences {αk} (αk ↘ α0) and
{xk} ∈ Σαk such that

Wαk

(
xk
)

= min
Σαk

Wαk 6 0 and xk → x0 ∈ ∂Σα0
.

Define

ιk = dist
(
xk, ∂Σαk

)
≡
∣∣αk − xkN ∣∣.

Then

lim
ιk→0

(−∆)s,mp,λ uαk(xk)− (−∆)s,mp,λ u(xk)

ιk
< 0.

Proof. Similar to the calculation in (4), we can get

(−∆)s,mp,λ uαk(xk)− (−∆)s,mp,λ u(xk)

ιk

=
CN,spm

(N+sp)/2

ιk

× PV
∫
Σαk

(
1

eλ|xk−y||xk − y|N+sp
− 1

eλ|xk−y
αk ||xk − yαk |N+sp

)
×
[
L
(
uα
(
xk
)
−uα(y)

)
−L
(
u
(
xk
)
−u(y)

)]
K(N+sp)/2

(
m
∣∣xk−y∣∣) dy

+
CN,spm

(N+sp)/2

ιk
Wαk

(
xk
)

× PV
∫
Σαk

[L′(ξ(y)) + L′(η(y))]K(N+sp)/2(m|xk − yαk |)
eλ|xk−y

αk ||xk − yαk |N+sp
dy

+
CN,spm

(N+sp)/2

ιk

× PV
∫
Σ

[L(uα(xk)− uα(y))− L(u(xk)− u(y))]

eλ|xk−yα||xk − yα|N+sp

×
[
K(N+sp)/2

(
m
∣∣xk − y∣∣)−K(N+sp)/2

(
m
∣∣xk − yα∣∣)] dy

+
mspWα(xk)

ιk

= CN,spm
(N+sp)/2 PV {H1k +H2k +H3k}+

mspWα(xk)

ιk
.

Apparently,

H2k 6 0 and H3k 6 0.
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As for H1k, on the grounds of the mean value theorem, we have

1

ιk

[
1

eλ|xk−y||xk − y|N+sp
− 1

eλ|xk−y
αk ||xk − yαk |N+sp

]
=

2(N + sp+ λ|ϕk(y)|)(αk − yn)

eλ|ϕk(y)||ϕk(y)|N+sp+2

→ 2(N + sp+ λ|ϕ0(y)|)(α0 − yn)

eλ|ϕ0(y)||ϕ0(y)|N+sp+2
> 0, k →∞,

where |xk − y| 6 |ϕk(y)| 6 |xk − yk|, |x0 − y| 6 |ϕ0(y)| 6 |x0 − y0|. Due to the
monotonicity of L and K(N+sp)/2(·) > 0,[

uα0
(x0)− uα0

(y)
]
−
[
u(x0)− u(y)

]
= Wα0

(x0)−Wα0
(y) < 0.

We have[
L(uα

(
xk
)
− uα(y))− L(u

(
xk
)
− u(y))

]
K(N+sp)/2(m|xk − y|)

→
[
L(uα0

(x0)− uα0
(y))− L(u(x0)− u(y))

]
K(N+sp)/2(m|x0 − y|) < 0

for all y ∈ Σα0 when k →∞.
Hence

lim
ιk→0

(−∆)s,mp,λ uαk(xk)− (−∆)s,mp,λ u(xk)

ιk
< 0. �

3 Main results

In this part, we give two theorems, which describe the radial symmetry and monotonicity
of positive solution in B1(0) and RN , respectively. The two theorems are also based on
the previous two lemmas by means of the moving plane method.

We first consider the following problem in a unit ball:

(−∆)s,mp,λ u(x) =
[
lg(u(x) + 1)

]p+q
, x ∈ B1(0),

u(x) = 0, x /∈ B1(0).
(8)

Let us call
Ωα = Σα ∩B1(0), S = Σα \Ωα.

Theorem 1. If u(x)∈C1,1
loc(B1(0))∩C(B1(0)) is a positive solution of (8) with p+q>1,

then u(x) will be radially symmetric and monotone decreasing with respect to the origin.

Proof. In Ωα, we have

(−∆)s,mp,λ uα(x)− (−∆)s,mp,λ u(x) >
(p+ q)[lg(u(x) + 1)]p+q−1

u(x) + 1
Wα(x). (9)
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Step 1. In this step, we prove that when α > −1 and approaches −1 sufficiently,

Wα(x) > 0 ∀x ∈ Ωα. (10)

If not, there is a point x̃ ∈ Ωα such that

Wα(x̃) = min
Ωα

Wα = min
Σα

Wα < 0.

(−∆)s,mp,λ uα(x̃)− (−∆)s,mp,λ u(x̃)

= CN,spm
(N+sp)/2

× PV
{∫
Σ

(
1

eλ|x̃−y||x̃− y|N+sp
− 1

eλ|x̃−yα||x̃− yα|N+sp

)
×
[
L
(
uα(x̃)− uα(y)

)
− L

(
u(x̃)− u(y)

)]
K(N+sp)/2

(
m|x̃− y|

)
dy

+ Wα(x̃)

∫
Σ

[L′(ξ(y)) + L′(η(y))]K(N+sp)/2(m|x̃− yα|)
eλ|x̃−yα||x̃− yα|N+sp

dy

+

∫
Σ

[L(uα(x̃)− uα(y))− L(u(x̃)− u(y))]

eλ|x̃−yα||x̃− yα|N+sp

×
[
K(N+sp)/2

(
m|x̃− y|

)
−K(N+sp)/2

(
m|x̃− yα|

)]
dy

}
+mspWα(x̃)

6 CN,spm
(N+sp)/2Wα(x̃)

∫
Σα

[L′(ξ(y)) + L′(η(y))]K(N+sp)/2(m|x̃− yα|)
eλ|x̃−yα||x̃− yα|N+sp

dy

= CN,spm
(N+sp)/2Wα(x̃)J,

where
ξ(y) ∈

(
uα(x̃)− uα(y), u(x̃)− uα(y)

)
,

η(y) ∈
(
uα(x̃)− u(y), u(x̃)− u(y)

)
.

With the help of Lemma 3.1 in [6], considering u(y) = 0 in the region of S, we can get

J >
∫
Σα

c1u
p−2(x̃)K(N+sp)/2(m|x̃− yα|)

eλ|x̃−yα||x̃− yα|N+sp
dy

= c1

∫
S

up−2(x̃)K(N+sp)/2(m|x̃− yα|)
eλ|x̃−yα||x̃− yα|N+sp

dy

>
Cup−2(x̃)

eλδm(N+sp)/2δ(N+3sp)/2
,

where δ = (α+ 1) is the width of Ωα in xN -direction, c1 and C are positive constants.
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For δ sufficiently small,

(−∆)
β/2,m
p,λ uα(x̃)− (−∆)

β/2,m
p,λ u(x̃)− (p+ q)[lg(ξ(x̃)+1)]p+q−1

ξ(x̃)+1
Wα(x̃)

6 CN,spWα(x̃)

[
Cup−2(x̃)

eλδm(N+sp)/2δ(N+3sp)/2
− (p+ q)[lg(u(x̃)+1)]p+q−1

u(x̃)+1

]
= CN,spWα(x̃)

×
[
Cup−2(x̃)[u(x̃)+1]−(p+q)eλδm(N+sp)/2δ(N+3sp)/2[lg(u(x̃)+1)]p+q−1

eλδm(N+sp)/2δ(N+3sp)/2[u(x̃)+1]

]
< 0,

whereC is a positive constant, which contradicts with (9). As a result, when α approaches
−1 enough, (10) must be established.

Step 2. In this step, we will use the initial point provided in Step 1 as a starting point
to gradually move the plane from left to right. As long as (10) is true, we can keep moving
the plane all the way to the limit position, which is defined Tα0 , here

α0 = sup{α 6 0 | Wµ > 0, x ∈ Ωµ, µ 6 α}.

Next, we show that α0 = 0 to obtain the radial symmetry of u(x) of (8) with respect to
the origin. If not, α < 0 because of Wα0

6≡ 0. By Lemma 1 we get

Wα0
> 0, x ∈ Ωα0

.

From the definition of α0 there are sequences {αk} (αk ↘ α0) and {xk} ∈ Ωαk , which
meet

Wαk

(
xk
)

= min
Σαk

Wαk < 0 and ∇Wαk

(
xk
)

= 0.

There exists a subsequence {xk} → x0. In addition, since Wα(x) and ∇Wα(x) are
continuous with respect to α and x, one gets

Wα0

(
x0
)
6 0, x0 ∈ ∂Σα0

, ∇Wα0

(
x0
)

= 0.

For k →∞,
Wα0

(x0)

ιk
→ 0.

However, from another perspective, from Lemma 2 the limit of the above expression is
less than zero. Consequently,

α0 = 0, W0(x) > 0, x ∈ Ω0.

Due to the arbitrariness of the direction of xN , we can draw a conclusion that u(x) is
radially symmetric and monotone decreasing about the origin.
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Theorem 2. Assume that u(x) ∈ C1,1
loc (RN ) ∩ Lsp is a positive solution of (2) with

p+ q < 1 and

u(x) ∼ e|x|
−γ(x)

, |x| → ∞, (11)

where

γ(x) < min

{
2sp+ 1

2(p+ q − 1)
, log |x| p− 1

λ+m
− 1

}
. (12)

Then u(x) will be radially symmetric and monotone decreasing about some point in RN .

Proof. According (2),

(−∆)s,mp,λ uα(x)− (−∆)s,mp,λ u(x) =
(p+ q)[lg(ξ(x) + 1)]p+q−1

ξ(x) + 1
Wα(x),

where ξ(x) is between u(x) and uα(x).
Step 1. In this step, we show that

Wα(x) > 0 for x ∈ Σα, α→ −∞. (13)

If (13) is not true, there is a point where the following inequality must be true:

Wα(x̀) = min
Σα

Wα < 0.

Let M = |x̀|, we pick a point xM ∈ Σα, which meets

BM (xM ) ⊂ Σα and |xM | = TM,

here T is a large enough number such that when y ∈ BM (xM ). According to (11), the
following inequality holds:

u(y) 6
A1

eT−γ(M)M−γ(M)
6

A2

eM−γ(M)
6 u(x),

where A1 and A2 are positive constants.
Similar to the calculation process of (4), in line with condition (11), we have

(−∆)s,mp,λ uα(x̀)− (−∆)s,mp,λ u(x̀)

6 CN,spm
(N+sp)/2Wα(x̀)

∫
Σα

[L′(ξ(y)) + L′(η(y))]K(N+sp)/2(m|x̀− yα|)
eλ|x̀−yα||x̀− yα|N+sp

dy

6 CN,spm
(N+sp)/2Wα(x̀)

∫
BM (xM )

[L′(ξ(y)) + L′(η(y))]K(N+sp)/2(m|x̀− yα|)
eλ|x̀−yα||x̀− yα|N+sp

dy

= CN,sp

√
π√
2
m(N+sp−1)/2Wα(x̀)

∫
BM (xM )

up−2(x̀)

e(λ+m)|x̀−yα||x̀− yα|N+sp+1/2
dy

6
C0

Msp+1/2e(λ+m)M−(p−2)M−γ(x) Wα(x̀), (14)
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here

ξ(y) ∈
(
uα(x̀)− uα(y), u(x̀)− uα(y)

)
,

η(y) ∈
(
uα(x̀)− u(y), u(x̀)− u(y)

)
,

and C0 is a positive constant. On the other side,

(−∆)s,mp,λ uα(x̀)− (−∆)s,mp,λ u(x̀) >
(p+ q)[lg(u(x̀) + 1)]p+q−1

u(x̀) + 1
Wα(x̀). (15)

According to (14) and (15), we have

C0

Msp+1/2e(λ+m)M−(p−2)Mγ(x)
6

C1

M (p+q−1)γ(x)eM−γ(x) ,

which is inconsistent with condition (12). As a result, (13) must be true.

Step 2. Based on the starting point provided in Step 1, we move the plane from left to
right to Tα0

, which is defined

α0 = sup{α | Wµ(x) > 0, x ∈ Σµ, µ 6 α}.

Next, we confirm the truth of

Wα0
≡ 0, x ∈ Σα0

.

If not, we have

Wα0 > 0, x ∈ Σα0 .

According to the definition of α0, there exist two sequences {αk} ↘ α0 and {xk} ∈ Σαk ,
which satisfy

Wαk

(
xk
)

= min
Σαk

Wαk < 0 and ∇Wαk

(
xk
)

= 0.

In addition, from (11) we know that the sequence {xk} is bounded, and

Wα0

(
x0
)
6 0, ∇Wα0

(
x0
)

= 0, x0 ∈ ∂Σα0 .

Then we can get the following relation naturally:

Wα0(x0)

ιk
→ 0, k →∞,

which contradicts with Lemma 2, hence Wα0
≡ 0 holds. Considering the arbitrariness of

direction xN , we can get that u(x) is radially symmetric at certain point in RN .
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