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Abstract. In this paper, based on Euler–Marryama method and theory of stochastic processes,
a stochastic discrete SIVS epidemic model with general nonlinear incidence and vaccination
is proposed by adding random perturbation and then discretizing the corresponding stochastic
differential equation model. Firstly, the basic properties of continuous and discrete deterministic
SIVS epidemic models are obtained. Then a criterion on the asymptotic mean-square stability of
zero solution for a general linear stochastic difference system is established. As the applications of
this criterion, the sufficient conditions on the stability in probability of the disease-free and endemic
equilibria for the stochastic discrete SIVS epidemic model are obtained. The numerical simulations
are given to illustrate the theoretical results.

Keywords: stochastic discrete SIVS epidemic model, nonlinear incidence, vaccination, mean-
square stability, stability in probability.

1 Introduction

Infectious diseases have always been the enemy of human health. The repeated epidemic
of infectious diseases has brought great disasters to human survival and the national
economy and people’s livelihood. It has been confirmed that vaccination is an impor-
tant strategy for the control and elimination of infectious diseases. Many scholars have
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investigated various types of epidemic models with vaccination (see e.g. [3–5, 13, 15, 16,
30–33,35]). Especially, in [13] the authors investigated the following SIS epidemic model
with vaccination:

Ṡ(t) = (1− q)A− βS(t)I(t)− (µ+ p)S(t) + γI(t) + εV (t),

İ(t) = βS(t)I(t)− (µ+ γ + α)I(t),

V̇ (t) = qA+ pS(t)− (µ+ ε)V (t).

(1)

It is well known that the incidence rate of diseases is an important part of epidemic
models. In many practicality the nonlinear incidence is frequently used for achieving more
exact results. Many epidemic models with nonlinear incidence have been widely studied
(see e.g. [2–4, 8, 10, 12, 14–17, 24, 26, 28]). Particularly, as an extension of model (1), we
consider the following epidemic model with general nonlinear incidence:

Ṡ(t) = (1− q)A− βf
(
S(t), I(t)

)
− (µ+ p)S(t) + γI(t) + εV (t),

İ(t) = βf
(
S(t), I(t)

)
− (µ+ γ + α)I(t),

V̇ (t) = qA+ pS(t)− (µ+ ε)V (t).

(2)

where S(t), I(t) and V (t) represent the numbers of susceptible, infectious and immune
at time t, respectively; A is the recruitment of new numbers into the population; q is
a fraction of vaccinated for new number; β represents the disease transmission coefficient;
µ stands for the natural death rate of the population; γ is the recovery of infectious;
p represents the proportional coefficient of vaccinated for the susceptible; ε denotes the
rate of losing their immunity for vaccinated individuals; α denotes the disease-caused
death rate of infectious; f(S, I) represents the nonlinear incidence.

In the real world, epidemic models are always affected by the environmental white
noise, which is an important component in an ecosystem. In [29,34] the authors concluded
that climate change and natural disasters, including floods, locusts, earthquakes, wind and
frost, have different impacts on infectious diseases (cholera, typhoid, malaria, etc.) in
different periods and regions of China. All these factors can be described by random in
biological mathematics. Therefore, lots of scholars have studied the stochastic epidemic
models (see e.g. [1–4, 6, 7, 9, 10, 12, 14–18, 22–24, 26, 28, 35]).

Let E+ = (S+, I+, V +) be an nonnegative equilibrium of deterministic model (2).
Consider the environmental white noise effects on model (2). We assume that the dis-
turbance of white noise around equilibrium E+ and the degree of disturbance for each
component S, I and V is proportional to S(t)−S+, I(t)−I+ and V (t)−V +, respectively.
Thus, in this paper, we propose the following stochastic SVIS epidemic model:

dS(t) =
[
(1− q)A− βf

(
S(t), I(t)

)
− (µ+ p)S(t) + γI(t) + εV (t)

]
dt

+ σ1
(
S(t)− S+

)
dB1(t),

dI(t) =
[
βf
(
S(t), I(t)

)
− (µ+ γ + α)I(t)

]
dt+ σ2

(
I(t)− I+

)
dB2(t),

dV (t) =
[
qA+ pS(t)− (µ+ ε)V (t)

]
dt+ σ3

(
V (t)− V +

)
dB3(t),

(3)
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where parameters q, A, β, µ, p, γ, ε and α are defined as in model (2). Bk(t) (k = 1, 2, 3)
are independent standard Brownian motions withBk(0) = 0, and σi denotes the intensity
of Bk(t).

According to the discretization characteristics of computer numerical calculation, the
statistic data about infectious disease is collected by day, week, month or year, then it
is more direct, more convenient and more accurate to describe the epidemic by using
the discrete-time models than the continuous-time models. Currently, there are various
discretization methods to discretize a continuous model, including the standard methods,
such as Euler method, Runge–Kutta method, some other standard and nonstandard finite
difference scheme (see e.g. [6, 7, 11, 19–23, 27]).

By using the Euler–Marryama discretization method (see e.g. [6, 7, 22]) we can dis-
cretize stochastic model (3) in the following pattern. In model (3), we choose a time
step size i > 0. For any t > 0, since Ṡ(t) = limi→0(S(t + i) − S(t))/i, İ(t) =
limi→0(I(t + i) − I(t))/i, V̇ (t) = limi→0(V (t + i) − V (t))/i, we can assume that for
small enough i > 0, take dt = i, and

dS(t)
.
= S(t+ i)− S(t),

dI(t)
.
= I(t+ i)− I(t),

dV (t)
.
= V (t+ i)− V (t).

(4)

In addition, for the standard Brownian motions Bk(t) (k = 1, 2, 3), we also can as-
sume that dBk(t)

.
= Bk(t + i) − Bk(t) and Bk(t + 1) − Bk(t) ∼ N(0, i), that is,

Bk(t + i) − Bk(t) satisfies the normal distribution with mean value 0 and variance i.
Through standardization, we can transform normal distribution N(0, i) into standard
normal distributionN(0, 1). Then we can obtain that (Bk(t+ i)−Bk(t))/

√
i ∼ N(0, 1).

Let η(k)t+1 (k = 1, 2, 3) is a family of independent random sequences obeying normal
distribution N(0, 1). Then Bk(t + i) − Bk(t) =

√
iη

(k)
t+1 (k = 1, 2, 3). Therefore, we

further have

dBk(t)
.
= Bk(t+ i)−Bk(t) =

√
iη

(k)
t+1, k = 1, 2, 3. (5)

Furthermore, for the convenience of statements, we denote

S(t+ i) = St+1, I(t+ i) = It+1, V (t+ i) = Vt+1, (6)
S(t) = St, I(t) = It, V (t) = Vt.

Substituting (4)–(6) into model (3), we finally establish the following discretization model:

St+1 = St +
[
(1− q)A− βf(St, It)− (µ+ p)St + γIt + εVt

]
i

+ σ1
√
i
(
St − S+

)
η
(1)
t+1,

It+1 = It +
[
βf(St, It)− (µ+ γ + α)It

]
i+ σ2

√
i
(
It − I+

)
η
(2)
t+1,

Vt+1 = Vt +
[
qA+ pSt − (µ+ ε)Vt

]
i+ σ3

√
i
(
Vt − V +

)
η
(3)
t+1,

(7)

where t ∈ Z = {0, 1, 2, . . . }, the set of all nonnegative integers.
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In this paper, our main purpose is to investigate the dynamical behavior of model (7).
This paper is organized as follows. In Section 2, we introduce some useful lemmas and
definitions. In Section 3, we first state and prove a criterion on the asymptotic mean-square
stability for a general stochastic discrete linear system. Then the sufficient conditions of
stability in probability for disease-free and endemic equilibria of stochastic discrete SIVS
epidemic model (7) are established. Furthermore, the stability in probability for stochastic
discrete SIVS epidemic models with standard incidence, Beddington–DeAngelis inci-
dence and a nonmonotonic incidence also are discussed. In Section 4 the numerical
examples are presented. Finally, in Section 5 a brief conclusion is given.

2 Preliminaries

Throughout this paper, we assume that model (7) is defined on a complete probability
space (Ω, {Ft}t>0,P) with a filtration {Ft}t>0 satisfying the usual conditions. η(k)t+1

(k = 1, 2, 3) is a family of independent random sequences obeying normal distribution
N(0, 1), and Ft is produced by η(k)t+1 (k = 1, 2, 3) (see [22]). For stochastic variables η(k)t

(k = 1, 2, 3), the expectation E satisfies

Eη
(k)
t = 0, E

(
η
(k)
t

)2
= 1, Eη

(k)
t η

(j)
t = 0 (k 6= j). (8)

We consider model (7) with an F0-adapted initial function

S0 = φ1, I0 = φ2, V0 = φ3. (9)

In addition, we introduce the following assumption.

(H) f(S, I) is nonnegative and continuously differentiable for any S > 0, I > 0
and S + I > 0. For each fixed I > 0, f(S, I) is increasing for S > 0, and
supS>0, I>0{f(S, I)} 6 B <∞. For each fixed S > 0, f(S, I)/I is decreasing
for I > 0. In addition, f(S, 0) = f(0, I) = 0 for any S > 0 and I > 0.

Remark 1. If f(S, I) = SI/(S+I) (standard incidence), f(S, I) = SI/(1+ω1I+ω2S)
(Beddington–DeAngelis incidence) with constants ω1 > 0 and ω2 > 0, and f(S, I) =
SI/(1 + ωI2) (nonmonotonous incidence) with constant ω > 0, then (H) is satisfied.

Let (S(t), I(t), V (t)) be any solution of model (2) with positive initial value (S(0),
I(0), V (0)). We easily prove that the solution (S(t), I(t), V (t)) is defined for all t > 0
and is positive. Model (2) always has a disease-free equilibrium

E0 =
(
S0, 0, V 0

)
=

(
A((1− q)µ+ ε)

µ(µ+ p+ ε)
, 0,

A(qµ+ p)

µ(µ+ p+ ε)

)
. (10)

Following the next generation matrix method (see [25]), we calculate the basic reproduc-
tion number R0 of model (2). Let

F =

(
βf(S(t), I(t))
qA+ pS(t)

)
, Ṽ =

(
(µ+ γ + α)I(t)

(µ+ ε)V (t)

)
.
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Calculating the Jacobian matrices of F and V at equilibrium E0, we have

F =

(
β ∂f(S

0,0)
∂I 0
0 0

)
, Ṽ =

(
µ+ γ + α 0

0 µ+ ε

)
.

Then we can obtain the basic reproduction number R0 of model (2) as follows:

R0 = ρ
(
FṼ −1

)
=

β ∂f(S
0,0)

∂I

µ+ γ + α
.

On the existence of endemic equilibrium for model (2), we give the following lemma.

Lemma 1. IfR0 > 1, then model (2) has a unique endemic equilibriumE∗=(S∗, I∗, V ∗),
where

S∗ =
(µ+ ε− qµ)A

µ(µ+ ε+ p)
− (µ+ α)(µ+ ε)

µ(µ+ ε+ p)
I∗,

V ∗ =
qA

µ+ ε
+

p(µ+ ε− qµ)A

(µ+ ε)µ(µ+ ε+ p)
− p(µ+ α)

µ(µ+ ε+ p)
I∗,

(11)

and I∗ is the unique positive solution of the equation

βf

(
(µ+ ε− qµ)A− (µ+ α)(µ+ ε)I∗

µ(µ+ ε+ p)
, I∗
)
− (µ+ γ + α)I∗ = 0. (12)

Proof. The endemic equilibrium E∗ = (S∗, I∗, V ∗) of model (2) satisfies the equations

(1− q)A− βf(S∗, I∗)− (µ+ p)S∗ + γI∗ + εV ∗ = 0,

βf(S∗, I∗)− (µ+ γ + α)I∗ = 0,

qA+ pS∗ − (µ+ ε)V ∗ = 0.

By calculating we obtain

V ∗ =
qA+ pS∗

µ+ ε
, S∗ = S0 − (µ+ α)(µ+ ε)

µ(µ+ ε+ p)
I∗,

and I∗ satisfies

βf

(
S0 − (µ+ α)(µ+ ε)

µ(µ+ ε+ p)
I∗, I∗

)
− (µ+ γ + α)I∗ = 0.

Let

H(I) = βf

(
S0 − (µ+ α)(µ+ ε)

µ(µ+ ε+ p)
I, I

)
1

I
− (µ+ γ + α).

Assumption (H) implies that H(I) is decreasing for I > 0. When R0 > 1,

lim
I→0

H(I) = β
∂f(S0, 0)

∂I
− (µ+ γ + α) > 0.
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Since

H

(
A(µ+ ε− µq)
(µ+ α)(µ+ ε)

)
= −(µ+ γ + α) < 0,

there exists a unique I = I∗ > 0 such that H(I∗) = 0. Therefore, model (2) has a unique
endemic equilibrium E∗ = (S∗, I∗, V ∗) satisfying (11) and (12). This completes the
proof.

Furthermore, on the stability of equilibria for model (2), we have the following result.

Lemma 2.
(i) IfR0 < 1, then disease-free equilibriumE0 of model (2) is locally asymptotically

stable, otherwise, if R0 > 1, then E0 is unstable.
(ii) If R0 > 1, then endemic equilibrium E∗ is locally asymptotically stable.

Proof. For equilibrium E0, we have the Jacobian matrix at E0 as follows:

J(E0) =

−(p+ µ) −β ∂f(S
0,0)

∂I + γ ε

0 β ∂f(S
0,0)

∂I − (α+ γ + µ) 0
p 0 −(ε+ µ)

 .

Then the characteristic equation of J(E0) is

λ3 + a1λ
2 + a2λ+ a3 = 0, (13)

where

a1 = p+ µ+ (α+ γ + µ)(1−R0) + ε+ µ,

a2 = (p+ µ)(ε+ µ) + (p+ ε+ 2µ)(α+ γ + µ)(1−R0),

a3 =
[
(p+ µ)(ε+ µ) + pε

]
(α+ γ + µ)(1−R0).

Clearly, if R0 < 1, then a1 > 0, a2 > 0, a3 > 0 and

a1a2 − a3 =
[
(ε+ µ)2 + a2

]
(p+ µ) + (α+ γ + µ)2(1−R0)2(ε+ p+ 2µ)

+ (α+ γ + µ)(1−R0)
[
(ε+ µ)2 + µ(ε+ p+ µ)

]
> 0.

Hence, all eigenvalues of J(E0) have negative real parts by the Routh–Hurwitz criterion.
This implies that E0 is locally asymptotically stable.

If R0 > 1, then a3 < 0. Hence, Eq. (13) has a positive root. This implies that E0 is
unstable.

For equilibrium E∗, we have the Jacobian matrix at E∗ as follows:

J(E∗) =

−β ∂f(S∗,I∗)
∂S − (p+ µ) −β ∂f(S

∗,I∗)
∂I + γ ε

β ∂f(S
∗,I∗)
∂S β ∂f(S

∗,I∗)
∂I − (α+ γ + µ) 0

p 0 −(ε+ µ)

 .
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Then the characteristic equation of J(E∗) is

λ3 + b1λ
2 + b2λ+ b3 = 0,

where
b1 = −(b11 + b22 + b33),

b2 = b11b22 + b11b33 + b22b33 − b12b21,
b3 = b33(b12b21 − b11b22)− b22b13b31

with b11 = −(β∂f(S∗, I∗)/∂S + p+ µ), b12 = −β∂f(S∗, I∗)/∂I + γ, b13 = ε, b21 =
β∂f(S∗, I∗)/∂S, b22 = β∂f(S∗, I∗)/∂I − (α+ γ + µ), b31 = p and b33 = −(ε+ µ).

By (H) we easily obtain β∂f(S∗, I∗)/∂I < α+ γ + µ. Hence, b22 < 0. Since

b11b22 − b12b21

= (p+ µ)

(
α+ γ + µ− β ∂f(S∗, I∗)

∂I

)
+ β

∂f(S∗, I∗)

∂S
(α+ µ) > 0,

we further have bi > 0 (i = 1, 2, 3). Furthermore, we have

b11b33 − b13b31 =

(
β
∂f(S∗, I∗)

∂S
+ µ

)
(ε+ µ) + pµ > 0,

and then

b1b2 − b3 = −b11b2 − (b11 + b22)b233

− b22
[
(b11b22 − b12b21) + b22b33 + (b11b33 − b13b31)

]
> 0.

Therefore, all eigenvalues of J(E∗) have negative real parts by the Routh–Hurwitz crite-
rion. This implies that E∗ is locally asymptotically stable. This completes the proof.

By Remark 1 and Lemma 1, we have the following conclusions.

(i) If f(S, I) = SI/(S + I), then R0 = β/(µ+ γ + α). When R0 > 1, there is
a unique endemic equilibrium E∗ = (S∗, I∗, V ∗), where S∗ = (α + µ + γ)∆,
I∗ = [β− (µ+ γ +α)]∆ and V ∗ = (Aq + p(α+ µ+ γ)∆)/(µ+ ε) with ∆ =
A[(1− q)µ+ ε]/((β − (α+ µ+ γ))α(µ+ ε) + µ((α+ µ+ γ)p+ β(µ+ ε))).

(ii) If f(S, I) = SI/(1 + ω1I + ω2S) with constants ω1 > 0 and ω2 > 0, then
R0 = βS0/((µ+ γ + α)(1 + ω2S

0)). When R0 > 1, there is a unique endemic
equilibrium E∗ = (S∗, I∗, V ∗), where

I∗ =
A[(1− q)µ+ ε][β − (α+ µ+ γ)ω2]− µ(α+ µ+ γ)(µ+ ε+ p)

[β − (α+ µ+ γ)ω2](µ+ α)(µ+ ε) + µω1(α+ µ+ γ)(µ+ ε+ p)
,

S∗ =
(α+ µ+ γ)(1 + ω1I

∗)

β − (α+ µ+ γ)
,

V ∗ =
1

(µ+ ε)

(
Aq +

p(α+ µ+ γ)(1 + ω1I
∗)

β − (α+ µ+ γ)

)
.
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(iii) If f(S, I) = SI/(1+ωI2) with constant ω > 0, we haveR0 = βS0/(µ+γ+α).
When R0 > 1, there is a unique endemic equilibrium E∗ = (S∗, I∗, V ∗), where
S∗ = Γ , I∗ = (−b +

√
b2 − 4ac)/(2a), V ∗ = (Aq + pΓ )/(µ+ ε) with

Γ = (2a2 + ω(b2 − 2ac− b
√
b2 − 4ac))/(2βµω(µ+ ε+ p)a), a = µω(α +

µ+ γ)(µ+ ε+ p), b = β(µ+ α)(µ+ ε) and c = µ(α + µ+ γ)(µ+ ε+ p)−
Aβ[µ(1− q) + ε].

From the biological background of model (3) any solution of model (3) with the
positive initial value must be positive with probability one defined for all t > 0. However,
it is regrettable that at present, we do not have the ability to prove this conclusion.
Although, any solution of the corresponding deterministic model (2) with the positive
initial value is positive defined for all t > 0. The main reason is that in model (3)
the stochastic perturbation terms are σ1(S(t) − S+)dB1(t), σ2(I(t) − I+)dB2(t) and
σ3(V (t) − V +)dB3(t), respectively, and S(t) − S+, I(t) − I+ and V (t) − V + can
change the sign along with time t. Here we will leave this problem in the future study.

When σi = 0 (i = 1, 2, 3) in model (7), we can obtain the corresponding deterministic
discrete model as follows:

St+1 = St +
[
(1− q)A− βf(St, It)− (µ+ p)St + γIt + εVt

]
i,

It+1 = It +
[
βf(St, It)− (µ+ γ + α)It

]
i,

Vt+1 = Vt +
[
qA+ pSt − (µ+ ε)Vt

]
i.

(14)

It is clear that the equilibria E0 and E∗ calculated in (10) and Lemma 1 are also the
disease-free and endemic equilibria of model (14), respectively. On the positivity of
solutions for model (14) we can obtain the following result.

Lemma 3. Assume that (H) holds and step size i 6 min{1/(βB + µ+ p), 1/(µ+ γ + α),
1/(µ+ ε)}, where constantB > 0 is given in (H). Then solution (St, It, Vt) of model (14)
with initial values S0 > 0, I0 > 0 and V0 > 0 is positive for all t > 0.

Proof. Let ī = min{1/(βB + µ+ p), 1/(µ+ γ + α), 1/(µ+ ε)}. By 0 < i 6 ī, then
0 < i 6 1/(βB + µ + p), 0 < i 6 1/(µ+ ε) and 0 < i 6 1/(µ+ γ + α). As initial
values S0 > 0, I0 > 0 and V0 > 0, from model (14) we directly have

S1 > S0

[
1− (βB + µ+ p)i

]
+ (1− q)Ai+ γI0i+ εV0i > 0,

I1 = I0
[
1− (µ+ γ + α)i

]
+ βf(S0, I0)i > 0,

V1 = V0
[
1− (µ+ ε)i

]
+ qAi+ pS0i > 0.

Using the induction method, we assume St > 0, It > 0 and Vt > 0 for any integer t > 0,
then we have

St+1 > St
[
1− (βB + µ+ p)i

]
+ (1− q)Ai+ γIti+ εVti > 0,

It+1 = It
[
1− (µ+ γ + α)i

]
+ βf

(
St, It

)
i > 0,

Vt+1 = Vt
[
1− (µ+ ε)i

]
+ qAi+ pSti > 0.
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https://doi.org/10.15388/namc.2023.28.29928


82 B. Wen et al.

Therefore, (St, It, Vt) is the positive solution of model (14) with initial values S0 > 0,
I0 > 0 and V0 > 0. The proof is completed.

Although, in Lemma 3 we have proved that any solution of the corresponding deter-
ministic discrete model (14) with the positive initial value is positive defined for all t > 0.
However, for discrete stochastic model (7), it is regrettable that at present, we do not have
the ability to prove that any solution of model (7) with the positive initial value is positive
with probability one defined for all t > 0. It will be an interesting open problem.

Let E+ = (S+, I+, V +) be any nonnegative equilibrium of model (2). Take the
transformation ut = St − S+, νt = It − I+ and ωt = Vt − V +, then model (7) takes the
following form:

ut+1 = ut +
[
(1− q)A− βf(ut + S+, νt + I+)− (µ+ p)

(
ut + S+

)
+ γ(νt + I+) + ε

(
ωt + V +

)]
i+ σ1

√
iutη

(1)
t+1,

νt+1 = νt +
[
βf
(
ut + S+, νt + I+

)
− (µ+ γ + α)

(
νt + I+

)]
i

+ σ2
√
iνtη

(2)
t+1,

ωt+1 = ωt +
[
qA+ p

(
ut + S+

)
− (µ+ ε)

(
ωt + V +

)]
i+ σ3

√
iωtη

(3)
t+1.

(15)

Clearly, system (15) has equilibrium (0, 0, 0) corresponding to E+ = (S+, I+, V +).
Linearizing system (15) at (0, 0, 0), we get the linearized system as follows:

Xt+1 =

[
1− β ∂f(S+, I+)

∂u
i− (µ+ p)i

]
Xt +

(
γ − β ∂f(S+, I+)

∂ν

)
iYt

+ εiZt + σ1
√
iXtη

(1)
t+1,

Yt+1 = β
∂f(S+, I+)

∂u
Xt +

[
1 + β

∂f(S+, I+)

∂ν
i− (µ+ γ + α)i

]
Yt

+ σ2
√
iYtη

(2)
t+1,

Zt+1 = piXt +
[
1− (µ+ ε)i

]
Zt + σ3

√
iZtη

(3)
t+1.

(16)

For disease-free equilibrium E0 = (S0, 0, V 0), from system (16) we obtain the
linearized system at E0 as follows:

Xt+1 =
[
1− (µ+ p)i

]
Xt +

(
γ − β ∂f(S0, 0)

∂ν

)
iYt + εiZt

+ σ1
√
iXtη

(1)
t+1,

Yt+1 =

[
1 + β

∂f(S0, 0)

∂ν
i− (µ+ γ + α)i

]
Yt + σ2

√
iYtη

(2)
t+1,

Zt+1 = piXt +
[
1− (µ+ ε)i

]
Zt + σ3

√
iZtη

(3)
t+1.

(17)
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For endemic equilibrium E∗ = (S∗, I∗, V ∗), from system (16) we obtain the lin-
earized system at E∗ as follows:

Xt+1 =

[
1− β ∂f(S∗, I∗)

∂u
i− (µ+ p)i

]
Xt +

(
γ − β ∂f(S∗, I∗)

∂ν

)
iYt

+ εiZt + σ1
√
iXtη

(1)
t+1,

Yt+1 = β
∂f(S∗, I∗)

∂u
Xt +

[
1 + β

∂f(S∗, I∗)

∂ν
i− (µ+ γ + α)i

]
Yt

+ σ2
√
iYtη

(2)
t+1,

Zt+1 = piXt +
[
1− (µ+ ε)i

]
Zt + σ3

√
iZtη

(3)
t+1.

(18)

For the convenience, we denote the solutions of systems (15) and (16) with initial
value φ = (φ1, φ2, φ3) by Ut(φ) = (ut(φ), νt(φ), ωt(φ)) and xt(φ) = (Xt(φ), Yt(φ),
Zt(φ)), respectively.

Since we do not obtain the positivity of solutions of model (7) satisfying any positive
initial condition, the global dynamics of solutions for model (7) at present cannot be
investigated. Therefore, we here consider the local dynamical behavior of solutions for
model (7) around the nonnegative equilibrium of corresponding deterministic model (14).
Especially, we will mainly discuss the local stability in probability. For this purpose,
we introduce the following definitions for the stability in probability, the mean-square
stability and the asymptotic mean-square stability for systems (15) and (16), respectively.

Definition 1. (See [22].) The zero solution of system (15) is said to be stable in prob-
ability if for any ε > 0 and ε1 > 0 there exists δ > 0 such that the solution Ut(φ)
of system (15) satisfies the inequality P{supt∈Z |Ut(φ)| > ε} < ε1 for any initial
function (9) such that P{|φ| < δ} = 1.

Definition 2. (See [22].)

(i) The zero solution of system (16) is called to be mean-square stable if for each
ε > 0, there exists δ > 0 such that E|xt(φ)|2 < ε, t ∈ Z, for any initial function
(9) such that E|φ|2 < δ.

(ii) The zero solution of system (16) is called to be asymptotically mean-square stable
if the zero solution is mean-square stable and each solution xt(φ) of system (16)
has limt→∞E|xt(φ)|2 = 0.

For any nonnegative function Vt = V (t, xt), t ∈ Z, we define the difference ∆Vt =
Vt+1 − Vt = V (t + 1, xt+1) − V (t, xt) (see [23]). We have the following Lyapunov
function type criteria for the stability in probability, the mean-square stability and the
asymptotic mean-square stability for systems (15) and (16), respectively.

Lemma 4. (See [22, 23].) For system (15), there exists a function Vt = V (t, Ut), t ∈ Z,
satisfying the conditions

V (t, Ut) > c0|Ut|2, (19)

EV (0, φ) 6 c1|φ|2, (20)
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where c0 and c1 are positive constants, and

E∆Vt 6 0, t ∈ Z. (21)

Then the zero solution of system (15) is stable in probability.

Lemma 5. (See [22, 23].) For linear system (16), there exists a nonnegative function
Vt = V (t, xt), t ∈ Z, satisfying conditions (20) and

E∆Vt 6 −c2E|xt|2, t ∈ Z, (22)

where c2 > 0 is a constant. Then the zero solution of system (16) is asymptotically mean-
square stable.

Furthermore, from Remark 7.9 given in [22] we easily see that if there exists a function
Vt, which satisfies conditions (19), (20) and (22) for the corresponding linearized sys-
tem (16), then this function Vt also satisfies condition (21) for original system (15). This
shows that in order to obtain the stability in probability of the zero solution for original
system (15), it is enough by virtue of some function Vt, which satisfies conditions (19),
(20) and (22) to get sufficient conditions for asymptotic mean-square stability of the zero
solution for the corresponding linearized system (16).

3 Stability in probability

In this section, we consider the general forms of system (16) in the following linear
stochastic difference system:

Xt+1 = b11Xt + b12Yt + b13Zt + σ1
√
iXtη

(1)
t+1,

Yt+1 = b21Xt + b22Yt + σ2
√
iYtη

(2)
t+1,

Zt+1 = b31Xt + b33Zt + σ3
√
iZtη

(3)
t+1.

(23)

Let

B =

b11 b12 b13
b21 b22 0
b31 0 b33

 , ϕ(ηt) =

σ1
√
iη

(1)
t 0 0

0 σ2
√
iη

(2)
t 0

0 0 σ3
√
iη

(3)
t

 . (24)

Denote xt = (Xt, Yt, Zt), then system (23) can be rewritten in the following vector form:

xt+1 =
(
B + ϕ(ηt+1)

)
xt.

For any symmetric matrices E and F , we define that E > F if E − F is a positive
definite matrix. Let

D =

d11 d12 d13
d12 d22 d23
d13 d23 d33


be a semipositive definite matrix. Then we have dkk > 0 for k = 1, 2, 3.
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Theorem 1. Suppose that there exists a semipositive definite matrix D such that

D −BTDB >

σ2
1id11 0 0

0 σ2
2id22 0

0 0 σ2
3id33

 . (25)

Then the zero solution of system (23) is asymptotically mean-square stable.

Proof. We first denote

P = D −BTDB =

p11 p12 p13
p12 p22 p23
p13 p23 p33

 . (26)

Define Lyapunov function Wt = xTt Dxt. We have

∆Wt = Wt+1 −Wt = xTt+1Dxt+1 − xTt Dxt.

By (3) we can obtain

∆Wt = xTt
((
B + ϕ(ηt+1)

)T
D
(
B + ϕ(ηt+1)

)
−D

)
xt

= xTt
(
−P + ϕT(ηt+1)Dϕ(ηt+1)

)
xt,

where

ϕT(ηt+1)Dϕ(ηt+1)

=

 σ2
1i(η

(1)
t+1)2d11 σ1σ2iη

(1)
t+1η

(2)
t+1d12 σ1σ3iη

(1)
t+1η

(3)
t+1d13

σ1σ2iη
(1)
t+1η

(2)
t+1d12 σ2

2i(η
(2)
t+1)2d22 σ2σ3iη

(2)
t+1η

(3)
t+1d23

σ1σ3iη
(1)
t+1η

(3)
t+1d13 σ2σ3iη

(2)
t+1η

(3)
t+1d23 σ2

3i(η
(3)
t+1)2d33.

 .

Furthermore, we have

−P + ϕT(ηt+1)Dϕ(ηt+1) =

c11 c12 c13
c12 c22 c23
c13 c23 c33

 ,

where

c11 = −p11 + σ2
1i
(
η
(1)
t+1

)2
d11, c12 = −p12 + σ1σ2iη

(1)
t+1η

(2)
t+1d12,

c13 = −p13 + σ1σ3iη
(1)
t+1η

(3)
t+1d13, c22 = −p22 + σ2

2i
(
η
(2)
t+1

)2
d22,

c23 = −p23 + σ2σ3iη
(2)
t+1η

(3)
t+1d23, c33 = −p33 + σ2

3i
(
η
(3)
t+1

)2
d33.

Then we have

∆Wt =
(
Xt Yt Zt

)c11 c12 c13
c12 c22 c23
c13 c23 c33

Xt

Yt
Zt


= c11X

2
t + 2c12XtYt + 2c13XtZt + c22Y

2
t + 2c23YtZt + c33Z

2
t .
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Calculating the expectation of ∆Wt, we can obtain

E∆Wt = E
(
c11X

2
t + 2c12XtYt + 2c13XtZt + c22Y

2
t + 2c23YtZt + c33Z

2
t

)
.

By (8) we have Ec11 = −p11 + σ2
1id11, Ec12 = −p12,Ec13 = −p13, Ec22 = −p22 +

σ2
2id22, Ec23 = −p23 and Ec33 = −p33 + σ2

3id33. Let

m = min
{
p11 − σ2

1id11, p12, p13, p22 − σ2
2id22, p23, p33 − σ2

3id33
}
.

Then
E∆Wt 6 −mE|xt|2.

This completes the proof.

Remark 2. Based on (26), we further obtain that condition (25) is equivalent to

p11 − σ2
12id11 > 0,

(
p11 − σ2

1id11
)(
p22 − σ2

2id22
)
− p212 > 0,(

p11 − σ2
1id11

)(
p22 − σ2

2id22
)(
p33 + σ2

3id33
)
− p223

(
p11 − σ2

1id11
)

− p212
(
p33 − σ2

3id33
)
− p213

(
p22 − σ2

2id22
)

+ 2p12p13p23 > 0.

(27)

Assume R0 > 1. We consider linearized system (18). According to system (23), we
can obtain that matrix B in (24) is given by

B =

b1 b3 εi
b0 b2 0
pi 0 bε

 , (28)

where b0 = β(∂f(S∗, I∗)/∂u)i, b1 = 1− b0− (µ+ p)i, b2 = 1 +β(∂f(S∗, I∗)/∂ν)i−
(µ + γ + α)i, b3 = (γ − β(∂f(S∗, I∗)/∂ν))i and bε = 1 − (µ + ε)i. From (26) we
further get

−p11 = b20d22 + 2b1b0d12 + 2b0pid23 +
(
b21 − 1

)
d11 + 2b1pid13 + p2i2d33,

−p12 = b1b3d11 + (b2b1 + b3b0 − 1)d12 + b0b2d22 + b2pid23 + b3pid13

+ b0b3d33,

−p13 = b1εid11 +
(
b1bε + pεi2 − 1

)
d13 + pibεd33 + b0εid12 + b0bεd23,

−p22 = b23d11 + 2b2b3d12 +
(
b22 − 1

)
d22,

−p23 = b3εid11 + b2εid12 + b3bεd13 + (bεb2 − 1)d23,

−p33 = ε2i2d11 + 2bεεid13 +
(
b2ε − 1

)
d33.

(29)

Furthermore, based on condition (27), we can obtain conclusion as follows.

Theorem 2. For the coefficient matrix (28) of system (18), assume that R0 > 1, and
there is a semidefinite D such that condition (27) is satisfied with coefficients pij (i, j =
1, 2, 3) defined in (29). Then the zero solution of system (18) is asymptotically mean-
square stable. Moreover, endemic equilibrium E∗ = (S∗, I∗, V ∗) of model (7) is stable
in probability.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


The stability of a stochastic discrete SIVS epidemic model 87

Particularly, when f(S, I) = SI/(S + I) (standard incidence), we have

B =

 b4 b6 εi
b0s b5 0
pi 0 bε

 , (30)

where b0s = β(I∗/(S∗ + I∗))2i, b4 = 1 − β(I∗/(S∗ + I∗))2i − (µ + p)i, b5 = 1 +
β(S∗/(S∗ + I∗))2i − (µ + γ + α)i and b6 = (γ − β(S∗/(S∗ + I∗))2)i. From (29) it
follows that

−p11 =
(
b24 − 1

)
d11 + b20sd22 + 2b4b0sd12 + 2b4pid13 + 2b0spid23 + p2i2d33,

−p12 = b4b6d11 + b0sb5d22 + [b4b5 + b6b0s − 1]d12 + b6pid13

+ b5pid23 + b0sb6d33,

−p13 = b4εid11 +
(
b4bε + pεi2 − 1

)
d13 + pibεd33 + b0sεid12 + b0sbεd23,

−p22 = b26d11 +
(
b25 − 1

)
d22 + 2b5b6d12,

−p23 = b6εid11 + (bεb5 − 1)d23 + b5εid12 + b6bεd13,

−p33 = ε2i2d11 + 2bεεid23 +
(
b2ε − 1

)
d33.

(31)

When f(S, I) = SI/(1 + ω1I + ω2S) with constants ω1 > 0 and ω2 > 0 (Bed-
dington–DeAngelis incidence), we have

B =

 bΩI∗ (γ − βS∗ΩS∗)i εi
βI∗ΩI∗i bΩS∗ 0

pi 0 1− (µ+ ε)i

 , (32)

where bΩI∗ = 1− βI∗ΩI∗i− (µ+ p)i, bΩS∗ = 1 + βS∗ΩS∗i− (µ+ γ + α)i, ΩS∗ =
(ω2S

∗+ 1)/(1 +ω1I
∗+ω2S

∗)2 and ΩI∗ = (ω1I
∗+ 1)/(1 +ω1I

∗+ω2S
∗)2. From (29)

it follows that

−p11 =
(
b2ΩI∗

− 1
)
d11 + 2bΩI∗βI

∗ΩI∗id12 + 2bΩI∗pid13 + (βI∗ΩI∗i)
2d22

+ 2βI∗ΩI∗pi
2d23 + p2i2d33,

−p12 = bΩI∗ γ̄id11 + (γ − βS∗ΩS∗)pi2d13 + βI∗ΩI∗ibΩS∗d22 + bΩS∗pid23

+
(
bΩI∗ bΩS∗ + γ̄βI∗ΩI∗i

2 − 1
)
d12 + βI∗ΩI∗i

2γ̄d33,

−p13 = bΩI∗ εid11 + βI∗ΩI∗εi
2d12 + pibεd33 +

(
bΩI∗ bε + pεi2 − 1

)
d13

+ βI∗ΩI∗ibεd23,

−p22 = γ̄2i2d11 +
(
b2ΩS∗ − 1

)
d22 + 2bΩS∗ γ̄id12,

−p23 = γ̄i2εd11 + (bεbΩS∗ − 1)d23 + bΩS∗ εid12 + γ̄ibεd13,

−p33 = ε2i2d11 + 2bεεid23 +
(
b2ε − 1

)
d33,

(33)

where γ̄ = γ − βS∗ΩS∗ .
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When f(S, I) = SI/(1 + ωI2) with constant ω > 0 (a nonmonotonic incidence), we
have

B =

 b7 b9 εi
b0n b8 0
pi 0 bε

 ,

where b0n = (βI∗/(1 + ωI∗2))i, b7 = 1 − (βI∗/(1 + ωI∗2))i − (µ + p)i, b8 =
1 + (βS∗(1− ωI∗2)/(1 + ωI∗2)2)i − (µ + γ + α)i and b9 = (γ − βS∗(1− ωI∗2)/
(1 + ωI∗2)2)i. From (29) it follows that

−p11 =
(
b27 − 1

)
d11 + 2b7pid13 + p2i2d33 + 2b7b0nd12 + b20nd22

+ 2pib0nd23,

−p12 = b0nb8d22 + b0nb9d33 + (b7b8 + b9b0n − 1)d12 + b7b9d11

+ b9pid13 + b8pid23,

−p13 = b7εid11 + εib0nd12 + pibεd33 +
(
bεb7 + pεi2 − 1

)
d13 + bεb0nd23,

−p22 = b29d11 +
(
b28 − 1

)
d22 + 2b8b9d12,

−p23 = b9εid11 + [bεb8 − 1]d23 + b8εid12 + b9bεd13,

−p33 = ε2i2d11 + 2bεεid23 + (b2ε − 1)d33.

Next, we assume R0 < 1 and consider linearized system (17). According to sys-
tem (23), we can obtain that matrix B in (24) is given by

B =

bp b11 εi
0 b10 0
pi 0 bε

 , (34)

where bp = 1 − (µ + p)i, b10 = 1 + β(∂f(S0, 0)/∂ν)i − (µ + γ + α)i, b11 = (γ −
β∂f(S0, 0)/∂ν)i. By (26) we can get

−p11 =
(
b2p − 1

)
d11 + 2bppid13 + p2i2d33,

−p12 = bpb11d11 + b11pid13 + (bpb10 − 1)d12 + b10pid23,

−p13 = bpεid11 + pibεd33 +
[
(µ+ p)(µ+ ε)i− (2µ+ ε+ p)

]
id13,

−p22 = b211d11 + 2b10b11d12 +
(
b210 − 1

)
d22,

−p23 = b11εid11 + (bεb10 − 1)d23 + b10εid12 + b11bεd13,

−p33 = εi2d11 + 2bεεid23 +
(
b2ε − 1

)
d33.

(35)

Thus, based on condition (27), we can obtain the following conclusion.

Theorem 3. For the coefficient matrix (34) of system (17), assume that R0 < 1, and
there is a semidefinite matrix D such that condition (27) is satisfied with coefficients pij
(i, j = 1, 2, 3) defined in (35). Then the zero solution of system (17) is asymptotically
mean-square stable. Moreover, disease-free equilibrium E0 = (S0, 0, V 0) of model (7)
is stable in probability.
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Particularly, when f(S, I) = SI/(S + I), we have

B =

bp (γ − β)i εi
0 b12 0
pi 0 bε

 ,

where b12 = 1 + βi− (µ+ γ + α)i. From (35) it follows that

−p11 =
(
b2p − 1

)
d11 + 2bppid13 + p2i2d33,

−p12 = bp(γ − β)id11 + (γ − β)i2pd13 + (bpb12 − 1)d12 + b12pid23,

−p13 = bpεid11 + pibεd33 +
[
(µ+ p)(µ+ ε)i− (2µ+ ε+ p)

]
id13,

−p22 = (γ − β)2i2d11 + 2b12(γ − β)id12 +
(
b212 − 1

)
d22,

−p23 = (γ − β)εi2d11 + (bεb12 − 1)d23 + b12εid12 + (γ − β)ibεd13,

−p33 = εi2d11 + 2bεεid23 +
(
b2ε − 1

)
d33.

When f(S, I) = SI/(1 + ω1I + ω2S) with constants ω1 > 0 and ω2 > 0, we have

B =

bp b14 εi
0 b13 0
pi 0 bε

 , (36)

where b14 =(γ−βS0/(1+ω2S
0))i, b13 =1−(µ+b14+α)i. From (35) it follows that

−p11 =
(
b2p − 1

)
d11 + 2bppid13 + p2i2d33,

−p12 = bpb14d11 + b14pid13 + (bpb13 − 1)d12 + b13pid23,

−p13 = bpεid11 + pibεd33 +
[
(µ+ p)(µ+ ε)i− (2µ+ ε+ p)

]
id13,

−p22 = b214d11 + 2b13b14d12 +
(
b213 − 1

)
d22,

−p23 = b14εid11 + (bεb13 − 1)d23 + b13εid12 + b14bεd13,

−p33 = εi2d11 + 2bεεid23 +
(
b2ε − 1

)
d33.

(37)

When f(S, I) = SI/(1 + ωI2) with constant ω > 0, we have

B =

bp (γ − βS0)i εi
0 b15 0
pi 0 bε

 , (38)

where b15 = 1 + βS0i− (µ+ γ + α)i. From (35) it follows that

−p11 =
(
b2p − 1

)
d11 + 2bppid13 + p2i2d33,

−p12 = bp
(
γ − βS0

)
id11 +

(
γ − βS0

)
i2pd13 + (bpb15 − 1)d12 + b15pid23,

−p13 = bpεid11 + pibεd33 +
[
(µ+ p)(µ+ ε)i− (2µ+ ε+ p)

]
id13,

−p22 =
(
γ − βS0

)2
i2d11 + 2b15

(
γ − βS0

)
id12 +

(
b215 − 1

)
d22,

−p23 =
(
γ − βS0

)
εi2d11 + (bεb15 − 1)d23 + b15εid12 +

(
γ − βS0

)
ibεd13,

−p33 = εi2d11 + 2bεεid23 +
(
b2ε − 1

)
d33.

(39)

Nonlinear Anal. Model. Control, 28(1):74–96, 2023

https://doi.org/10.15388/namc.2023.28.29928


90 B. Wen et al.

4 Numerical examples

In this section, we give the numerical examples to illustrate the above theoretical results.
In all figures the blue line represents the trajectory of the deterministic discrete model,
and the red line represents the trajectory of the stochastic discrete model. Throughout this
section, we take the positive define matrix

P =

1 0 0
0 1 0
0 0 1

 . (40)

From (27) we let

K1 = p11 − σ2
1id11, K2 =

(
p11 − σ2

1id11
)(
p22 − σ2

2id22
)
,

K3 =
(
p11 − σ2

1id11
)(
p22 − σ2

2id22
)(
p33 + σ2

3id33
)
.

(41)

Under the same parameters, the trajectory of stochastic discrete model (such as the white
noise intensities σ1 = σ2 = σ3 = 0.3) will be stable at the endemic equilibrium of
corresponding deterministic discrete model. All trajectories of model (7) are stable to
endemic equilibrium E∗(S∗, I∗, V ∗) or disease-free equilibrium E0 = (S0, 0, V 0) (see
Figs. 1–8).

Example 1. We take parameters A = 4, q = 0.2, ε = 0.5, α = 0.2, p = 0.15 and
µ = 0.04 in model (7). The numerical simulations of solution (St, It, Vt) with initial
value (S0, I0, V0) = (80, 10, 30) are given in Figs. 1 and 3. The numerical simulations of
solution (St, It, Vt) with different initial value (S0, I0, V0) are given in Figs. 2 and 4.

(i) Choose f(S, I) = SI/(S + I), and parameters β = 0.6 and γ = 0.2. By
calculating we have R0 = 1.3636 > 1 and endemic equilibrium E∗ = (S∗, I∗, V ∗) =
(28.4769, 10.3552, 9.3917). According to (30), we can obtain the following matrix B.
Furthermore, by (26), (31), (40) and matrix B we can solve the semipositive definite
matrix D as follows:

B =

0.9767 −0.0123 0.0500
0.0043 0.9883 0
0.0150 0 0.9460

 , D =

 1.0501 0.0086 −0.0727
0.0086 1.0239 −0.0007
−0.0727 −0.0007 1.1222

 .

Then by (41) we have K1 = 0.9912 > 0, K2 = 0.9913 > 0 and K3 = 0.9914 > 0.
Thus, all conditions in Theorem 2 are satisfied. This means that endemic equilibrium
E∗ = (S∗, I∗, V ∗) is stable in probability. The numerical simulations are given in Figs. 1
and 2.

(ii) Choose f(S, I) = SI/(1 + ω2S + ω1I), where ω2 = ω1 = 0.1, and parameters
β = 0.2 and γ = 0.7. By calculating we haveR0 = 1.8834 > 1 and endemic equilibrium
E∗ = (S∗, I∗, V ∗) = (19.7071, 12.2229, 6.9557). According to (32), we can obtain the
following matrix B. Furthermore, by (26), (33), (40) and matrix B
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Figure 1. It shows that limt→∞(St, It, Vt) = (28.4769, 10.3552, 9.3917) a.s.

Figure 2. Numerical simulations of solution (St, It, Vt) with initial value (S0, I0, V0), where S0 = 10, 30
and 50, I0 = 5, 10 and 15 and V0 = 5, 20 and 35, respectively. It shows that limt→∞(St, It, Vt) =
(28.4769, 10.3552, 9.3917) a.s.

Figure 3. It shows that limt→∞(St, It, Vt) = (19.7071, 12.2229, 6.9557) a.s.

Figure 4. Numerical simulations of solution (St, It, Vt) with initial value (S0, I0, V0), where S0 = 10, 50
and 90, I0 = 5, 15 and 25 and V0 = 5, 20 and 35, respectively. It shows that limt→∞(St, It, Vt) =
(19.7071, 12.2229, 6.9557) a.s.
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we can solve semipositive definite matrix D as follows:

B =

0.9501 0.0034 0.0500
0.0309 0.9726 0
0.0150 0 0.9460

 , D =

 1.1113 −0.0383 −0.0764
−0.0383 1.0574 0.0021
−0.0764 0.0021 1.1224

 .

Then by (41) we have K1 = 0.9914 > 0, K2 = 0.9915 > 0 and K3 = 0.9916 > 0.
Thus, all conditions in Theorem 2 are satisfied. This means that endemic equilibrium
E∗ = (S∗, I∗, V ∗) is stable in probability. The numerical simulations are given in Figs. 3
and 4.

In addition, choosing f(S, I) = SI/(1 + ωI2), where ω = 0.1, and parameters
β = 0.2 and γ = 0.7, then by the similar arguments as in the above we can obtain that
endemic equilibrium E∗ = (S∗, I∗, V ∗) is stable in probability.

Example 2. We take parameters A = 2, q = 0.2, ε = 0.5, α = 0.5, p = 0.3, β = 0.1,
µ = 0.1, γ = 0.7 and ω = ω1 = ω2 = 0.1 in model (7). The numerical simulations of
solution (St, It, Vt) with initial value (S0, I0, V0) = (20, 16, 6) are given in Figs. 5 and 7.
By (10) we have disease-free equilibrium E0 = (S0, 0, V 0) = (12.8889, 0, 7.1111).
The numerical simulations of solution (St, It, Vt) with initial value (S0, I0, V0), where
S0 = 10, 20 and 30, I0 = 6, 16 and 26 and V0 = 1, 6 and 11, respectively, are given in
Figs. 6 and 8.

(i) Choose f(S, I) = SI/(1+ω2S+ω1I). By calculating we haveR0 = 0.7320 < 1.
According to (36), we can obtain the following matrixB. Furthermore, by (26), (37), (40)
and matrix B we can solve semipositive definite matrix D as follows:

B =

0.9600 0.0137 0.0500
0 0.9263 0

0.0300 0 0.9400

 D =

 1.0898 −0.0161 −0.0934
−0.0161 1.1657 0.0014
−0.0934 0.0014 1.1386

 .

Then by (41) we have K1 = 0.9914 > 0, K2 = 0.9914 > 0, K3 = 0.9915 > 0.
Thus, all conditions in Theorem 3 are satisfied. This means that disease-free equilibrium
E0 = (S0, 0, V 0) is stable in probability.

(ii) Choose f(S, I) = SI/(1 + ωI2). By calculating we have R0 = 0.9915 < 1.
According to (38), we can obtain the following matrix B. Furthermore, by (26), (39),
(40) and matrix B, we can solve semipositive definite matrix D as follows:

B =

0.9600 −0.0589 0.0500
0 0.9989 0

0.0300 0 0.9400

 , D =

 1.0898 0.0642 −0.0934
0.0642 1.0060 −0.0055
−0.0934 −0.0055 1.1386

 .

Then by (41) we have K1 = 0.9914 > 0, K2 = 0.9914 > 0, K3 = 0.9915 > 0.
Thus, all condition in Theorem 3 are satisfied. This means that disease-free equilibrium
E0 = (S0, 0, V 0) is stable in probability.

In addition, choosing f(S, I) = SI/(S + I), by the similar arguments as in the above
we can obtain that disease-free equilibrium E0 = (S0, 0, V 0) is stable in probability.
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Figure 5. It shows that limt→∞(St, It, Vt) = (12.8889, 0, 7.1111) a.s.

Figure 6. It shows that for different initial values, we also have limt→∞(St, It, Vt) = (12.8889, 0, 7.1111)
a.s.

Figure 7. It shows that limt→∞(St, It, Vt) = (12.8889, 0, 7.1111) a.s.

Figure 8. It shows that for different initial values, we also have limt→∞(St, It, Vt) = (12.8889, 0, 7.1111)
a.s.
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5 Conclusion

In this paper, we investigated a stochastic discrete SIVS epidemic model with general
nonlinear incidence and vaccination. The model is proposed through discretizing the
corresponding continuous-time stochastic differential equation model by means of Euler–
Marryma method and the theory of random white noise disturbance. Firstly, the criterion
on the asymptotic mean-square stability of zero solution for the general linear stochastic
difference system is established. Next, as the applications of this criterion, the sufficient
conditions on the stability in probability of the unique endemic and disease-free equilibria
for the stochastic discrete SIVS epidemic model with general nonlinear incidence are
further established. Moreover, the stability in probability of the equilibria for stochastic
discrete SIVS epidemic models with some special nonlinear incidences such as standard
incidence, Beddington–DeAngelis incidence and a nonmonotonic incidence also are dis-
cussed. Lastly, the numerical simulations are presented to illustrate the above theoretical
results.

In the future, we can investigate the some other properties for this stochastic discrete
SIVS epidemic model, such as the stochastic extinction and persistence of disease, the
global stochastic stability of equilibrium and the stochastic dynamical complexity, etc.
Furthermore, the method which is introduced in this paper whether can be extended to
some other kind of stochastic discrete epidemic models also is interesting open problem.
Moreover, according to the actual situation of the transmission of a specific infectious
disease in a fixed area, the comprehensive effects of rain, wind and high temperature are
fully considered, and the model proposed in this paper is tested through the actual data
given by the literature or official.
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