
Nonlinear Analysis: Modelling and Control, Vol. 28, No. 2, 181–193
https://doi.org/10.15388/namc.2023.28.30517

Press

Global attractive set of neural networks
with neutral item*

Xili Wua , Liangwei Wanga,1, Zhengwen Tua, Yuming Fengb

aSchool of Mathematics and Statistics,
Chongqing Three Gorges University,
Wanzhou 404100, China
wanglw08@163.com
bKey Laboratory of Intelligent Information Processing and Control,
Chongqing Three Gorges University,
Wanzhou 404100, China

Received: July 25, 2022 / Revised: December 23, 2022 / Published online: January 2, 2023

Abstract. This paper investigates the global attractive set of neural networks with neutral item.
To better deal with the neutral terms, different types of activation functions are considered. Based
on matrix measures, inequality techniques, and Lyapunov theory, three new types of Lyapunov
functions are designed to find the global attractive set of the system. We give out a simulation
example to verify the validity of theory results. The result is very inclusive, whether the system has
equilibrium or not. As long as the system is stable, we can find its global attractive set.
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1 Introduction

The artificial neural network is a highly simplified approximation of human brain neural
network through mathematical and physical methods from the perspective of information
processing. It has the advantages of fault tolerance, versatility, and adaptability. It has
been widely used in speech recognition, visual technology, artificial intelligence, image
recognition, associative memory, speech translation, and other fields. The application
of the neural networks is related to their dynamic behavior. According to different ap-
plication requirements, its dynamic characteristics have different requirements. Many
scholars have some interesting conclusions in this area [9, 17, 18]. Especially, the global
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exponential stability of several types of neural networks is discussed in [2,4,5]. By using
delayed impulsive control, quantized intermittent control and synchronization control are
investigated in [7, 16, 24–26].

The focus of neural network research is the dynamic characteristics of orbits near the
equilibrium point of the system. Nonetheless, in many practical problems, the equilibrium
of the system is unstable or even nonexistent, so the stability of the system needs to be
considered. If the global attractive set of the system is identified, we just need to focus on
the dynamics within the set because the equilibrium point of the system only exists in the
global attractive set [13, 15].

In real life, the development of many things is affected by some past states, that is, the
phenomenon of time delay. Due to the limitation of signal propagation speed, time delay
is widespread [14]. For example, when sending emails, pictures, or videos via WeChat,
there will be a time delay from the beginning to the success of sending. When the time
delay phenomenon occurs, the system will be oscillated or unstable, resulting in network
paralysis and other phenomena. There are many results in stability analysis of neural
networks with time delays in [6, 8, 19]. In the study of these delays, one kind of delay is
worth paying attention to, that is, neutral delay. It not only considers the influence of past
state on present state of nonlinear time-delay systems, but also considers the influence
of past state changes on present state. The neural networks with neutral items are more
complex than the general neural networks of the same dimension. It is a new hot research
direction [3,10,27]. Liao et al. considered the exponential stability for neutral-type neural
networks [12]. Ali et al. discussed finite-time stability of systems with random delays [1].

Based on the above analysis, this paper studies the global attractive set of neural
networks with neutral item. The main contributions are presented as follows:

(I) The neural networks with neutral items are more complex than the general neural
networks. We will make some efforts on finding various Lyapunov functions and
global attractive sets for system with neutral items.

(II) External inputs affect the stability of the system. This paper attempts to study
the effect of external input with bounded function on the global attractive set and
stability.

By matrix measures, inequality techniques, and Lyapunov theory, we can find the
global attractive set of the system. We give out simulation examples to verify the validity
of theory results.

Notations. In this paper, Rn represent the n-dimensional real space. Rm×n represent the
set of m × n real matrix. T and ∗ represent the transposition of matrix and conjugation
transposition.

2 Preliminaries

In this paper, we consider the following neural networks model:

dx(t)

dt
= −Cx(t) +Af

(
x(t)

)
+Bf

(
x
(
t−h(t)

))
+Mg

(
ẋ
(
t−σ(t)

))
+ U(t), (1)
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where x(t) = {x1(t), x2(t), . . . , xn(t)}T ∈ Rn. C = diag{c1, c2, . . . , cn}, ci > 0, A =
(aij)n×n ∈ Rn×n, B = (bij)n×n ∈ Rn×n, and M = (mkj)n×n ∈ Rn×n are connection
weight matrices. f(x(t)) ∈ Rn, f(x(t − h(t))) ∈ Rn, and g(ẋ(t − σ(t))) ∈ Rn are
activation functions. h(t) is the delay, 0 6 h(t) 6 h̄. σ(t) is the neutral delay with
0 6 σ(t) 6 σ, and let τ = max{h̄, σ}. U(t) ∈ Rn is the external input, U(t) 6 U,U =
(u1, u2, . . . , un)T ∈ Rn.

The initial condition of neural networks (1) is given as

x(s) = ϕ(s), ẋ(s) = φ(s), s ∈ [−τ, 0].

We consider two classes of continuous activation functions:

B =
{
f(·)

∣∣ ∃ ki > 0,
∣∣fi(xi)∣∣ 6 ki ∀xi ∈ R, i ∈ Γ = {1, 2, . . . , n}

}
,

K = diag{k1, k2, . . . , kn}

S =

{
f(·)

∣∣∣ ∃ li, hi, li 6 fi(x)− fi(y)

x− y
6 hi, x 6= y, i ∈ Γ

}
,

L = diag{l1, l2, . . . , ln}, H = diag{h1, h2, . . . , hn}.

Remark 1. If f(·) ∈ S, we can know that f(·) is neither bounded nor monotonously,
which can make the results with better applicability. The constants li and hi can be any
real value.

Definition 1. (See [22].) The set Ω ⊂ Rn is called to be a global attractive set (GAS) of
(1) if Ω posses an open neighborhood D for all ϕ ∈ D and x(t, t0, ϕ) converges to Ω as
t→∞.

Definition 2. (See [21].) For a real matrixC = (cij)n×n, the matrix measureC is defined
as µp(C) = lim∆t→0+(‖En+∆tC‖p−1)/∆t, where p = 1, 2,∞. The matrix measures
are obtained as µ1(C) = maxj{cjj +

∑n
i=1, i 6=j |cij |}, µ2(C) = λmax(CT + C)/2,

µ∞(C) = maxi{cii +
∑n
j=1, j 6=i |cij |}.

‖C‖p is the matrix norm of C, where ‖C‖1 = maxj
∑n
i=1 |cij |, ‖C‖2 =√

λmax(CTC), ‖C‖∞ = maxi
∑n
j=1 |cij |. For x ∈ Rn, ‖x‖1 =

∑n
i=1 |xi|, ‖x‖2 =√

xTx, ‖x‖∞ = max16i6n |xi|.

Remark 2. Take C =
(
2 2
1 −9

)
for example, therefore ‖ − C‖1 = ‖C‖1 = 11, ‖−C‖2 =

‖C‖2 = 9.2364, ‖C‖∞ = ‖−C‖∞ = 10, µ1(C) = 3, µ2(C) = 2.2009, µ∞(C) = 4,
µ1(−C) = 11, µ2(−C) = 9.2009, µ∞(−C) = 10. Hence, we can get that ‖−C‖p =
‖C‖p, µp(−C) 6= µp(C).

It shows that matrix measure is more sensitive to sign, and the results base on matrix
measure are more accurate and applicable.

Lemma 1. (See [20].) Let r, ξ, η, τ > 0. When the function V (t) > 0 and D+V (t) 6
r − ξV (t) + ηV̄ (t), t > t0, there exists σ > 0 such that −ξ + η 6 −σ, and one has

V (t) 6

{
r
σ + (V̄ (t0)− r

σ )e−µ
∗(t−t0) if V̄ (t0) > r

σ ,
r
σ if V̄ (t0) 6 r

σ .

Nonlinear Anal. Model. Control, 28(2):181–193, 2023

https://doi.org/10.15388/namc.2023.28.30517


184 X. Wu et al.

Here µ∗ is the unique positive root of µ − ξ + ηeµτ = 0, V̄ (t) = supt−τ6s6t V (s),
D+v(t) = ¯lim∆t→0+(v(t+∆t)− v(t))/∆t.

Lemma 2. (See [20].) For all A ∈ [A, Ā], we have

‖A‖p 6 ‖A∗‖p + ‖A∗‖p,

where A∗ = (Ā−A)/2, A∗ = (Ā+A)/2, p = 1, 2,∞.

Lemma 3. (See [11].) Let S =
( S11 S12

ST
12 S22

)
< 0 with S11 = ST

11, S22 = ST
22. Then the

following obtained:

S22 < 0, S11 − S12S
−1
22 S

T
12 < 0,

S11 < 0, S22 − ST
12S
−1
11 S12 < 0.

Lemma 4. For matricesA1, A2, B1, B2, C1, C2 ∈ Rn×n and reversible matricesX,Y, Z,
denote

Φ1 ,

(
A1

A2

)
X−1

(
A1

A2

)T

+

(
B1

B2

)
Y −1

(
B1

B2

)T

+

(
C1

C2

)
Z−1

(
C1

C2

)T

,

Φ2 ,

(
A1 B1 C1

A2 B2 C2

)X−1 0 0
0 Y −1 0
0 0 Z−1

(A1 B1 C1

A2 B2 C2

)T

,

Then Φ1 = Φ2.

Proof. According to the matrix algorithm, we have

Φ1 =

(
A1X

−1A1 A1X
−1A2

A2X
−1A1 A2X

−1A2

)
+

(
B1Y

−1B1 B1Y
−1B2

B2Y
−1B1 B2Y

−1B2

)
+

(
C1Z

−1C1 C1Z
−1C2

C2Z
−1C1 C2Z

−1C2

)
,

Φ2 =

(
A1X

−1 B1Y
−1 C1Z

−1

A2X
−1 B2Y

−1 C2Z
−1

)A1 A2

B1 B2

C1 C2

 =

(
∆11 ∆12

∆21 ∆22

)
,

where

∆11 = A1X
−1A1 +B1Y

−1B1 + C1Z
−1C1,

∆12 = A1X
−1A2 +B1Y

−1B2 + C1Z
−1C2,

∆21 = A2X
−1A1 +B2Y

−1B1 + C2Z
−1C1,

∆22 = A2X
−1A2 +B2Y

−1B2 + C2Z
−1C2.

Then, by the properties of matrix operations, Φ1 = Φ2.

Lemma 5. (See [23].) If P is a positive definite matrix, a, b ∈ Rn, we have

2aTb 6 aTP−1a+ bTPb.
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3 Main results

Theorem 1. If f(·) ∈ S, g(·) ∈ B, there exists δ1 > 0 such that Φ1 + Φ2 6 −δ1 < 0,
then the set

Ω1 =

{
x ∈ Rn

∣∣∣ ‖x‖p 6 ‖γ1‖p
δ1

}
is a GAS of system (1). Here γ1 = ‖M‖pK + ‖U‖p, Φ1 = µp(−C) + H̄‖A‖p, Φ2 =
H̄‖B‖p, H̄ = max16i6n{|li|, |hi|} with p = 1, 2,∞.

Proof. Let V (t) = ‖x(t)‖p. Since f(·) ∈ S, we can get that ‖f(x(t))‖p 6 H̄‖x(t)‖p,
‖f(x(t − h(t)))‖p 6 H̄‖x(t − h(t))‖p. In the view of Definition 2 and Lemma 2, the
following obtained:

D+V (t) 6 lim
∆t→0+

‖x(t+∆t)‖p − ‖x(t)‖p
∆t

= lim
∆t→0+

‖x(t) +∆tẋ(t) + o(∆t)‖p − ‖x(t)‖p
∆t

6 lim
∆t→0+

‖x(t) +∆t(−C)x(t)− ‖x(t)‖p
∆t

+ lim
∆t→0+

‖Af(x(t))‖p∆t
∆t

+ lim
∆t→0+

‖Bf(x(t− h(t)))‖p∆t
∆t

+ ‖M‖pK + ‖U‖p

6 lim
∆t→0+

‖En +∆t(−C)‖p − 1

∆t

∥∥x(t)
∥∥
p

+ ‖A‖pH̄
∥∥x(t)

∥∥
p

+ ‖B‖pH̄
∥∥x(t− h(t)

)∥∥
p

+ ‖M‖pK + ‖U‖p

6 Φ1

∥∥V (t)
∥∥
p

+ Φ2

∥∥V (t)
∥∥
p

+ ‖M‖pK + ‖U‖p.

According to Lemma 1, for ‖ϕ(s)‖p > ‖γ1‖p/δ1, s ∈ [−τ, 0], V (t) 6 ‖γ1‖p/δ1 +
M1e−µ1t, where M1 = sup(V (s)− ‖γ1‖p/δ1), −τ 6 s 6 0, µ1 is the root of µ+ Φ1 +
Φ2eµτ = 0. Then Ω1 = {x ∈ Rn | ‖x‖p 6 ‖γ1‖p/δ1} is a GAS of system (1).

For ‖ϕ(s)‖p 6 ‖γ1‖p/δ1, s ∈ [−τ, 0], following Lemma 1, ‖x‖p 6 ‖γ1‖p/δ1, t > 0.
The set Ω1 is also a GAS of system (1).

Theorem 2. If f(·) ∈ S, g(·) ∈ B, ci > hi
∑n
j=1 |aji| + (hi/(1 − µ)

∑n
j=1 |bji|,

0 6 ḣ(t) 6 µ 6 1, then

Ω2 =

{
x ∈ Rn

∣∣∣ n∑
i=1

∣∣xi(t)∣∣ 6 ∑n
j=1 |mij |kj +

∑n
i=1 |ui|

min16i6nΞ

}
is a GAS of system (1), where Ξ = ci − hi

∑n
j=1 |aji| − (hi/(1− µ))

∑n
j=1 |bji|.

Proof. Functional

V (t) =

n∑
i=1

(∣∣xi(t)∣∣+
1

1− µ

n∑
j=1

|bij |
t∫

t−h(t)

∣∣fj(xj(s))∣∣ds)

Nonlinear Anal. Model. Control, 28(2):181–193, 2023
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is adopted, then

D+V (t)

6
n∑
i=1

(
−ci
∣∣xi(t)∣∣+

n∑
j=1

|aij |
∣∣fj(xj(t))∣∣+

n∑
j=1

|bij |
∣∣fj(xj(t− h(t)

))∣∣
+

n∑
j=1

|mij |
∣∣gj(ẋj(t− σ(t)

))∣∣+ |ui|

)
+

1

1− µ

n∑
j=1

|bij |
∣∣fj(xj(t))∣∣

− 1

1− µ

n∑
j=1

|bij |
(
1− ḣ(t)

)∣∣fj(xj(t− h(t)
))∣∣

6
n∑
i=1

(
−ci
∣∣xi(t)∣∣+

n∑
j=1

|aij |hj |
∣∣xj(t)∣∣+

1

1− µ

n∑
j=1

hj |bij |
∣∣xj(t)∣∣

+

n∑
j=1

|mij |kj + |ui|

)
+

n∑
j=1

|bij |
(

1− 1

1− µ
(
1− ḣ(t)

))∣∣fj(xj(t− h(t)
))∣∣

6 −
n∑
i=1

(
ci − hi

n∑
j=1

|aij | −
hi

1− µ

n∑
j=1

|bij |

)∣∣xj(t)∣∣+

n∑
j=1

|mij |kj +

n∑
i=1

|ui|

6 − min
16i6n

{
ci − hi

n∑
j=1

|aji| −
hi

1− µ

n∑
j=1

|bji|

}
n∑
i=1

∣∣xi(t)∣∣
+

n∑
j=1

|mij |kj +

n∑
i=1

|ui|.

If x ∈ Rn \ Ω2, then D+V (t)|(1) < 0, that is, for any ϕ(s) ∈ Ω2, x(t, t0, ϕ) ⊆ Ω2,
t > t0. For ϕ(s) /∈ Ω2, there exists T > 0, x(t, t0, ϕ) ⊆ Ω2, where t > t0 + T . In view
of Definition 1, we can know that Ω2 is a GAS of system (1).

Theorem 3. Let f(·) ∈ S, g(·) ∈ B, R is a positive definite matrix, D,F,Q, P, S are
positive diagonal matrices, and the following LMI holds:

Σ̃ (R− LD)A− CD (R− LD)B (R− LD)M R− LD
∗ DA+ATD − P DB DM D
∗ ∗ −Q 0 0
∗ ∗ 0 −S 0
∗ ∗ 0 0 −F

 < 0, (2)

WQW 6 R. (3)

Then

Ω3 =

{
x(t) ∈ Rn

∣∣∣ xT(t)Rx(t) 6
γ2
δ2

}
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is a GAS of system (1), where δ26ε, γ2 =KTSK+UTFU , Σ̃=(1+ε)(R+D(H−L)−
RC−CR+ 2LDC+WPW ), wi = max |li|, |hi|, W = diag{w1, w2, . . . , wn}, i ∈ Γ .

Proof. Let for f(·) ∈ S,

V (t) = xT(t)Rx(t) + 2

n∑
i=1

di

xi(t)∫
0

(
fi(s)− Lis

)
ds,

P is a positive diagonal matrix, and let ζ = (x(t), f(x(t))T, Ř = R− LD. Then

2
(
xT(t)R+ fT

(
x(t)D − xT(t)LD

))(
−Cx(t) +Af

(
x(t)

))
= 2xT(t)(−RC + LDC)x(t) + 2fT

(
x(t)

)
(DA)f

(
x(t)

)
+ 2xT(t)(RA− LDA− CD)f

(
x(t)

)
6 2xT(t)(−RC + LDC)x(t) + 2fT

(
x(t)

)
(DA)f

(
x(t)

)
+ 2xT(t)(RA− LDA− CD)f

(
x(t)

)
+ xT(t)WPWx(t)− fT

(
x(t)

)
Pf
(
x(t)

)
= ζTΣ1ζ, (4)

where

Σ1 =

(
Λ ŘA− CD
∗ DA+ATD − P

)
, Λ = −RC − CR+ 2LDC +WPW.

Using Lemma 5, for a given positive diagonal matrix Q,S, F , the following inequality
holds:

2
(
xT(t)RB + fT

(
x(t)DB − xT(t)LDB

))
f
(
x
(
t− h(t)

))
6 ζT

(
ŘB
DB

)
Q−1

(
ŘB
DB

)T

ζxT
(
t− h(t)

)
WQWx

(
t− h(t)

)
,

2
(
xT(t)RM + fT

(
x(t)DM − xT(t)LDM

))
g
(
ẋ
(
t− σ(t)

))
6
(
xT(t)RM + fT

(
x(t)DM − xT(t)LDM

))
S−1

(
xT(t)RM

+ fT
(
x(t)DM − xT(t)LDM

))T
+ g
(
ẋ
(
t− σ(t)

))T
Sg
(
ẋ
(
t− σ(t)

))
6 ζT

(
ŘM
DM

)
S−1

(
ŘM
DM

)T

ζ +KTSK

and

2
(
xT(t)R+ fT

(
x(t)D − xT(t)LD

))
U 6 ζT

(
Ř
D

)
F−1

(
Ř
D

)T

ζ + UTFU. (5)

Based on Lemma 4 and (4) ∼ (5), one has

dV (t)

dt
6 xT

(
t− h(t)

)
WQWx

(
t− h(t)

)
+ ζTΣ1ζ + ζTΣ2ζ +KTSK + UTFU, (6)
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where

Σ2 = Σ3

Q−1 0 0
0 S−1 0
0 0 F−1

ΣT
3 and Σ3 =

(
ŘB ŘM Ř
DB DM D

)
.

Using Lemma 3 to (2), let R̃ = R+D(H − L), then we get(
−(1 + ε)(R̃+ Λ) ŘA− CD

∗ DA+ATD − P

)
+Σ2 < 0,

and it is equal to

Σ1 +Σ2 <

(
−(1 + ε)R̃ 0

0 0

)
. (7)

Based on (3), (6), and (7), we have

dV (t)

dt
6 −(1 + ε)xT(t)R̃x(t) + xT

(
t− h(t)

)
Rx
(
t− h(t)

)
+KTSK + UTFU.

Since V (t) 6 xT(t)R̃x(t),

dV (t)

dt
6 −(1 + ε)V (t) + V̄ (t) +KTSK + UTFU.

According to Lemma 1, if xT(t)Rx(t) > γ2/δ2, then V (t) 6 γ2/δ2 + M2e−µ2t,
and for xT(t)Rx(t) 6 γ2/δ2, we have V (t) 6 γ2/δ2, where M2 = sup(V (s)− γ2/δ2),
−τ 6 s 6 0, µ2 is the root of µ − (1 + ε) + eµτ = 0. According to Definition 1,
Ω3 = {x(t) ∈ Rn | xT(t)Px(t) 6 γ2/δ2} is a GAS of system (1).

4 Illustrative examples

We will give two examples and simulations to demonstrate the validity of our theory
results.

Example 1. Consider the following neural networks model:

dx(t)

dt
= −Cx(t) +Af

(
x(t)

)
+Bf

(
x
(
t− h(t)

))
+Mg

(
ẋ
(
t− σ(t)

))
+ U(t), (8)

where f(x)=(0.05(|x−1| − |x+1|), 0.25(|x−1| − |x+1|))T, g(x)=0.4 tanhx. h(t) =
(0.25 sin(t) + 0.8, 0.25 sin(t) + 0.65)T, σ(t) = (0.4 cos(t) + 0.6, 0.2 cos(t) + 0.8)T,
U(t) = (sin(3t), − cos(3t))T,

C =

(
5.98 0

0 8.85

)
, A =

(
2.78 −0.52
2.28 1.59

)
,
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B =

(
1.55 −0.84
1.06 0.77

)
, M =

(
1.43 1.31
−1.36 0.87

)
.

Obviously, U = (1, 1)T, µ = 0.25, σ = 1. The activation function f(x) ∈ S with
−li = hi = diag{0.1, 0.5}, and g(x) ∈ B with ki = 0.4. According to Theorem 2, the
GAS of system (8) is Ω = {x(t) ∈ R2||x(1)| + |x(2)| 6 2.1886}. Figure 1 shows the
simulation results.

Example 2. Consider the following neural networks model:

dx(t)

dt
= −Cx(t) +Af

(
x(t)

)
+Bf

(
x
(
t− h(t)

))
+Mg

(
ẋ
(
t− σ(t)

))
+ U(t), (9)

where

C =

6.68 0 0
0 4.76 0
0 0 5.74

 , A =

3.05 3.22 1.65
2.23 1.57 2.32
3.56 1.23 0.36

 ,

B =

3.25 −0.63 1.37
1.26 0.47 0.68
0.26 1.26 0.77

 , M =

1.43 0.75 1.61
0.42 0.63 0.38
0.34 −1.16 0.47

 ,

U(t) = (−2 − sin(3t)′ 2 − cos(3t), 2 + cos(3t))T, h(t) = 0.65 + 0.35 sin2(t), σ(t) =
0.6 + 0.4 sin(t), f(x) = 0.1(−2 + |x − 1| + |x + 1|), g(x) = 0.2 tanh(x). Obviously,
U = (−1, 1, 1)T, µ = 0.7, σ = 1. The activation function f(x) ∈ S with −li = hi =
diag{0.2, 0.2, 0.2}, and g(x) ∈ B with ki = 0.2.

We have the following results via the LMI control toolbox:

P =

0.3470 0.0197 0.0662
0.0197 0.4544 0.0435
0.0662 0.0435 0.2776

 , D =

0.0095 0 0
0 −0.2049 0
0 0 −0.2473

 ,

Q =

1.4901 0 0
0 1.5397 0
0 0 0.8676

 , R =

9.6567 0 0
0 7.8347 0
0 0 7.2108

 ,

S =

4.3926 0 0
0 4.9744 0
0 0 4.4830

 , H =

4.0371 0 0
0 4.0986 0
0 0 4.1039

 .

According to Theorem 3, when 0 < δ2 6 0.1, the GAS of the system (9) is Ω =
{x(t) ∈ R3 | x(t)TPx(t) 6 12.7936/δ2}. Figure 2 shows the results of system (9) with
s ∈ [−2, 0]. In particular, if the weight matrix are delayed form and the initial value is
left unchanged, the value of the external input is set as U = (0, 0, 0)T. Figure 3 shows
the simulation results.
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Figure 1. The transient behavior trajectories of the system (8).

Figure 2. The transient behavior trajectories of the system (9).

Figure 3. The transient behavior trajectories of the system (9).

Remark 3. From Fig. 2 we can know that system (9) is stable, and we can easily find its
global attractive set. The solution converges to the equilibrium point fast when the value
of external input is more concise as shown in Fig. 3.
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5 Conclusions

This paper discussed the global attractive set of the neural networks with neutral items.
We found three types of Lyapunov functions via matrix measures, inequality techniques,
and Lyapunov theory. The specific estimations for the GAS of neural networks with
neutral item are presented.

In addition, much more work would be considered, such as the dynamical behaviors
of system with neutral items in the field of complex-valued or quaternion-valued and how
to find the global attractive set of the neural networks when the neutral types activation
function with general case.
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