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Abstract. In this paper, based on Euler—-Marryama method and theory of stochastic processes,
a stochastic discrete SIVS epidemic model with general nonlinear incidence and vaccination
is proposed by adding random perturbation and then discretizing the corresponding stochastic
differential equation model. Firstly, the basic properties of continuous and discrete deterministic
SIVS epidemic models are obtained. Then a criterion on the asymptotic mean-square stability of
zero solution for a general linear stochastic difference system is established. As the applications of
this criterion, the sufficient conditions on the stability in probability of the disease-free and endemic
equilibria for the stochastic discrete SIVS epidemic model are obtained. The numerical simulations
are given to illustrate the theoretical results.

Keywords: stochastic discrete SIVS epidemic model, nonlinear incidence, vaccination, mean-
square stability, stability in probability.

1 Introduction

Infectious diseases have always been the enemy of human health. The repeated epidemic
of infectious diseases has brought great disasters to human survival and the national
economy and people’s livelihood. It has been confirmed that vaccination is an impor-
tant strategy for the control and elimination of infectious diseases. Many scholars have
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investigated various types of epidemic models with vaccination (see e.g. [3-5,13, 15, 16,
30-33,35]). Especially, in [13] the authors investigated the following SIS epidemic model
with vaccination:

S(t) =1 —q)A—BSH)I() = (n+p)S(Et) +~I(t) +eV(1),
I(t) = BSOI(t) — (n+y +a) (1), (1)
V(t) = qA+pS(t) — (u+e)V(t).

It is well known that the incidence rate of diseases is an important part of epidemic
models. In many practicality the nonlinear incidence is frequently used for achieving more
exact results. Many epidemic models with nonlinear incidence have been widely studied
(see e.g. [2-4,8,10,12,14-17,24,26,28]). Particularly, as an extension of model (1), we
consider the following epidemic model with general nonlinear incidence:

S(t) = (1—q)A— BF(S(t), I(t)) = (n+p)S(t) +7I(t) + €V (1),
I(t) = BF(S(0), I(t)) — (p+ 7 + ) (1), )
V(t) = qA+pS(t) — (u+e)V(1).

where S(t), I(t) and V (¢) represent the numbers of susceptible, infectious and immune
at time ¢, respectively; A is the recruitment of new numbers into the population; g is
a fraction of vaccinated for new number; [ represents the disease transmission coefficient;
w stands for the natural death rate of the population; v is the recovery of infectious;
p represents the proportional coefficient of vaccinated for the susceptible; ¢ denotes the
rate of losing their immunity for vaccinated individuals; o denotes the disease-caused
death rate of infectious; f (.S, I') represents the nonlinear incidence.

In the real world, epidemic models are always affected by the environmental white
noise, which is an important component in an ecosystem. In [29,34] the authors concluded
that climate change and natural disasters, including floods, locusts, earthquakes, wind and
frost, have different impacts on infectious diseases (cholera, typhoid, malaria, etc.) in
different periods and regions of China. All these factors can be described by random in
biological mathematics. Therefore, lots of scholars have studied the stochastic epidemic
models (see e.g. [1-4,6,7,9,10, 12, 14-18,22-24,26, 28, 35]).

Let ET = (ST,I1, V™) be an nonnegative equilibrium of deterministic model (2).
Consider the environmental white noise effects on model (2). We assume that the dis-
turbance of white noise around equilibrium ET and the degree of disturbance for each
component S, I and V is proportional to S(¢t)—S™, I(t)—It and V (t)—V*, respectively.
Thus, in this paper, we propose the following stochastic SVIS epidemic model:

dS(t) = [(1 = q)A = BF(S(t). I(t)) — (u+p)S(t) +~I(t) + eV (t)]dt
+ 01 (S(t) — ST)dBi(t),

dI(t) = [Bf(S®),1(t)) — (u+~v+ a)I(t)]dt + oo (I(t) — IT)dBa(t),

AV (t) = [qA+pS(t) — (n+e)V()]dt + o5(V(t) — VT)dBs(t),

3)
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where parameters ¢, A, 3, i, p, 7, € and « are defined as in model (2). By (¢) (k = 1,2,3)
are independent standard Brownian motions with By, (0) = 0, and o; denotes the intensity
of B k (t)

According to the discretization characteristics of computer numerical calculation, the
statistic data about infectious disease is collected by day, week, month or year, then it
is more direct, more convenient and more accurate to describe the epidemic by using
the discrete-time models than the continuous-time models. Currently, there are various
discretization methods to discretize a continuous model, including the standard methods,
such as Euler method, Runge—Kutta method, some other standard and nonstandard finite
difference scheme (see e.g. [6,7,11,19-23,27]).

By using the Euler—-Marryama discretization method (see e.g. [6,7,22]) we can dis-
cretize stochastic model (3) in the following pattern. In model (3), we choose a time
step size i > 0. For any t > 0, since S(t) = lim;_,0(S(t + i) — S(t))/4, I(t) =
limg o (I(t +14) — I(t))/i, V() = lim;_o(V (t + i) — V(t))/i, we can assume that for
small enough ¢ > 0, take dt = ¢, and

ds(t) =S5t +1) = S(t),
dI(t) = I(t+1) = 1(t), )
dV(t) =V (t+1i) — V(t).
In addition, for the standard Brownian motions By (t) (k = 1,2,3), we also can as-

sume that dBy(t) = By (t + 1) — Bg(t) and By (t + 1) — Bg(t) ~ N(0,1), that is,
By (t + i) — By(t) satisfies the normal distribution with mean value 0 and variance .
Through standardization, we can transform normal distribution N (0,¢) into standard
normal distribution N (0, 1). Then we can obtain that ( By (t+i) — B (t))/vi ~ N(0,1).
Let nt(i)l (k = 1,2,3) is a family of independent random sequences obeying normal
distribution N(0,1). Then By (t + i) — Bg(t) = ﬂnt(i)l (k = 1,2,3). Therefore, we
further have

dBy(t) = Br(t + i) — Bu(t) = Vin™,, k=1,2,3. (5)
Furthermore, for the convenience of statements, we denote

S(t+i):St+17 I(t+i):It+1, V(t+l):‘/;g+1,

S(t) =5, I(t) = I, V(t)=V,. (6)

Substituting (4)—(6) into model (3), we finally establish the following discretization model:
Siy1 =St + [(1—q)A— BF(Se, It) = (1 +p)Se + 71 + Vi)
+ Gl\fi(St - )7715217 7
Lipr = I+ [BF(Se. 1) — (n+ v + @) L)i + oo Vi (L — 7))
Viger = Vi + [qA+pS; — (M—i-E)Vt]i—i—og\ﬂ(Vt— )m(i)p

where t € Z = {0,1,2,...}, the set of all nonnegative integers.

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

The stability of a stochastic discrete SIVS epidemic model 77

In this paper, our main purpose is to investigate the dynamical behavior of model (7).
This paper is organized as follows. In Section 2, we introduce some useful lemmas and
definitions. In Section 3, we first state and prove a criterion on the asymptotic mean-square
stability for a general stochastic discrete linear system. Then the sufficient conditions of
stability in probability for disease-free and endemic equilibria of stochastic discrete SIVS
epidemic model (7) are established. Furthermore, the stability in probability for stochastic
discrete SIVS epidemic models with standard incidence, Beddington—-DeAngelis inci-
dence and a nonmonotonic incidence also are discussed. In Section 4 the numerical
examples are presented. Finally, in Section 5 a brief conclusion is given.

2 Preliminaries

Throughout this paper, we assume that model (7) is defined on a complete probabilit;r
space (£2,{Fi}t>0,P) with a filtration {F;}:>¢ satisfying the usual conditions. 77$1
(k = 1,2,3) is a family of independent random sequences obeying normal distribution
N(0,1), and F; is produced by nt(i)l (k =1,2,3) (see [22]). For stochastic variables nt(k)

(k = 1,2, 3), the expectation E satisfies
k )\ 2 k) (j )
B =0, E@®)’ =1, Ep"n? =0 (k#)) (8)
We consider model (7) with an Fy-adapted initial function
So = ¢1, Iy = ¢, Vo = ¢s. 9)
In addition, we introduce the following assumption.

(H) f(S,I) is nonnegative and continuously differentiable for any S > 0, I > 0
and S + I > 0. For each fixed I > 0, f(S,I) is increasing for S > 0, and
SupPg~g, 1501/ (S: 1)} < B < oc. Foreach fixed S > 0, f(S, )/1 is decreasing
for I > 0. In addition, f(S,0) = f(0,1) =0forany S > 0and I > 0.

Remark 1. If f(S,I) = SI/(S+1I) (standard incidence), f(S,I) = SI/(1+w1I+w2S)
(Beddington—-DeAngelis incidence) with constants w; > 0 and ws > 0, and f(S,1) =
ST/(1+ wI?) (nonmonotonous incidence) with constant w > 0, then (H) is satisfied.

Let (S(t),I(t), V(t)) be any solution of model (2) with positive initial value (5(0),
1(0),V(0)). We easily prove that the solution (S(t), I(t), V(t)) is defined for all ¢ > 0
and is positive. Model (2) always has a disease-free equilibrium

_ (A —-qgute)  Algu+p)
EO_(SO’O’VO)_( u(p+p+e) ’O’M(u+p+6)>' (10

Following the next generation matrix method (see [25]), we calculate the basic reproduc-
tion number Ry of model (2). Let

. <ﬁf<s<t>,f<t>>> oyl ((u ++ a)f(t)) |

qA +pS(t) (n+2)V (1)

Nonlinear Anal. Model. Control, 28(1):74-96, 2023
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Calculating the Jacobian matrices of F and V at equilibrium E°, we have

0
o (BESEY 0 o (ntyta 0\
0 0/’ 0 e

Then we can obtain the basic reproduction number R, of model (2) as follows:

~ Baf(s",o)
Ry=p(FV') = —2L
n+v+a

On the existence of endemic equilibrium for model (2), we give the following lemma.

Lemma 1. If Ry > 1, then model (2) has a unique endemic equilibrium E* = (S* I*, V™),
where

pp+e+p)  plp+e+p)
pro9A | plpte—gmA  plpte) .
pte  (p+e)ulp+e+p) plp+e+p)

and I is the unique positive solution of the equation

(nt+e—gu)A—(p+a)(pt+e)l”
Bf( p(p+ e+ p)

Proof. The endemic equilibrium E* = (S*, I*, V*) of model (2) satisfies the equations

)

(11

,I*) —(p+v+a)*=0. (12)

(1—q)A—Bf(S*T") — (u+p)S* +~I" +eV* =0,
BISHTT) = (4 +a)* =0,
qA+pS* — (p+¢e)V* =0.

By calculating we obtain

(nta)(pt+e) .

ye= $ATPT g g0 ta)lute) .
pte p(p+ e +p)
and ™ satisfies
(p+a)(p+e) . .. .
B<SOI,I —(p+y+a)I* =0.
! p(p+ e +p) (7 +a)

Let

_ C(pta)(ute) 1 N
H(I)—Bf(SO N LI)I (447 +a).

Assumption (H) implies that H (1) is decreasing for I > 0. When Ry > 1,

lim H(I) = BM

lim 57 —(u+v+a)>0.

https://www.journals.vu.lt/nonlinear-analysis
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Since

( A(p +e — pg)
(u+a)(p+e)
there exists a unique / = I* > 0 such that H(I*) = 0. Therefore, model (2) has a unique

endemic equilibrium E* = (S*,I*,V*) satisfying (11) and (12). This completes the
proof. O

)—(u+’y+a)<0,

Furthermore, on the stability of equilibria for model (2), we have the following result.

Lemma 2.

() If Ry < 1, then disease-free equilibrium E° of model (2) is locally asymptotically
stable, otherwise, if Ry > 1, then E° is unstable.
(ii) If Ro > 1, then endemic equilibrium E* is locally asymptotically stable.

Proof. For equilibrium E°, we have the Jacobian matrix at E° as follows:

0
. —(p+n) —B oI + €
J(E®) = 0 BL(@SI’O)—(a+7+u) 0
p 0 —(e+p)
Then the characteristic equation of J(E°) is
)\3+a1)\2+a2)\—|—a3:0, (13)

where
ap=p+p+(a+v+p)(l—Ry)+e+p,
az = (p+p)(e+p) + (p+e+2u)(a+vy+p)(l - Ro),
ag = [(p+ p)(e + p) + pe] (@ + 7+ p)(1 — Ro).

Clearly, if Ry < 1, then a; > 0, as > 0, ag > 0 and

amaz = az = [(e+ p)* + a2 (0 + p) + (@ + 5+ p)*(1 = Ro)* (= + p + 21)
+ (a4 7+ p)(1 = Ro)[(e + p)? + ple +p+p)] > 0.

Hence, all eigenvalues of J(E°) have negative real parts by the Routh-Hurwitz criterion.
This implies that E° is locally asymptotically stable.

If Ry > 1, then a3z < 0. Hence, Eq. (13) has a positive root. This implies that E° is
unstable.

For equilibrium E*, we have the Jacobian matrix at E* as follows:

gAY (4, _gossTa .
UL _ (4 ) RS
J(E") = BB BUELD) — (a4 4+ p) 0

p 0 —(e+n)

Nonlinear Anal. Model. Control, 28(1):74-96, 2023
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Then the characteristic equation of J(E™*) is

AP £ biAZ + o\ + b3 = 0,
where
b1 = —(b11 + b2z + b33),
by = b11baa + b11b33 + baobsz — biabar,
bz = b33(b12b21 — b11b22) — baob13bs:

with b1y = —(B9f(S*,1*)/0S +p+ p), bz = —=BOf(S*, 1) /Ol + v, b1z = €, ba1 =
BOf(S*,1*)/0S, bas = BOF(S*,1*)/0I — (a+ v + ), bs1 = p and bzz = —(e + ).
By (H) we easily obtain S0 f(S*, I*)/0I < o+ v + p. Hence, bos < 0. Since

b11ba2 — b12bay

8f(S*,I*)> +ﬁaf(s*,1*)(a+m >0,

=(p+u)<a+7+u—ﬁ T 55

we further have b; > 0 ( = 1, 2, 3). Furthermore, we have
af(s*,I17)

b11b33 — bisbsy = (5 95

+u>(€+u)+pu> 0,
and then
biby — bz = —b11b2 — (b11 + bzz)bgg
—bao [(b11b22 — b12ba1) + baobssz + (b11b33 — 513531)]
> 0.

Therefore, all eigenvalues of J(E™*) have negative real parts by the Routh-Hurwitz crite-
rion. This implies that E* is locally asymptotically stable. This completes the proof. [

By Remark 1 and Lemma 1, we have the following conclusions.

@ If f(S,I) = SI/(S+1I), then Ry = f/(pr+ v+ ). When Ry > 1, there is
a unique endemic equilibrium E* = (S*, I*, V*), where S* = (a + p + v)A4,
I"=[B—(u+v+a)Aand V* = (Ag+ p(o + p+7)A) /(1 + €) with A =
Al =qu+el/((B = (a+p+))alp+e) +ul(a+p+7)p+ Bk +¢))).

@) If f(S,I) = SI/(1+ w1l + wyS) with constants wy > 0 and we > 0, then
Ro=B5%/((4+ 7+ a)(1 +w25°)). When Ry > 1, there is a unique endemic
equilibrium E* = (S*, I*,V*), where

Al(1 =)+ €] — (a+ p+y)wa] — pla+ p+ )+ € +p)

r= (8 = (a4 p+ y)we] (1 + @) (u+ &) + pwr (@ + p+7)(u+e+p)’
g latp+y)(A+wl)
B—(a+p+y)
e 1 pla+p+y)(1 +wil)
(/H-E)(A + B—(a+p+7) )

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

The stability of a stochastic discrete SIVS epidemic model 81

@ii) If f(S,I) = SI/(1+wI?) with constant w > 0, we have Ry = 35°/(u+v+a).
When Ry > 1, there is a unique endemic equilibrium E* = (S*, I*, V*), where
S* = 1T1,I* = (=b+ Vb*—4dac)/(2a), V* = (Aqg + pI")/(1n+ ¢) with
I' = (2a® + w(b? — 2ac — bV/b? — 4ac))/(2Buw(p + € +p)a), a = pw(a +
ptY)(pte+p)b=p3u+a)p+e)andc=pla+p+v)(u+e+p) -
AB[u(1 — q) +¢].

From the biological background of model (3) any solution of model (3) with the
positive initial value must be positive with probability one defined for all ¢ > 0. However,
it is regrettable that at present, we do not have the ability to prove this conclusion.
Although, any solution of the corresponding deterministic model (2) with the positive
initial value is positive defined for all ¢ > 0. The main reason is that in model (3)
the stochastic perturbation terms are o1 (S(t) — ST)dBy(¢), o2(I(t) — IT)dBs(t) and
o3(V(t) — V1T)dBs(t), respectively, and S(t) — S*, I(¢t) — I and V(t) — V' can
change the sign along with time ¢. Here we will leave this problem in the future study.

When o; = 0 (i = 1, 2, 3) in model (7), we can obtain the corresponding deterministic
discrete model as follows:

Siy1 =S¢+ [(1 —q@)A = Bf(St, It) — (n+p)Se + vt + EVt]ia
Ipr = I+ [BF(Se, 1) — (n+ v+ ) L]i, (14
Vitr = Vi + [qA+pS; — (n+e)Vii.

It is clear that the equilibria £ and E* calculated in (10) and Lemma 1 are also the
disease-free and endemic equilibria of model (14), respectively. On the positivity of
solutions for model (14) we can obtain the following result.

Lemma 3. Assume that (H) holds and step sizei < min{1/(8B 4+ u+p),1/(n+ v+ «a),
1/(1n + €)}, where constant B > 0 is given in (H). Then solution (Sy, It, V) of model (14)
with initial values Sy > 0, Iy > 0 and Viy > 0 is positive for all t > 0.

Proof. Leti = min{1/(BB+u+p),1/(u+v+a),1/(u+e)}. By 0 < i < i, then
0<i<1/(BB+pu+p),0<i<1l/(p+e)and0 < i< 1/(p+7v+ ). Asinitial
values Sy > 0, Iy > 0 and V) > 0, from model (14) we directly have

S1 2 So[1— (BB + p+p)i] + (1 — q)Ai +~vIoi + Vi > 0,
L =Io[1 = (u+7+a)i] + B8f(So, Io)i > 0,
Vi=W [1 —(u +€)Z] + qAi + pSpi > 0.

Using the induction method, we assume S; > 0, I; > 0 and V; > 0 for any integer ¢ > 0,
then we have

Ser1 2 Se[1— (BB + p+p)i] + (1 — @) Ai +~vLi+eVyi > 0,
Livi =L [1— (u+y+a)i] + Bf(Se, I)i > 0,
Vigr = Vi[1 = (p+e)i] + qAi + pSyi > 0.

Nonlinear Anal. Model. Control, 28(1):74-96, 2023
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Therefore, (S, It, V;) is the positive solution of model (14) with initial values Sy > 0,
Ip > 0and Vy > 0. The proof is completed. O

Although, in Lemma 3 we have proved that any solution of the corresponding deter-
ministic discrete model (14) with the positive initial value is positive defined for all ¢ > 0.
However, for discrete stochastic model (7), it is regrettable that at present, we do not have
the ability to prove that any solution of model (7) with the positive initial value is positive
with probability one defined for all ¢ > 0. It will be an interesting open problem.

Let E¥ = (ST,I7,V™) be any nonnegative equilibrium of model (2). Take the
transformation u; = S; — S*, v, = I, — It and wy; = V;, — VT, then model (7) takes the
following form:

U1 = up+ [(1— @)A = Bf(ue + ST, v+ IF) = (u+p) (ue + ST)
(s + I + e (wr + V)i + o1 Vium L,

vier =v+ [Bf(ue+ ST, v+ 17) — (p+ v+ o) (e +I1)]i (15)
+ o2 \[Wmﬁ)p

wip1 =wi + [qA+plug+5T) — (p+e)(we + V) ]i+ ng/gwtnﬁi)l.

Clearly, system (15) has equilibrium (0,0, 0) corresponding to E* = (S* 1T, VT).
Linearizing system (15) at (0, 0,0), we get the linearized system as follows:

af(s*t, 1), , Af(S*T,IM)\.
Xip1 = 1—5T1—(u+p)z X+ 7—,8T 1Yy
+ EiZt + g1 \/{Xt’l?ii)l,
Af(S*, It Af (ST, 1) . .
PR LELCAEL A0 %' FRPLES ACARE Ao PR PSR ] % (16)
ou ov
=+ 0'2\/77;111‘,7715—24—)1a
Ziy1 = piXy + [1 —(n+ E)Z] Zy + 03\ﬂZt77t(i)1-
For disease-free equilibrium E° = (S°,0,V?), from system (16) we obtain the
linearized system at EV as follows:
. af(S°,0)\ . _
X1 =[1—-(u+p)i| X + (7 - 5f(al/))lyt +eiZ;
+01\[iXt77§21»
0f(5°,0) an
Yivi= |1+ ﬁTi —(p+v+ a)z} Y+ Jz\ﬁymﬁ)l,

Zir1 = piXe + [1 —(n+ 5)2] Zy + agxﬂZtnt(i)l.

https://www.journals.vu.lt/nonlinear-analysis
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For endemic equilibrium E* = (S*, I*,V*), from system (16) we obtain the lin-
earized system at E* as follows:
of(S*,I7) . . of(S*,I*)\ .

X1 = |1— ﬂ%l = (n +P)Z]Xt + (’Y - ﬂf(ay)>lyt

+ ety + oy \/z'Xmﬁ)l,

of(s*,I* of(s*,I*) . )
K&HZBMXH— 1+BM2_(M+V+Q)2Y2 (18)
ou Ov
+ 0—2\/;}/;7751)17

Ziy1 =piXe+ [1— (n+e)i] Z + 0'3\[iZt77t(i)1'

For the convenience, we denote the solutions of systems (15) and (16) with initial
value ¢ = (1, 2, 93) by Us(6) = (us(6), v4(9), wi(9)) and 2,(9) = (Xi(6), Yi(9),
Z(9)), respectively.

Since we do not obtain the positivity of solutions of model (7) satisfying any positive
initial condition, the global dynamics of solutions for model (7) at present cannot be
investigated. Therefore, we here consider the local dynamical behavior of solutions for
model (7) around the nonnegative equilibrium of corresponding deterministic model (14).
Especially, we will mainly discuss the local stability in probability. For this purpose,
we introduce the following definitions for the stability in probability, the mean-square
stability and the asymptotic mean-square stability for systems (15) and (16), respectively.

Definition 1. (See [22].) The zero solution of system (15) is said to be stable in prob-
ability if for any € > 0 and ¢; > O there exists 6 > 0 such that the solution U(¢)
of system (15) satisfies the inequality P{sup,c, |Ui(¢)] > €} < &1 for any initial
function (9) such that P{|¢| < d} = 1.

Definition 2. (See [22].)

(i) The zero solution of system (16) is called to be mean-square stable if for each
e > 0, there exists § > 0 such that E|z;(¢)|? < €, t € Z, for any initial function
(9) such that E|¢|? < 6.

(i) The zero solution of system (16) is called to be asymptotically mean-square stable
if the zero solution is mean-square stable and each solution x+(¢) of system (16)
has lim;_, o E|z¢(¢)|? = 0.

For any nonnegative function V; = V (¢, ), t € Z, we define the difference AV; =
Vier = Ve = V(4 1, 2441) — V(¢ 2¢) (see [23]). We have the following Lyapunov
function type criteria for the stability in probability, the mean-square stability and the
asymptotic mean-square stability for systems (15) and (16), respectively.

Lemma 4. (See [22,23].) For system (15), there exists a function V; = V (t,Uy), t € Z,
satisfying the conditions
V(t,Up) = co|Uy|?, (19)

EV(0,¢) < c1|o]?, (20)
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where cy and cy are positive constants, and
EAV, <0, telZ. (21)
Then the zero solution of system (15) is stable in probability.

Lemma 5. (See [22,23].) For linear system (16), there exists a nonnegative function
Vi =V (t,x¢), t € Z, satisfying conditions (20) and

EAV; < —Elz|?, t€Z, (22)

where co > 0 is a constant. Then the zero solution of system (16) is asymptotically mean-
square stable.

Furthermore, from Remark 7.9 given in [22] we easily see that if there exists a function
Vi, which satisfies conditions (19), (20) and (22) for the corresponding linearized sys-
tem (16), then this function V; also satisfies condition (21) for original system (15). This
shows that in order to obtain the stability in probability of the zero solution for original
system (15), it is enough by virtue of some function V;, which satisfies conditions (19),
(20) and (22) to get sufficient conditions for asymptotic mean-square stability of the zero
solution for the corresponding linearized system (16).

3 Stability in probability

In this section, we consider the general forms of system (16) in the following linear
stochastic difference system:

Xit1 = b Xy + b1oY; + b13Z; + 01\/%Xt77t(i)1,
Vi1 = bor Xy + b V; + 00ViYin2), (23)
Ziy1 = b31 Xy +b33Z; + US\[iZtn,gi)y

Let
b1 bz bi3 01\ﬁn§1) 0 0

B=|ba by 0], o= 0 oov/in'? 0 .24
b31 0 b33 0 0 03\/%7153)

Denote x; = (X, Yy, Z), then system (23) can be rewritten in the following vector form:

Tir1 = (B + @(nes1)) e

For any symmetric matrices I and F', we define that ¥ > F'if E — F'is a positive
definite matrix. Let

dyy di2 di3
D= |diza da2 da3
di3 dez d33

be a semipositive definite matrix. Then we have diy, > 0 for k = 1,2, 3.
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Theorem 1. Suppose that there exists a semipositive definite matrix D such that

U%idll

D-BTDB > 0
0

0 0
O'gidQQ 0
0 Cfgidgg

Then the zero solution of system (23) is asymptotically mean-square stable.

Proof. We first denote

P=D-

BTDB =

P11 P12 P13
P12 P22 P23
P13 P23 P33

Define Lyapunov function W; = xf Dx;. We have

AWy = Wigq —
By (3) we can obtain

AW, =

2F (B +¢m+1)) D(B+ ¢(m41))

T T
Wt = 1’t+1D,fL't+1 — Ty Dl’t.

— D)th

=2} (=P + " (nt41) Dp(11141))

where

SOT (Ne11)Dp(Ne41)

e
U%Z(Ut(fr)ﬂzdn
0102i77£-1;-)177t(§-)1d12
010310117113

Furthermore, we have

01021’7715217%@16112
021(77154-1) da2
0203”7§+)177£+1d23

105 idis
in® 6 4

0203Znt—§177t+1 23

032,2'(77&)1)2(133-

i1 C12 (13

—P+<PT(77t+1)D<P(77t+1)= cl12 Cc22 c23 |,

where
€11 = —p11 + 012(77t+1) dit,
c13 = —p13 + 0103@77§+)1’7§+)1d13a
_ 2)(3)
C23 = —P23 + 020311, 111 23,

Then we have

c11 12
AW, = (X, Yy Zy) [z ca2
C13 (23

C13 C23 (33

. 2
C12 = —p12 + 0102”7t(-1+)177t(+)1d127
. 2
Co2 = —p22 + 052(7791) daa2,

C33 = —Pp33 + 030 (77t+1) ds3.

13 Xi
23 Y;
33 Zy

=11 X7 + 201X, Yy + 2013 X, 7y + oo + 2¢23Y1 74 + 3377
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Calculating the expectation of AW}, we can obtain
EAW, = E(c11 X7 + 2012 XY, + 2013X:. 2y + c02Y? 4 2003Y, Zy + 3327 .

By (8) we have Eci1 = —p11 + o%idi1, Ecia = —p12, Ec13 = —p13, Ecaa = —pos +
J%idQQ, ECQB = —pP23 and EC33 = —p33 + O'gidgg. Let

. 2. 2. 2.
m = min{py1 — ofidi1, p12, P13, P22 — 05idaz, P23, P33 — o3idss .

Then
EAW, < —mE|z:|?.

This completes the proof. O
Remark 2. Based on (26), we further obtain that condition (25) is equivalent to
P11 — Oayidyy > 0, (p11 — ofidi1) (pa2 — 03idas) — piy > 0,
(p11 — o7idy1) (pa2 — 03idos) (33 + o3idss) — pas(p11 — o7iday) 27
— plo(pss — 03idss) — pis(pa2 — 05idaz) + 2p12p13p2s > 0.

Assume Ry > 1. We consider linearized system (18). According to system (23), we
can obtain that matrix B in (24) is given by

bl b3 =X
B= by b 0], (28)
pi 0 b,

where by = B(8f(S*, I*)/0u)i, by = 1 — by — (u+p)i, by = 1+ BOF(S*, I*) /)i —
(u+ v+ )i, bg = (v — BOf(S*,I*)/0v))i and b. = 1 — (u + €)i. From (26) we
further get

—p11 = bydas + 2b1bodia + 2bopidas + (b7 — 1)di1 + 2bipidis + p*i*dss,

—p12 = bibadi1 + (b2b1 + b3bo — 1)d12 + bobadaz + bapidas + bapidis

+ bobsdss,

—p13 = bigidi1 + (bibe + pei® — 1)dig + pibedsz + bogidiz + bob.das, (29)

—p22 = b3di1 + 2babzdia + (b3 — 1)da2,

—p23 = bzeidyy + bacidiz + b3bodyz + (bobg — 1)d2s,

—p3g = e”i°dyy + 2beeidyz + (b2 — 1)das.

Furthermore, based on condition (27), we can obtain conclusion as follows.

Theorem 2. For the coefficient matrix (28) of system (18), assume that Ry > 1, and
there is a semidefinite D such that condition (27) is satisfied with coefficients p;; (i,j =
1,2, 3) defined in (29). Then the zero solution of system (18) is asymptotically mean-
square stable. Moreover, endemic equilibrium E* = (8%, I*,V*) of model (7) is stable
in probability.
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Particularly, when f(S,I) = SI/(S + I) (standard incidence), we have

b4 b6 €l
B= by b5 0], (30)
pi 0 b

where bos = B(I*/(S* + I*))%i, by = 1 — B(I*/(S* +I*))% — (u+ p)i, bs = 1 +
B(S*/(S* +I*))% — (n+ v + )i and bg = (v — B(S*/(S* + I*))?)i. From (29) it
follows that

—p11 = (b3 — 1)d11 + b daz + 2bsbosdia + 2bspidys + 2bgspidas + p*i*dss,

—p12 = babsdi1 + bosbsdaz + [babs 4 bgbos — 1]d12 + bgpidyz

+ bspidas + bosbedss,

—p13 = bacidiy + (babe + pei® — 1)di3 + pibedss + boseidia + bosbedas, (31)

—p2o = bgdiy + (b3 — 1)dao + 2bsbgdi2,

—p23 = bgeidi + (bebs — 1)das + bseidia + bsbedi3,

—p3g = €°idy1 + 2becidog + (b2 — 1)dss.

When f(S,1) = SI/(1+4 w1l + wyS) with constants w; > 0 and wy > 0 (Bed-
dington—DeAngelis incidence), we have

bo,. (v — BS*0s.)i ei
B=|pro.i bos. 0 , 32)
pi 0 1—(n+e)

where by, =1 — BI"Q2r-i — (L +p)i, bog. =1+ BS* gt — (u+ v+ )i, 2g- =
(weS* +1) /(1 +wiI* +w2S*)? and 27+ = (w1 I* +1) /(1 + w1 [* +w2S5*)2. From (29)
it follows that
—p11 = (b_ZQI* —1)d11 + 2be,. BI* Qp-idis + 2bg,. pidis + (BT 27+1)dos
+ 28I Qp-pi*das + p*itdss,
—p12 = bo,. Yidi1 + (v — BS* Qg )pitdis + BI* Qp-ibog. dos + bog. pidas
+ (b, bog. +ABI*21+8% — 1)dia + BI* Qpi*dss,
—p13 = bo.cidiy + I Q-cidia + pibedyy + (bo,.be +pei® = 1)dis  (33)
+ BI*27+ibedos,
—p22 = 72i%dyy + (bf,. — 1)daz + 2bo,. Fidia,
—pa3 = JiZedyy + (bebag. — 1)das + boy. gidia + Yibody3,
—p3g = €°i°dyy + 2b-cidas + (b2 — 1)das,

where 7 = v — 85*2g~.

Nonlinear Anal. Model. Control, 28(1):74-96, 2023


https://doi.org/10.15388/namc.2023.28.29928

88 B. Wen et al.

When f(S,I) = ST/(1 + wI?) with constant w > 0 (a nonmonotonic incidence), we
have

b7 bg €1l
B = bOn bS 0 ’
pi 0 b

where by, = (BI*/(1+wI*?))i, by = 1 — (BI*/(1 +wI*?))i — (u + p)i, bg =
1+ (BS*(1 —wI*?) /(1 +wl*)?)i — (n+ v+ )i and by = (y — BS*(1 — wl*?)/
(1 4 wI*?)?)i. From (29) it follows that
—p11 = (b3 — 1)dyy + 2bypidys + p*i®dss + 2brbondiz + b3, daz
+ 2pibondas,
—p12 = bonbsdaa + bonbodsz + (brbs + bobon — 1)d12 + brbgdiy
+ bopidy3 + bgpidas,
—p13 = breidiy + eibondis + pibedas + (bobr + pei® — 1)dig + bebondas,
—pa2 = b3dy1 + (b3 — 1)dao + 2bsbgdsa,
—pa3 = bogidyy + [b-bg — 1]da3 + bgeidia + bob-di3,
—psg = £2i%dy1 + 2b.cidas + (b2 — 1)dss.

Next, we assume Ry < 1 and consider linearized system (17). According to sys-
tem (23), we can obtain that matrix B in (24) is given by

bp b11 €l
B=|0 bo 0], (34)
pi 0 b

where b, = 1 — (u + p)i,bio = 1+ B(9f(S°,0)/0v)i — (p+ v + a)i, by = (v -
BOf(SY,0)/0v)i. By (26) we can get

—p11 = (b2 — 1)d11 + 2b,pidis + p*i*dss,

—p12 = bpbi1dir + biipidis + (bpbio — 1)di2 + bigpidas,

—p13 = bpeidiy + pibedss + [(n+ p)(u+€)i — 2+ e + p)]idis,

—p22 = b7yd11 + 2b1obi1dia + (b3g — 1)dao,

—pa3 = byigidyy + (bebio — 1)das + biogidia + bi1bedys,

—p3s3 = €i’dy1 + 2b.€idaz + (b2 — 1)dss.

(35)

Thus, based on condition (27), we can obtain the following conclusion.

Theorem 3. For the coefficient matrix (34) of system (17), assume that Ry < 1, and
there is a semidefinite matrix D such that condition (27) is satisfied with coefficients p;
(1,5 = 1,2,3) defined in (35). Then the zero solution of system (17) is asymptotically
mean-square stable. Moreover, disease-free equilibrium E° = (S°,0,V°) of model (7)
is stable in probability.

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

The stability of a stochastic discrete SIVS epidemic model 89

Particularly, when f(S,I) = SI/(S + I), we have

by (- )i i
B=|0 b12 0],
i 0 be

where b1z = 1 + 8i — (p + v + «)i. From (35) it follows that
—p11 = (b3 — 1)d11 + 2bppidys + p*i*dss,
—p12 = by(y — B)idi1 + (v — B)i%pdiz + (bpbi2 — 1)d1a + biapidas,
—p13 = bpeidyy + pibedss + [(n+ p)(u+€)i — 2+ € + p)]idys,
—pa2 = (v — B)*i*d11 + 2b12(y — B)idiz + (b, — 1)da2,
—pas = (v — B)eidyy + (bebia — 1)daz + biacidia + (7 — B)ibedy3,
—p3s = €i’dy1 + 2b.eidas + (b2 — 1)dss.
When f(S,I) = SI/(1+ w1l + wyS) with constants w; > 0 and wy > 0, we have
by bia et
B=|(0 b3z 0], (36)
pi 0 b
where b4 = (7—£5°/(1+w25°))i, bi3=1—(u+b14+a)i. From (35) it follows that
—p11 = (b — 1)d11 + 2bppidyis + p*i*dss,
—p12 = bpbradir + brapidis + (bpbis — 1)di12 + bispidas,
—p13 = bpeidyy + pibedss + [(n+ p)(u+€)i — 2pu+ € + p)]idys,

(37)
—p2o = bi,di1 + 2b13biadis + (b5 — 1)doo,
—p23 = bragidyy + (bebiz — 1)daz + bizeidiz + brabedys,
—p3s = ei’dyy + 2b-cidog + (b2 — 1)dss.
When f(S,I) = ST/(1 + wI?) with constant w > 0, we have
by (v—pB8%)i ei
B=|0 bis 0], (38)
pi 0 be
where b15 = 1+ 8S% — (p + 7 + «)i. From (35) it follows that
—p11 = (bf, —1)d11 + 2bypidis + p*i*dss,
—p12 = by (v — BS%)idiy + (v — BS°)i*pdis + (bpbis — 1)d12 + bispidas,
—p13 = bpeidyy + pibedss + [(n+ p)(u+€)i — 2+ € + p)]idys,
—pa2 = (v — ﬁ50>2i2d11 + 2b15 (v — BS?)idi2 + (b5 — 1)dao, 7

—pP23 = (’}/ - ﬂSO)Eizdn + (bebw — 1)d23 + b15€id12 + (’7 - 650)ib5d13,
—p33 = ei’dy1 + 2becidas + (b? - 1)d33.
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4 Numerical examples

In this section, we give the numerical examples to illustrate the above theoretical results.
In all figures the blue line represents the trajectory of the deterministic discrete model,
and the red line represents the trajectory of the stochastic discrete model. Throughout this
section, we take the positive define matrix

1 00
P=10 1 0]. (40)
0 0 1
From (27) we let

K1 = pyy — otidyy, Ky = (p11 — otidy1) (pa2 — 03idas),

. . . (4D

K3 = (p11 — o7idy1) (pa2 — 03idas) (p3s + o3idss).
Under the same parameters, the trajectory of stochastic discrete model (such as the white
noise intensities 0y = 02 = o3 = 0.3) will be stable at the endemic equilibrium of
corresponding deterministic discrete model. All trajectories of model (7) are stable to
endemic equilibrium E*(S*, I*, V*) or disease-free equilibrium E° = (5°,0,V?) (see
Figs. 1-8).

Example 1. We take parameters A = 4, ¢ = 0.2, ¢ = 0.5, « = 0.2, p = 0.15 and
i = 0.04 in model (7). The numerical simulations of solution (S, Iy, V;) with initial
value (So, In, Vo) = (80, 10, 30) are given in Figs. 1 and 3. The numerical simulations of
solution (Sy, Iy, V;) with different initial value (Sy, Iy, Vj) are given in Figs. 2 and 4.

(i) Choose f(S,I) = SI/(S+I), and parameters § = 0.6 and v = 0.2. By
calculating we have Ry = 1.3636 > 1 and endemic equilibrium E* = (S*,[*,V*) =
(28.4769,10.3552,9.3917). According to (30), we can obtain the following matrix B.
Furthermore, by (26), (31), (40) and matrix B we can solve the semipositive definite
matrix D as follows:

0.9767 —0.0123 0.0500 1.0501 0.0086 —0.0727
B =10.0043 0.9883 0 , D = | 0.0086 1.0239  —0.0007
0.0150 0 0.9460 —-0.0727 —0.0007 1.1222

Then by (41) we have K; = 0.9912 > 0, K3 = 0.9913 > 0 and K3 = 0.9914 > 0.
Thus, all conditions in Theorem 2 are satisfied. This means that endemic equilibrium
E* = (8%, I*,V*) is stable in probability. The numerical simulations are given in Figs. 1
and 2.

(ii) Choose f(S,I) = SI/(1 + waS + w1 I), where wy = w; = 0.1, and parameters
B =0.2and v = 0.7. By calculating we have Ry = 1.8834 > 1 and endemic equilibrium
E* = (S*,I*,V*) = (19.7071, 12.2229,6.9557). According to (32), we can obtain the
following matrix B. Furthermore, by (26), (33), (40) and matrix B
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Figure 1. It shows that lim¢ s oo (S¢, It, Vi) = (28.4769,10.3552,9.3917) a.s.

Stocha:
Deterministic | |

Figure 2. Numerical simulations of solution (S¢, I+, Vi) with initial value (So, Io, Vo), where So = 10, 30
and 50, Ip = 5, 10 and 15 and Vo = 5, 20 and 35, respectively. It shows that lim¢—soo (St, It, Vi) =
(28.4769,10.3552,9.3917) a.s.
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Figure 3. It shows that lim¢—, o0 (St, I+, V) = (19.7071, 12.2229, 6.9557) a.s.
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Figure 4. Numerical simulations of solution (S¢, I+, Vi) with initial value (So, Io, Vo), where So = 10, 50
and 90, Ip = 5, 15 and 25 and Vo = 5, 20 and 35, respectively. It shows that lim¢—soo (St, It, Vi) =
(19.7071,12.2229,6.9557) a.s.
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we can solve semipositive definite matrix D as follows:

0.9501 0.0034 0.0500 1.1113  —0.0383 —0.0764
B =10.0309 0.9726 0 , D= |-0.0383 1.0574  0.0021
0.0150 0 0.9460 —0.0764  0.0021 1.1224

Then by (41) we have K1 = 0.9914 > 0, K5 = 0.9915 > 0 and K3 = 0.9916 > 0.
Thus, all conditions in Theorem 2 are satisfied. This means that endemic equilibrium
E* = (S*,I*,V*) is stable in probability. The numerical simulations are given in Figs. 3
and 4.

In addition, choosing f(S,I) = SI/(1+ wI?), where w = 0.1, and parameters
B = 0.2 and v = 0.7, then by the similar arguments as in the above we can obtain that
endemic equilibrium E* = (S*, I*, V*) is stable in probability.

Example 2. We take parameters A = 2, ¢ = 0.2,¢ = 0.5, « = 0.5, p = 0.3, 8 = 0.1,
w=0.1,7v=0.7and w = w; = wy = 0.1 in model (7). The numerical simulations of
solution (S, Iy, V) with initial value (Sp, Ip, Vo) = (20, 16, 6) are given in Figs. 5 and 7.
By (10) we have disease-free equilibrium E° = (S°,0,V°) = (12.8889,0,7.1111).
The numerical simulations of solution (.St, I+, V;) with initial value (Sy, Iy, Vp), where
So = 10, 20 and 30, Iy = 6, 16 and 26 and Vj = 1, 6 and 11, respectively, are given in
Figs. 6 and 8.

(i) Choose f(S,I) = SI/(14+w2S+w;I). By calculating we have Ry = 0.7320 < 1.
According to (36), we can obtain the following matrix B. Furthermore, by (26), (37), (40)
and matrix B we can solve semipositive definite matrix D as follows:

0.9600 0.0137 0.0500 1.0898 —0.0161 —0.0934
B = 0 0.9263 0 D =|-0.0161 1.1657  0.0014
0.0300 0 0.9400 —0.0934 0.0014 1.1386

Then by (41) we have K; = 0.9914 > 0, Ky = 0.9914 > 0, K3 = 0.9915 > 0.
Thus, all conditions in Theorem 3 are satisfied. This means that disease-free equilibrium
E® = (59,0, V?) is stable in probability.

(ii) Choose f(S,I) = SI/(1+wI?). By calculating we have Ry = 0.9915 < 1.
According to (38), we can obtain the following matrix B. Furthermore, by (26), (39),
(40) and matrix B, we can solve semipositive definite matrix D as follows:

0.9600 —0.0589 0.0500 1.0898 0.0642 —0.0934
B = 0 0.9989 0 , D= | 0.0642 1.0060  —0.0055
0.0300 0 0.9400 —0.0934 —0.0055 1.1386

Then by (41) we have K; = 0.9914 > 0, Ko = 0.9914 > 0, K3 = 0.9915 > 0.
Thus, all condition in Theorem 3 are satisfied. This means that disease-free equilibrium
E® = (59,0, V?) is stable in probability.

In addition, choosing f(S,I) = SI/(S + I), by the similar arguments as in the above
we can obtain that disease-free equilibrium E° = (S°, 0, V?) is stable in probability.
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Figure 5. It shows that lim¢—, o0 (St, I+, V) = (12.8889,0,7.1111) a.s.
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Figure 8. It shows that for different initial values, we also have lim¢—, oo (St, I+, Vi) = (12.8889,0,7.1111)

a.s.
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5 Conclusion

In this paper, we investigated a stochastic discrete SIVS epidemic model with general
nonlinear incidence and vaccination. The model is proposed through discretizing the
corresponding continuous-time stochastic differential equation model by means of Euler—
Marryma method and the theory of random white noise disturbance. Firstly, the criterion
on the asymptotic mean-square stability of zero solution for the general linear stochastic
difference system is established. Next, as the applications of this criterion, the sufficient
conditions on the stability in probability of the unique endemic and disease-free equilibria
for the stochastic discrete SIVS epidemic model with general nonlinear incidence are
further established. Moreover, the stability in probability of the equilibria for stochastic
discrete SIVS epidemic models with some special nonlinear incidences such as standard
incidence, Beddington—DeAngelis incidence and a nonmonotonic incidence also are dis-
cussed. Lastly, the numerical simulations are presented to illustrate the above theoretical
results.

In the future, we can investigate the some other properties for this stochastic discrete
SIVS epidemic model, such as the stochastic extinction and persistence of disease, the
global stochastic stability of equilibrium and the stochastic dynamical complexity, etc.
Furthermore, the method which is introduced in this paper whether can be extended to
some other kind of stochastic discrete epidemic models also is interesting open problem.
Moreover, according to the actual situation of the transmission of a specific infectious
disease in a fixed area, the comprehensive effects of rain, wind and high temperature are
fully considered, and the model proposed in this paper is tested through the actual data
given by the literature or official.
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