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Abstract. In this study, the pulsating flow of a non-Newtonian fluid and heat transfer in a pipe
with uniform heat flux at its wall is examined analytically. The flow is assumed to be both
hydrodynamically and thermally fully developed. The perturbation method based on the series
expansion is used in the analysis. The periodic change and period-averaged values of the friction
factor and Nusselt number as well as velocity and temperature profiles are obtained at varying values
of dimensionless frequency and amplitude for shear-thinning, Newtonian and shear-thickening
fluids. It is shown that the frequency is effective on the friction factor for a specific range of
the dimensionless frequency. For some specific cases, excellent agreements are obtained with the
literature. It is disclosed that the dimensionless frequency, the amplitude and the power-law index
are interactively effective on the friction and heat transfer.
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1 Introduction

Understanding the characteristics of pulsating flow in closed channels is of noteworthy
interest in many areas of engineering and general applications. Examples that may be
given in this concept include respiratory and circulatory systems (blood flow in the main
arteries and capillaries), fluid movement in biological chips used in disease diagnosis,
bioreactor systems, cleaning-in-place systems, thermoacoustic systems, cooling systems
of nuclear reactors and internal combustion engines along with hydraulic and pneumatic
control systems.
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Pulsating flow and heat transfer of power-law fluid 57

In general, the pulsating flow is a specific type of unsteady flow consisting of steady
and superimposed oscillating flow components. In this flow type, the amplitude and fre-
quency of the oscillation play a critical role on the development and thickness of boundary
layer, which can significantly change the flow resistance and heat transfer characteristics.

The pulsating flow problem in straight ducts of constant section has been widely
studied by researchers for both laminar and turbulent flow regimes. However, because
of the complexity of modeling/solving procedures, the fluid is generally assumed as
Newtonian with constant properties in most of these theoretical studies. In a pioneering
work of [25], the oscillating flow of Newtonian fluid in a straight pipe was solved ana-
lytically under fully developed laminar flow condition. It was concluded that the phase
lag between the oscillating pressure and the flow tended to be 0 ◦ at low values of fre-
quency, while it was approaching to 90 ◦ with an asymptotic increase at higher values.
Uchida [23] analytically investigated the effect of frequency on both the velocity field
and shear stress in a laminar pulsating pipe flow. The author reported that the fully
developed velocity profile showed a significant change by taking an annular form in
high frequency ranges, while it was maintaining its parabolic shape in low frequency
ranges. Siegel and Perlmutter [22] conducted an analytical study to examine the heat
transfer characteristics of pulsating flow between two-dimensional parallel plates exposed
to the constant wall temperature. Their results indicated that the total heat transfer was not
changed by the oscillation remarkably. Cho and Hyun [10] modeled both pulsating flow
characteristics and heat transfer behavior of Newtonian fluid in a pipe by using boundary
layer equations. They found out that the pulsating flow enhanced the heat transfer rate
in a moderate frequency range; meanwhile, it had an opposite effect at very high and
low frequencies compared to steady flow. Moschandreou and Zamir [19] considered the
problem of pulsating flow in a circular tube with constant heat flux thermal boundary
condition. By using the Green’s function method, they derived analytical expressions both
for the fully developed temperature profile and Nusselt number. They reported that the
pulsation had an aiding effect on the heat transfer in the moderate values of frequency
(1−2 Hz), while an opposite trend was observed the moment the frequency was out of
this range. Readers are referred to see reviews related to pulsating flow of Newtonian
fluid in common conduits by Carpinlioglu and Gündogdu [8]. Yu et al. [16] analyzed the
effects of dimensionless frequency, amplitude and Prandtl number on the heat transfer
characteristics of laminar pulsating flow in a circular conduit. In a study in a similar
vein, Nield and Kuznetsov [20] analytically solved the forced convection problem in
both parallel-plate and circular channels by using the perturbation method. On the other
hand, Craciunescu and Clegg [11] numerically investigated the effect of blood velocity
pulsations on heat transfer within four blood vessels, which were the aorta, large arteries,
arterioles and terminal arterial branches by assuming the blood as a Newtonian fluid.
In another study, Yan et al. [26] theoretically studied the effects of Prandtl number,
oscillating amplitude and rolling frequency on the Nusselt number in a pipe. They found
that the oscillation amplitude of the Nusselt number was increased with the increase of
Prandtl number. As a further remark, Aygun and Aydin [3, 4] carried out experimental,
numerical and analytical studies to examine the role of pulsation frequency on the friction
coefficient in both developing and fully developed piston-driven pulsating flow. Blythman
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et al. [7] examined the driving temperature difference in a rectangular channel under the
effect of flow rate pulsations. They concluded that heat transfer would enhance in the
second half of the cycle when the flow rate was lower than its average value.

Although considerable research efforts have been devoted to understanding the physics
of pulsating Newtonian fluid flow, it is possible to claim that studies on pulsating non-
Newtonian fluid flow are limited. Daprà and Scarpi [12] analytically examined the pul-
sating flow of a power-law fluid in a pipe using the power series expansion method.
Edwards et al. [13] obtained velocity distribution of power-law fluid flow in a circular
channel under pulsating flow conditions. In the analysis, the frequency, amplitude and
power-law index were taken into account to reveal their effects on the velocity profile.
It was understood that a reverse flow occurred at low frequency and high amplitude
values. Balmer and Fiorina [5] obtained a numerical solution for the pulsating flow of
a power-law fluid in a circular tube using an implicit finite difference method. For the
same problem, Warsi [24] conducted a numerical study to examine the effects of constant
and fluctuating pressure gradients on the velocity profile. Afrouzi et al. [1] examined the
effects of power-law indice and Reynolds number on the hydrodynamic characteristics of
pulsating non-Newtonian fluid flow in a corrugated channel by using the lattice Boltzmann
method and the boundary fitting method. Their results showed that the skin factor was
a strong function of power-law index in the laminar flow regime. Moreover, recently,
extensive studies have been carried out on the oscillatory flow of nanofluids. In this
context, the effects of parameters, such as nanoparticles, shape factor [2, 15, 18], phase
angle [15, 17, 18] and frequency [15, 18] on flow, and heat transfer were investigated for
different nanofluid types.

The above mentioned literature survey studies also revealed that most of the studies
regarding to non-Newtonian pulsating flow have generally focused on the investigation of
hydrodynamic characteristics without taking the heat transfer phenomenon into account.
However, in many engineering applications involving pulsating flow such as hydraulic
systems, respiratory/circulatory systems and artificial organs/veins, an accurate estimation
of heat transfer and pressure drop is required for a proper design or optimization. To
highlight, in a human body, the blood flow rate and the vessel size may alter as a response
to the local temperature level. Therefore, it is necessary to carry out comprehensive studies
examining the non-Newtonian fluid flow and heat transfer together under pulsating flow
conditions.

It is important to note down that disclosures about the effects of a pulsating flow
on heat transfer in the existing literature are generally controversial. It was shown that the
time-averaged Nusselt number compared to its steady counterpart did not change, increase
or even decrease. Therefore, further studies are needed to explain pertinent mechanisms
of pulsating flows involving parameters amplitude, frequency, Reynolds number, etc.

In the scope of this study, the problem of pulsating non-Newtonian fluid flow for
a fully developed laminar flow regime in a circular pipe is examined theoretically. In the
analysis, frequency, amplitude and power-law index are considered as variable param-
eters. The constant heat flux thermal boundary condition is applied at the wall of the
relevant geometry. The perturbation method based on the series expansion, which allows
the solution of linear and/or nonlinear ordinary or partial differential equations, is used.
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2 Analysis

Hydrodynamically fully developed pulsating flow of a power-law fluid in a circular pipe
held at uniform heat flux is considered (see Fig. 1). Thermophysical properties of the fluid
are assumed to be constant, and the axial heat conduction in the fluid wall is assumed to
be negligible. The governing conservation equations of momentum [6] and energy [6] are
as follows:

ρ
∂u

∂t
= −∂p

∂x
− 1

r

∂(rτrx)

∂r
,

∂T

∂t
+ u

∂T

∂x
= α

1

r

∂

∂r

(
r
∂T

∂r

)
.

The symbols appearing in the above set of equations are as follows: p is the pressure;
u the axial velocity; T the temperature; t the time; x, r the axial and radial coordinate;
τ the shear stress; ρ the density and α the thermal diffusivity, respectively.

The regarding boundary conditions are given below:

r = 0:
∂u

∂r
= 0,

∂T

∂r
= 0, r = r◦: u = 0, T = Tw.

We assume that the pulsating flow is driven by the pressure gradient, which oscillates
with time, as follows:

−∂p
∂x

= P0

(
1 + εeıωt

)
,

where P0, ω, ε and ω are the pressure gradient, the angular frequency, the amplitude and
the frequency of the pressure, respectively.

The constitutive equation, which relates shear stress with shear rate, can be written by
using the simple two-parameter power-law model as follows:

τrx = η

∣∣∣∣∂u∂r
∣∣∣∣n−1 ∂u∂r , (1)

where η denotes the consistency index of the fluid, and n is the power-law index giving
a measure of the pseudoplasticity with departure from unity showing more pronounced
shear-thinning (n < 1) or shear-thickening characteristics (n > 1). For n = 1, the fluid
exhibits Newtonian behavior.

Figure 1. The schematic of the problem geometry.
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For a power-law fluid in a pipe, Eq. (1) might be expressed as follows [9]:

τrx = η

(
−∂u
∂r

)n
. (2)

The following dimensionless quantities are introduced:

R =
r

r◦
, U =

u

ū0
, t∗ = ωt, Re =

ρū2−n0 Dn
h

η
, τ∗w =

τw
η

(
r◦
ū0

)n
,

F = Re
r◦ω

ū0
, θ =

T − Tw
(q′′wDh)/k

, Pr =
ηcp
k

(
ū0
r◦

)n−1
, P ∗ = − 1

P0

∂p

∂x
,

where Dh( = 2r◦) is the hydraulic diameter, R, U , r◦, Re , F , θ, q′′, k, Pr and cp
is the dimensionless radial coordinate, the dimensionless axial velocity, radius of the
pipe, Reynolds number, dimensionless frequency, dimensionless temperature, heat flux,
thermal conductivity, Prandtl number and specific heat at constant pressure, respectively,
∗ represent dimensionless variable, subscript w is the wall, and ū0 is the mean velocity
defined as follows:

ū0 =
n

3n+ 1

(
P0r

n+1
◦

2η

)1/n

.

Using the definition of axial temperature gradient for the case of constant heat flux
condition

∂T

∂x
=

2q′′w
ρcpū(t)r◦

,

the governing equations in a nondimensional form might be written as follows:

F

2n
∂U

∂t∗
= 2

{
3n+ 1

n

}n
(1 + εeıωt) − 1

R

∂

∂R

(
R

(
−∂U
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)n)
, (3)

FPr

2n
∂θ

∂t∗
+
U(R, t∗)

Ū(t∗)
=

1

R

∂

∂R

(
R
∂θ

∂R

)
. (4)

Similarly, the corresponding boundary conditions might be obtained as

R = 0:
∂U

∂R
= 0,

∂θ

∂R
= 0, R = 1: U = 0, θ = 0. (5)

The solution of Eqs. (3) and (4) can be reached by the perturbation method, which is
a semianalytical method based on power expansion. Thus, the amplitude ε is small, and
the solution is obtained to first order of approximation:

U(R, t∗) = U0(R) + εU1(R)eıt
∗

+O
(
ε2
)
, (6)

θ(R, t∗) = θ0(R) + εθ1(R)eıt
∗

+O
(
ε2
)
. (7)

Using binomial expansion, the shear rate in Eq. (2) might be written as follows:(
−∂U
∂R

)n
=

(
−dU0

dR

)n[
1 − εn

dU1/dR

−dU0/dR
eıt
∗

+O
(
ε2
)]
. (8)
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After substituting Eqs. (6) and (8) into Eqs. (3) and (5), we can equate terms of
identical powers of ε. Hence, we have the following equations:

0 = 2

{
3n+ 1

n

}n
− 1

R

d

dR

(
R

(
−dU0

dR

)n)
,

F ı

2n
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n

}n
+

1

R

d

dR

(
R

[
n

(
−dU0

dR

)n−1
dU1

dR

])
.

The analytical solution for the steady and first-order component of the velocity are
obtained as follows:

U0(R) =
3n+ 1

n+ 1

[
1 −R(n+1)/n

]
,

U1(R) = −
2ı(6 + 2

n )n

F

[
1 − R(1−n)/(2n)Jv[ıcR

(1+n)/(2n)]

Jv[ıc]

]
,

where Jv is the Bessel function of the first kind of order v, v and c are the parameter
written as

v =
n− 1

n+ 1
, c2 = 4Fı

1 + 3n

(1 + n)2

(
n

2 + 6n

)n
.

For an unsteady, pressure driven and fully developed pipe flow, the balance of forces
acting in the flow direction can be expressed as

πr2◦p− πr2◦

(
p+

∂p

∂x
dx

)
− 2πr2◦τw dx = ρπr2◦ dx

dū(t)

dt
.

This equation can be rearranged to give

−∂p
∂x

=
2

r◦
τw + ρ

dū(t)

dt
.

According to the Darcy’s formula, the relation between the pressure gradient and the
friction factor might be defined as

∂p

∂x
= f

ρ

2Dh

(
ū(t)

)2
.

By using the definition of shear stress at the wall

τw = η

(
−∂u
∂r

)n∣∣∣∣
r=r◦

the dimensionless friction factor might be rewritten as

f Re =
1

[Ū(t∗)]2

[
4F

dŪ(t∗)

dt∗
+ 2n+3

(
−∂U
∂R

)n∣∣∣∣
R=1

]
. (9)
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Ū(t∗) is the spatial average of dimensionless velocity given as follows:

Ū(t∗) =

∫ 1

0
U(R, t∗)R dR∫ 1

0
R dR

= 1 + εβeıt
∗
, (10)

where Iv and β are the Modified Bessel function of the first kind of order v and coefficient,
respectively,

β = −
2ı(6 + 2

n )n

F

[
1 − 4nIv+1[c]

c(1 + n)Iv[c]

]
.

Considering Eqs. (9) and (10), the friction factor is obtained as

f = f0 + εf1eıt
∗
, (11)

where f0 and f1 might be expressed as follows:

f0Re = 2n+3

(
−dU0

dR

)n∣∣∣∣
R=1

,

f1Re = 4Fıβ − 2n+4β

(
−dU0

dR

)n∣∣∣∣
R=1

− 2n+3n

[(
−dU0

dR

)n−1
dU1

dR

]
R=1

.

By integrating Eq. (11) over a period, the averaged friction factor might be written as

favg =
1

2π

2π∫
0

f dt∗.

In a similar way, by substituting Eq. (7) into Eqs. (4), (5) and equating terms of
identical powers of ε

1

R

d

dR

(
R

(
dθ0
dR

))
= U∗0 (R), (12)

1

R

d

dR

(
R

(
dθ1
dR

))
= U∗1 (R) +

FPr

2n
ıθ1(R), (13)

where U∗0 (R) and U∗1 (R) are the components of the ratio of dimensionless velocity to
spatial average of U(R, t∗), which is given as

U(R, t∗)

Ū(t∗)
=
U0(R) + εU1(R)eıt

∗

1 + εβeıt∗
= U∗0 (R) + εU∗1 (R)eıt

∗
,

U∗0 (R) = U0(R), U∗1 (R) = −βU∗0 (R) + U1(R).

Considering the boundary conditions defined in Eqs. (5), (12) can be obtained as

θ0(R) =
3n+ 1

n+ 1

[
R2 − 1

4
−
(

n

3n+ 1

)2(
R(3n+1)/n − 1

)]
.
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The Green’s function approach is used to solve Eq. (13) (see Appendix). This function
is an effective approach to solve boundary value problems with inhomogeneous ordinary
differential equations

θ1(R) = J0(AR)
[
I1(R) + I3(R)

]
+ Y0(AR)I2(R),

where Y0 and A are the Bessel function of the second kind of order 0 and parameter,
respectively, A2 = −FıPr/2n,

I1(R) =

R∫
0

−π
2

J0(Aξ)Y0(A)

J0(A)
ξU∗1 (ξ) dξ, I2(R) =

R∫
0

π

2
J0(Aξ)ξU∗1 (ξ) dξ,

I3(R) =

1∫
R

−π
2

(J0(Aξ)Y0(A) − J0(A)Y0(Aξ))

J0(A)
ξU∗1 (ξ) dξ.

The dimensionless bulk temperature θb is given by

θb =

∫ 1

0
UθR dR∫ 1

0
UR dR

.

By using the perturbation solutions of dimensionless velocity and temperature, the
first order bulk temperature is obtained in the form below:

θb =

∫ 1

0
(U0θ0 + ε(U0θ1 + U1θ0)eıt

∗
)R dR

1
2 (1 + εβeıt∗)

.

The Nusselt number, based on the difference between the wall and the bulk tempera-
ture, can be defined as

Nu =
1

Tw−Tb

q′′wDh/k

= − 1

θb
.

In order to identify the effect of oscillating flow on heat transfer rate, the Nusselt
number needs to be written in the following form:

Nu = Nu0 + εNu1eıt
∗
, (14)

where Nu0 and Nu1 are the steady and oscillatory components of the Nusselt number,
which are given, respectively, as

Nu0 = − 1/2∫ 1

0
U0θ0R dR

, Nu1 = −
β/2 + Nu0

∫ 1

0
(U0θ1 + U1θ0)R dR∫ 1

0
U0θ0R dR

.

By integrating the Eq. (14) over a period, the averaged Nusselt number is obtained as

Nuavg =
1

2π

2π∫
0

Nu dt∗.
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3 Results and discussion

Fully developed laminar pulsating flow in a circular pipe held at uniform heat flux is
investigated considering the power-law model for the working fluid. The interactive ef-
fects of power-law index n, amplitude ε and frequency F on convective heat transfer are
examined. At first, we validated our analysis by comparing some specific results with
those available in the existing literature, mainly, by those of Edwards et al. [13] and Nield
and Kuznetsov [20].

Edwards et al. [13], as previously emphasized in the literature, examined power-law
fluid flow in a circular channel under the pulsating flow conditions. As it can be seen from
Fig. 2, the dimensionless velocity distributions obtained for different values of power-law
index and phase angle display an excellent agreement with the reference study.

Another literature comparison is made with the study by Nield and Kuznetsov [20]
for the Newtonian fluid behavior. Nield and Kuznetsov [20] analytically solved the forced
convection problem on the walls of which uniform heat flux thermal boundary condition
was applied. The results of the variation of the Nusselt number with dimensionless
frequency obtained for different Prandtl number values from both studies are compared
in Fig. 3. It is seen that the results are consistent.

(a) n = 0.7 (b) n = 1.0 (c) n = 1.4

Figure 2. The validation against the results by Edwards et al. [13]. The present study is shown by the
hairline, the dashed line and the dotted line for t∗ = 0, 2π/5, 8π/5 (a); t∗ = 0, 2π/5, 6π/5 (b), t∗ =
0, 4π/5, 8π/5 (c), respectively. Edwards et al. [13]: 4,�, ◦ for t∗ = 6.0, 6.2, 6.8 (a); t∗ = 4.0, 4.2, 4.6 (b);
t∗ = 4.0, 4.4, 4.8 (c), respectively; ε = 1.0, F = 10.

Figure 3. The validation against the results by Nield and Kuznetsov [20]. The present study is shown by the
hairline, the dashed line and the dotted line for Pr = 0.1, 1, 10, respectively; Nield and Kuznetsov [20]: �,∆, ◦
for Pr = 0.1, 1, 10, respectively; n = 1.
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Table 1. Comparison of Nusselt number
values with those obtained by Grigull [14].

n Present Grigull [14]
0.7 4.53843 4.53843
1 4.36364 4.36364
1.4 4.23625 4.23625

(a) n = 0.7, ε = 0.1 (b) n = 1, ε = 0.1 (c) n = 1.4, ε = 0.1

(d) n = 0.7, ε = 0.2 (e) n = 1, ε = 0.2 (f) n = 1.4, ε = 0.2

(g) n = 0.7, ε = 0.3 (h) n = 1, ε = 0.3 (i) n = 1.4, ε = 0.3

Figure 4. The variation of the dimensionless centerline velocity over a period. The frequency is shown by the
hairline, the dashed line, the dotted line and the dash-dotted line for F = 0.1, 1, 10, 100, respectively.

For assuring an additional credence to the methodology followed, the Nusselt number
value for the power-law fluid flow in a circular pipe with uniform heat flux on the wall
at ε = 0 are compared with those by Grigull [14]. As seen in Table 1, the results are
consistent with those by [14].

Figure 4 shows the variation of dimensionless centerline velocity over a period for
a shear-thinning fluid (n = 0.7), a Newtonian fluid (n = 1) and a shear-thickening fluid
(n = 1.4), respectively, at different values of the dimensionless frequency F . As can be
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(a) n = 0.7 (b) n = 1 (c) n = 1.4

(d) n = 0.7 (e) n = 1 (f) n = 1.4

Figure 5. The variations of the spatial average of dimensionless velocity and the wall shear stress for over
a period. The frequency is shown by the hairline, the dashed line, the dotted line and the dash-dotted line for
F = 0.1, 1, 10, 100, respectively; ε = 0.2.

seen from these figures, the dimensionless velocity at the center and the applied pressure
gradient follow a similar phase for the lowest value of F (F = 0.1), which is called
quasisteady state [21, 22]. As the dimensionless frequency increases, pulse amplitude of
the centerline velocity decreases. As a consequence, maximum points increase, while
minimum points are decreasing. Furthermore, with an increase in F , a phase lag is ob-
served for the periodic variation of the dimensionless centerline velocity according to the
applied pressure gradient. Increasing amplitude presents similar behaviors.

Similarly, Fig. 5 illustrates the variations of the spatial average of dimensionless
velocity and the wall shear stress for over a period for n = 0.7, 1 and 1.4, respectively, at
different values of the dimensionless frequency F .

In order to discuss the effect of the amplitude ε on the friction factor, the variation
of fRe over a period at various values of ε at F = 10 for n = 0.7, 1, 1.4 is depicted in
Fig. 6. As expected, with increasing ε, pulse amplitude of fRe increases. As it is well
known, increasing the power-law index leads to an increased friction.

Similarly, Fig. 7 illustrates the change of fRe over a period with varying nondimen-
sional frequency F at ε = 0.2 for n = 0.7, 1, 1.4. As it is obvious from the figure,
the variation of fRe dramatically changes depending on the power-law index n. For the
shear-thinning fluid (n = 0.7), a phase shift occurs with an increase in F , which is
accompanied by a decreased change amplitude (i.e. the highest value of fRe decreases,
and its lowest value decreases). For the Newtonian fluid (n = 1), the phase shift is again
discernible. However, no variation is observed in the variation amplitude with constant
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(a) n = 0.7 (b) n = 1 (c) n = 1.4

Figure 6. The variation of the fRe over a period for varying amplitudes shown by the hairline, the dashed line,
the dotted line and the dash-dotted line when ε = 0, 0.1, 0.2, 0.3, respectively; F = 10.

(a) n = 0.7 (b) n = 1 (c) n = 1.4

Figure 7. The variation of the fRe over a period for varying frequencies shown by the hairline, the dashed line,
the dotted line and the dash-dotted line for F = 0.1, 1, 10, 100, respectively; ε = 0.2.

(a) n = 0.7 (b) n = 1 (c) n = 1.4

Figure 8. The variations of the favgRe with F for different values of amplitude shown by the hairline, the
dashed line, the dotted line and the dash-dotted line when ε = 0, 0.1, 0.2, 0.3, respectively.

maximum and minimum points. For the shear-thinning fluid (n = 1.4), the phase shift is
still on the scene with increasing F . However, increasing F leads to an increase in the
amplitude. This behavior in the friction factor might be attributed to the complex relations
among the parameters affecting fRe (see Eq. (9)).

The variation of the averaged friction factor with the dimensionless frequency F at
varying values of amplitude for n = 0.7, 1, 1.4 is shown in Fig. 8. With an increase in
amplitude, the favgRe decreases up to a certain frequency value, while it increases after
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the relevant frequency value. These frequency values are approximately; F = 6.85 for
the shear thinning fluid (n = 0.7), F = 12.286 for the Newtonian fluid (n = 1) and
F = 22.279 for the shear thickening fluid (n = 1.4), respectively. For n = 0.7, favgRe
is constant for 0 6 F 6 0.659. Then it increases for the range of 0.659 6 F 6 51.288,
and finally, it again becomes constant for F > 51.288. That means that increasing F is
only effective for a specific range of F . For n = 1 and n = 1.4, similar behaviors are
obtained with F -dependent ranges of 1.352 6 F 6 114.48 and 3.562 6 F 6 266.518,
respectively. Out of these ranges, an F -independent behavior persists. It should be noted
that F -dependent range extends with an increase in the power-law index n.

Figure 9 shows the variations of averaged friction factor with the amplitude for n =
0.7, 1 and 1.4, respectively, at different values of the dimensionless frequency F . With
increasing ε, favgRe decreases at lower values of F (F = 0.1 and 1), while it increased at
F = 100 for all the fluid types considered (n = 0.7, 1 and 1.4). For F = 10, an increase
in ε results in an increase in favgRe for n = 0.7 and 1, while it results in a decrease for
n = 1.4.

In order to understand the effects of the dimensionless frequency and the amplitude
on heat transfer, dimensionless bulk temperatures are drawn at first. Figures 10, 11 show
the variation of the dimensionless bulk temperature and the Nusselt number over a period

(a) n = 0.7 (b) n = 1 (c) n = 1.4

Figure 9. The variation of the favgRe with ε for different values of frequency shown by the hairline, the dashed
line, the dotted line and the dash-dotted line for F = 0.1, 1, 10, 100, respectively.

(a) n = 0.7, ε = 0.1 (b) n = 1, ε = 0.1 (c) n = 1.4, ε = 0.1

Figure 10. The variation of the dimensionless bulk temperature over a period. The frequency is shown by
the hairline, the dashed line, the dotted line and the dash-dotted line for F = 0.1, 1, 10, 100, respectively;
Pr = 10.
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(a) n = 0.7,ε = 0.2 (b) n = 1, ε = 0.2 (c) n = 1.4,ε = 0.2

(d) n = 0.7,ε = 0.3 (e) n = 1, ε = 0.3 (f) n = 1.4,ε = 0.3

Figure 11. The variation of the dimensionless bulk temperature over a period. The frequency is shown by
the hairline, the dashed line, the dotted line and the dash-dotted line for F = 0.1, 1, 10, 100, respectively;
Pr = 10.

(a) n = 0.7 (b) n = 1 (c) n = 1.4

Figure 12. The variation of the averaged Nusselt number with F for different values of amplitude shown by
the hairline, the dashed line, the dotted line and the dash-dotted line when ε = 0, 0.1, 0.2, 0.3, respectively;
Pr = 10.

for the shear-thinning fluid (n = 0.7), the Newtonian fluid (n = 1) and the shear-
thickening fluid (n = 1.4), respectively.

The variation of the averaged Nusselt number with the dimensionless frequency F at
varying values of amplitude for n = 0.7, 1 and 1.4 is depicted in Fig. 12. It is observed
that with an increase in the amplitude, the averaged Nusselt number increases for all the
fluid types considered. With increasing F , Nuavg increases up to a critical value of F ,
then it decreases. This critical value for F is 11.708, 28.349 and 76.268 for n = 0.7, 1
and 1.4, respectively, which is interestingly independent of the amplitude ε. A similar
behavior is also noted in [20] for the case of pulsatile flow of Newtonian fluid flow in
both circular tube and parallel-plates channels.
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4 Conclusions

As a breakthrough attempt, the pulsating Newtonian and non-Newtonian fluid flows in
a circular pipe have been studied for the fully developed flow condition. A perturbation se-
ries method has been used in the analysis. The working parameters were the frequency F ,
the amplitude ε, and the power-law index n. Their interactive effects on the Nusselt
number as well as the friction factor have been identified. The major findings of the
present study might be summarized as follows:

• As the dimensionless frequency increases, a phase lag is observed for the periodic
variation of the dimensionless velocity at center according to the applied pressure
gradient.

• The dimensionless frequency is effective on the friction factor for its specific range.
The spectrum of this range enlarges with an increase in the power-law index.

• The effect of the amplitude on the friction factor changes according to F .
• With an increase in the dimensionless frequency, the averaged Nusselt number is

observed to increase up to a critical value of F , which decreases afterwards. This
critical value tends to increase with the power-law index, which is interestingly
independent of the amplitude ε.

Appendix

Writing the Green’s function in the G(R, ξ) form for Eq. (13):

1

R

d

dR

(
R

(
dG(R, ξ)

dR

))
+A2G(R, ξ) = δ(R− ξ), (A.1)

where δ(R− ξ) is the Dirac delta function.
Similarly, the boundary conditions defined in Eq. (5) can be given as

R = 0:
∂G

∂R
= 0, R = 1: G = 0. (A.2)

In the light of this knowledge, the general solution of Eq. (A.1) is obtained as follows:

G(R, ξ) =

{
c11J0(AR) + c12Y0(AR), 0 6 R < ξ,

c21J0(AR) + c22Y0(AR), ξ < R 6 1,
(A.3)

where cij ’s are functions that depend on ξ . Using the boundary conditions defined in
Eq. (A.2) and the Green’s function technique, cij ’s are written as

c11 = −π
2
ξ

[
J0(Aξ)Y0(A) − Y0(Aξ)J0(A)

J0(A)

]
, c12 = 0, (A.4)

c21 = −π
2
ξ

[
J0(Aξ)Y0(A)

J0(A)

]
, c22 =

π

2
ξJ0(Aξ). (A.5)
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By substituting Eqs. (A.4)–(A.5) into Eq. (A.3), G(R, ξ) is rearranged as

G(R, ξ) =

{
−π

2 ξ
J0(AR)
J0(A) (J0(Aξ)Y0(A) − J0(A)Y0(Aξ)), 0 6 R < ξ,

−π
2 ξ

J0(Aξ)
J0(A) (J0(AR)Y0(A) − J0(A)Y0(AR)), ξ < R 6 1.

Thus, the solution of Eq. (13) depending on the Green’s function is obtained as
follows:

θ1(R) =

1∫
0

G(ξ,R)U∗1 (ξ) dξ.
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