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Abstract. This paper discusses a class issue of finite-time lag projective synchronization (FTLPS)
of delayed fractional-order quaternion-valued neural networks (FOQVNNs) with parameter
uncertainties, which is solved by a non-decomposition method. Firstly, a new delayed FOQVNNs
model with uncertain parameters is designed. Secondly, two types of feedback controller and
adaptive controller without sign functions are designed in the quaternion domain. Based on the
Lyapunov analysis method, the non-decomposition method is applied to replace the decomposition
method that requires complex calculations, combined with some quaternion inequality techniques,
to accurately estimate the settling time of FTLPS. Finally, the correctness of the obtained theoretical
results is testified by a numerical simulation example.
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1 Introduction

Quaternion-valued neural networks(QVNNs) are one of the hot topics during the last few
years, which have been studied by many scholars [9, 15, 20, 28]. A quaternion consists of
one real number plus three imaginary units because of the characteristics of its expression
form, QVNNs perform better than real-valued neural networks(RVNNs) and complex-
valued neural networks (CVNNs) in processing multi-dimensional data. For this reason,
QVNNs are more and more widely used in reality, for example, in pattern recognition [8],
associative memory [10], and so on.

Synchronization is one of the important tools to study dynamical behavior. Recently,
scholars have explored various types of synchronization and made some achievements,
such as lag synchronization [18,29], finite-time synchronization [17], Mittag-Leffler syn-
chronization [21, 23], projective synchronization [4, 14], and so on. Among them, lag
projective synchronization has important research significance in practical applications.
For instance, secure communication can achieve faster communication speed by adjusting
parameters, that is, converging the synchronization error to a small area under appropriate
control conditions. Based on the above conclusions, if it wants to achieve synchronization
as soon as possible in practical applications, it is very important to study the FTLPS of
QVNNs.

In fact, due to the limited speed of information transmission between neurons, time
delay inevitably exists in NNs models. It is well known that the existence of time delay
can generate oscillation, which brings about the instability of NNs. Furthermore, due to
the model errors and environmental factors that can interfere with the system, there is
always uncertainty in system parameters, and parameter uncertainties are unavoidable.
Uncertainty will affect the synchronization, stability, and other dynamical behaviors of
the system. Therefore, it is very necessary to consider both time delay and parameter
uncertainties.

By comparison, fractional calculus has better genetic memory characteristics than
integer calculus, which can accurately describe the system and improve its performance.
Thereupon, it has been widely used in various fields, such as image encryption [2,31], sys-
tem recognition [5, 12], NNs [11, 24]. Nowadays, some researchers combined fractional
calculus with quaternion to form FOQVNNs, which can describe the rich dynamic perfor-
mance and give better play to its excellent characteristics [1,7,25]. [7] addressed a type of
FOQVNNs with uncertain parameters by employing the non-separation method. Together
with some inequality techniques and the properties of fractional calculus, some algebraic
criteria established for robust finite-time synchronization. In [1], based on fractional-
calculus theory, some new criteria are proposed for the global dissipativity and expo-
nential stability of delayed FOQVNNs by constructing a novel Lyapunov function. The
global Mittag-Leffler stability of FOQVNNs with leakage and time-varying delays was
studied in [25] by employing the non-decomposition method, and some sufficient criteria
to guarantee the stability of the system were given. However, up to now, results seldom
consider the FTLPS of FOQVNNs.

Inspired by the aforementioned analysis, this paper considers a class of FTLPS of
delayed FOQVNNs with parameter uncertainties. The innovation and main achievements
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of this paper are summarized as follows:

1. Inspired by [7], a more practical FOQVNNs model is proposed, that is, the model
considers both the time delay and the uncertainty of system parameters.

2. Different from [32], the controllers designed in this paper do not contain sign
functions, and the feedback controller and adaptive controller with quaternion-
valued are designed respectively.

3. In view of the complexity and the huge account operations of the decomposition
method, based on the stability theory and the construction of the Lyapunov func-
tion, this paper will use the non-decomposition method to study the FTLPS of
FOQVNNs.

Notations. Let R and Q denote the real number and quaternion number, respectively.
For a quaternion, its expression is x = xR + ixI + jxJ + kxK ∈ Q, where i, j, k are
imaginary units, xR, xI , xJ , xK ∈ R. x = xR−ixI−jxJ−kxK stands for the conjugate
of x. For any x ∈ Q, |x|1 = |xR| + |xI | + |xJ | + |xK |, |x|2 =

√
xx. For any x ∈ Qn,

‖x‖1 =
∑M
r=1 |xr|1, ‖xr‖2 = (

∑M
r=1 |xr|22)1/2.

2 Preliminaries

In this section, some definitions and lemmas are recalled.

Definition 1. (See [6, 13].) The Riemann–Liouville fractional-order integral of order
µ > 0 for function o(t) is defined as

RL
t0 D

−µ
t o(t) =

1

Γ(µ)

t∫
t0

(t− τ)µ−1o(τ) dτ, t > t0.

Definition 2. (See [6, 13].) The Caputo derivative of function o(t) with fractional order
0 < µ < 1 is defined by

c
t0D

µ
t o(t) =

1

Γ(1− µ)

t∫
t0

(t− τ)−µo′(τ) dτ, t > t0.

Lemma 1. (See [3].) Suppose α, β ∈ Q, then

αβ + αβ 6 ζαα+
1

ζ
ββ.

Lemma 2. (See [32].) For any x ∈ Q,

x+ x = 2 Re(x) 6 2|x|.

Lemma 3. (See [27].) When h(t) ∈ Q is a continuous differentiable function, one has

c
t0D

µ
t h(t)h(t) 6 h(t) ct0D

µ
t h(t) +

(
c
t0D

µ
t h(t)

)
h(t), 0 < µ < 1.
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Lemma 4. (See [32].) Suppose V (t) is a continuously nonnegative definite function and
satisfies

c
t0D

µ
t V (t) 6 −λV κ(t)

in which λ > 0, t > t0, and 0 6 κ < µ < 1. Then the following two cases hold:

(i) For all t > t1, when κ = 0, V (t) = 0,

t1 = t0 +

(
V (t0)Γ(1 + µ)

λ

)1/µ

;

(ii) For all t > t2, when 0 6 κ < µ < 1, V (t) = 0,

t2 = t0 +

(
µ

λ
V µ−κ(t0)B(µ, 1− κ)

)1/µ

,

and B is the beta function defined for any real p, q > 0 as follows:

B(p, q) =

1∫
0

xp−1(1− x)q−1 dx.

3 Model description

In this part, a class of delayed FOQVNNs with parameter uncertainties is described by

c
t0D

µ
t φh(t) = −khφh(t) +

m∑
r=1

(
ahr +∆ahr(t)

)
fr
(
φr(t)

)
+

m∑
r=1

(
bhr +∆bhr(t)

)
gr
(
φr(t− τ)

)
+Wh(t), (1)

where t > t0, µ ∈ (0, 1), kh > 0 is the self-feedback inhibition, φh ∈ Q is the quaternion-
valued state variable, ahr, bhr ∈ Q are the connection weights, ∆ahr(t), ∆bhr(t) ∈ Q
are the uncertain parameters, fr(φr(t)), gr(φr(t − τ)) ∈ Q are the quaternion-valued
activation functions, Wh(t) is the external input.

Assumption 1. For any v, ṽ ∈ Q, r = 1, 2, . . . ,m, the activation functions fr(·) and
gr(·) satisfy ∣∣fr(v)− fr(ṽ)

∣∣ 6 ωr|v − ṽ|,∣∣gr(v)− gr(ṽ)
∣∣ 6 θr|v − ṽ|

in which ωr, θr > 0 are Lipschitz constants.

Assumption 2. If there exist the constants ãhr, b̃hr such that ∆ahr(t) = ãhrαhr(t),
∆bhr(t) = b̃hrβhr(t), where αhr(t), βhr(t) are uncertain quaternion-valued functions
and satisfy αhr(t)αhr(t) 6 1, βhr(t)βhr(t) 6 1, h, r = 1, 2, . . . ,m.
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The associated response system is depicted by

c
t0D

µ
t ϕh(t) = −khϕh(t) +

m∑
r=1

(
ahr +∆ahr(t)

)
fr
(
ϕr(t)

)
+

m∑
r=1

(
bhr +∆bhr(t)

)
gr
(
ϕr(t− τ)

)
+Wh(t) + Ih(t), (2)

where Ih(t) is an external controller.

Definition 3. (See [16].) For any solutions φh(t) and ϕh(t) of systems (1) and (2), the
delayed FOQVNNs with uncertain parameters (1) and (2) can achieve FTLPS if there
exist constants σ 6= 0, γ > 0 and a real number T ∈ (0,+∞) such that

lim
t→T

∥∥ϕh(t)− σφh(t− γ)
∥∥ = 0,∥∥ϕh(t)− σφh(t− γ)

∥∥ = 0, t > T,

where σ is the projection coefficient, γ is the lag term, and T is the synchronization time.

4 Main results

From the definition of FTLPS the synchronization error is expressed as

eh(t) = ϕh(t)− σφh(t− γ),

then

c
t0D

µ
t eh(t) = −kheh(t) +

m∑
r=1

(
ahr +∆ahr(t)

)[
fr
(
ϕr(t)

)
− fr

(
σφr(t− γ)

)]
+

m∑
r=1

(
bhr +∆bhr(t)

)[
gr
(
ϕr(t− τ)

)
− gr

(
σφr(t− τ − γ)

)]
+ Ih(t),

where 0 < µ < 1.
To achieve FTLPS between systems (1) and (2), the following quaternion-valued

feedback controller is designed:

Ih(t) =

{
−εheh(t) + δheh(t− τ)− ϑeh(t)

(eh(t)eh(t))λ
, eh(t) 6= 0,

0, eh(t) = 0,
(3)

where εh, δh, ϑ > 0, 1− µ < λ < 1, h = 1, 2, . . . ,m.

Theorem 1. Suppose Assumption 1 is held and under controller (3). Then systems (1)
and (2) are FTLPS, and the following conditions are satisfied:

ρh < 2kh + 2εh − δh − 2mω2
h −

m∑
r=1

(
|ahr|2 + |bhr|2 + |ãhr|2 + |b̃hr|2

)
,

%h > δh + 2mθ2h
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in which the time T is reckoned by

T1 = t0 +

(
µ

2ϑ
V µ−1+λ(t0)B(µ, λ)

)1/µ

.

Proof. Let us construct the following Lyapunov function:

V (t) =

m∑
h=1

(
eh(t)eh(t)

)
,

c
t0D

µ
t V (t)

6
m∑
h=1

[
eh(t) ct0D

µ
t eh(t) +

(
c
t0D

µ
t eh(t)

)
eh(t)

]
=

m∑
h=1

[
eh(t)

(
−kheh(t) +

m∑
r=1

(
ahr +∆ahr(t)

)[
fr
(
ϕr(t)

)
− fr

(
σφr(t− γ)

)]
+

m∑
r=1

(
bhr +∆bhr(t)

)[
gr
(
ϕr(t− τ)

)
− gr

(
σφr(t− τ − γ)

)]
− εheh(t) + δheh(t− τ)− ϑeh(t)

(eh(t)eh(t))λ

)

+

(
−kheh(t) +

m∑
r=1

[
fr
(
ϕr(t)

)
− fr

(
σφr(t− γ)

)](
ahr +∆ahr(t)

)
+

m∑
r=1

[
gr
(
ϕr(t− τ)

)
− gr

(
σφr(t− τ − γ))

](
bhr +∆bhr(t)

)
− εheh(t) + δheh(t− τ)− ϑeh(t)

(eh(t)eh(t))λ

)
eh(t)

]
.

From Assumption 1 one has

c
t0D

µ
t V (t)

6 −
m∑
h=1

(2kh + 2εh)eh(t)eh(t)− 2ϑ

m∑
h=1

(
eh(t)eh(t)

)1−λ
+

m∑
h=1

eh(t)δheh(t− τ) +

m∑
h=1

δheh(t− τ)eq(t)

+

m∑
h=1

m∑
r=1

eh(t)ahrωher(t) +

m∑
h=1

m∑
r=1

er(t)ωr ahreh(t)

+

m∑
h=1

m∑
r=1

eh(t)∆ahr(t)ωher(t) +

m∑
h=1

m∑
r=1

er(t)ωr∆ahr(t)eh(t)
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+

m∑
h=1

m∑
r=1

eh(t)bhrθrer(t− τ) +

m∑
h=1

m∑
r=1

er(t− τ) θrbhreh(t)

+

m∑
h=1

m∑
r=1

eh(t)∆bhr(t)θrer(t− τ) +

m∑
h=1

m∑
r=1

er(t− τ) θr∆bhr(t)eh(t). (4)

According to Assumption 2 and Lemma 2,
m∑
h=1

eh(t)δheh(t− τ) +
m∑
h=1

δheh(t− τ)eh(t)

6
m∑
h=1

δheh(t)eh(t) +

m∑
h=1

eh(t− τ)eh(t− τ), (5)

m∑
h=1

m∑
r=1

eh(t)ahrωrer(t) +

m∑
h=1

m∑
r=1

er(t)ωr ahreh(t)

6 m
m∑
r=1

er(t)ωr ωrer(t) +

m∑
h=1

m∑
r=1

eh(t) ahrahr eh(t)

6 m
m∑
h=1

ω2
heh(t)eh(t) +

m∑
h=1

m∑
r=1

|ahr|2 eh(t) eh(t), (6)

m∑
h=1

m∑
r=1

eh(t)∆ahr(t)ωr er(t) +

m∑
h=1

m∑
r=1

er(t)ωr∆ahr(t)eh(t)

6 m
m∑
r=1

er(t)ωr ωrer(t) +

m∑
h=1

m∑
r=1

eh(t)∆ahr(t)∆ahr(t) eh(t)

6 m
m∑
h=1

ω2
heh(t)eh(t) +

m∑
h=1

m∑
r=1

|ãhr|2 eh(t) eh(t). (7)

Similarly,
m∑
h=1

m∑
r=1

eh(t)bhrθrer(t− τ) +

m∑
h=1

m∑
r=1

er(t− τ) θr bhreh(t)

6 m
m∑
h=1

θ2heh(t− τ)eh(t− τ) +

m∑
h=1

m∑
r=1

|bhr|2eh(t)eh(t), (8)

m∑
h=1

m∑
r=1

eh(t)∆bhr(t)θrer(t− τ) +

m∑
h=1

m∑
r=1

er(t− τ) θr∆bhr(t)eh(t)

6 m
m∑
h=1

θ2heh(t− τ)eh(t− τ) +

m∑
h=1

m∑
r=1

|b̃hr|2eh(t)eh(t). (9)
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Submitting (5)–(9) into (4), one has

c
t0D

µ
t V (t) 6 −

m∑
h=1

[
2kh + 2εh − δh − 2mω2

h

−
m∑
r=1

(
|ahr|2 + |bhr|2 + |ãhr|2 + |b̃hr|2

)]
eh(t)eh(t)

+

m∑
h=1

(δh + 2mθ2h)eh(t− τ)eh(t− τ)− 2ϑ
m∑
h=1

(
eh(t)eh(t)

)1−λ
6 −ρhV (t) + %hV (t− τ)− 2ϑV 1−λ(t),

and there exists η > 1 such that ρh − %hη > 0. Then using fractional-order Razumikhin
theorem, for all t > t0, one has

c
t0D

µ
t V (t) 6 −(ρh − %hη)V (t)− 2ϑV 1−λ(t) 6 −2ϑV 1−λ(t).

Therefore, according to Lemma 4, systems (8) and (9) can achieve the FTLPS, the
setting time T is estimated by

T1 = t0 +

(
µ

2ϑ
V µ−1+λ(t0)B(µ, λ)

)1/µ

. �

If there are no indeterminate parameters, i.e., ∆ahr = 0, ∆bhr = 0, then system (1)
can be converted into the following form:

c
t0D

µ
t φh(t) = −khφh(t) +

m∑
r=1

ahrfr
(
φr(t)

)
+

m∑
r=1

bhrgr
(
φr(t− τ)

)
+Wh(t). (10)

Similarly, system (2) can be written as

c
t0D

µ
t ϕh(t) = −khϕh(t) +

m∑
r=1

ahrfr
(
ϕr(t)

)
+

m∑
r=1

bhrgr
(
ϕr(t− τ)

)
+Wh(t) + Ih(t). (11)

Next, we can derive the following corollary.

Corollary 1. Suppose Assumption 1 is held and under controller (3). Systems (10) and
(11) are FTLPS and meet the following conditions:

ρ̃h < 2kh + 2εh − δh −mω2
h −

m∑
r=1

(
|ahr|2 + |bhr|2

)
,

%̃h > δh +mθ2h
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in which the time T2 is reckoned by

T2 = t0 +

(
µ

2ϑ
V µ−1+λ(t0)B(µ, λ)

)1/µ

.

Remark 1. Among the research results known so far, there are many conclusions about
finite-time synchronization with uncertain parameters of FONNs, but there are still few
papers that can take into account the systems with uncertain parameters and time delay.
To apply our model more accurately and more effectively in solving practical problems,
it is worth our further study to consider these two factors at the same time.

To achieve FTLPS between systems (1) and (2), the following quaternion-valued
adaptive controller is designed:

Ih(t) =

{
−εh(t)eh(t)− ϑeh(t)

(eh(t)eh(t))λ
, eh(t) 6= 0,

0, eh(t) = 0,
(12)

where c
t0D

µ
t εh(t) = ε′heh(t)eh(t), and ϑ, ε′h > 0, h = 1, 2, . . . ,m.

Theorem 2. Suppose Assumption 1 is held and under controller (12). Systems (1) and (2)
are FTLPS, and the following conditions are satisfied:

ζh = 2kh, ξh >

m∑
r=1

θr
(
|bhr|+ |b̃hr|

)
in which the time T is reckoned by

T3 = t0 +

(
µ

2ϑ
V µ−1+λ(t0)B(µ, λ)

)1/µ

.

Proof. Let us construct the following Lyapunov function:

V (t) =

m∑
h=1

(
eh(t)eh(t)

)
+

m∑
h=1

1

ε′h

(
εh(t)− ε∗h

)2
,

where

2ε∗h =

m∑
r=1

ωr
(
|ahr|+ |ãhr|

)
−

m∑
r=1

ωh
(
|arh|+ |ãrh|

)
−

m∑
r=1

θr
(
|bhr|+ |b̃hr|

)
,

c
t0D

µ
t V (t)

6
m∑
h=1

[
eh(t) ct0D

µ
t eh(t) +

(
c
t0D

µ
t eh(t)

)
eh(t)

]
+

m∑
h=1

2

ε′h

(
εh(t)− ε′h

)
c
t0D

µ
t εh(t)
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=

m∑
h=1

[
eh(t)

(
−kheh(t) +

m∑
r=1

(
ahr +∆ahr(t)

)[
fr
(
ϕr(t)

)
− fr

(
σφr(t− γ)

)]
+

m∑
r=1

(
bhr +∆bhr(t)

)[
gr
(
ϕr(t− τ)

)
− gr

(
σφr(t− τ − γ)

)]
− εh(t)eh(t)− ϑeh(t)

(eh(t)eh(t))λ

)

+

(
−kheh(t) +

m∑
r=1

[
fr
(
ϕr(t)

)
− fr(σφr(t− γ))

](
ahr +∆ahr(t)

)
+

m∑
r=1

[
gr
(
ϕr(t− τ)

)
− gr(σφr(t− τ − γ))

](
bhr +∆bhr(t)

)
− εh(t)eh(t)− ϑeh(t)

(eh(t)eh(t))λ

)
eh(t)

]
+ 2

m∑
h=1

(
εh(t)− ε∗h

)
eh(t)eh(t).

From Assumption 1 one has

c
t0D

µ
t V (t)

6 −
m∑
h=1

(2kh + 2ε∗h)eh(t)eh(t)− 2ϑ

m∑
h=1

(eh(t)eh(t))1−λ

+

m∑
h=1

m∑
r=1

eh(t)ahrωrer(t) +

m∑
h=1

m∑
r=1

er(t)ωrahreh(t)

+

m∑
h=1

m∑
r=1

eh(t)∆ahr(t)ωrer(t) +

m∑
h=1

m∑
r=1

er(t)ωr∆ahr(t)eh(t)

+

m∑
h=1

m∑
r=1

eh(t)brθrer(t− τ) +

m∑
h=1

m∑
r=1

er(t− τ) θr bhr eh(t)

+

m∑
h=1

m∑
r=1

eh(t)∆bhr(t)θrer(t− τ) +

m∑
h=1

m∑
r=1

er(t− τ)θr∆bhr(t) eh(t). (13)

According to Assumption 1 and Lemma 2,

m∑
h=1

m∑
r=1

eh(t)ahrωrer(t) +

m∑
h=1

m∑
r=1

er(t)ωr ahreh(t)

6 2

m∑
h=1

m∑
r=1

√
er(t)ωrahreh(t)eh(t)ahrωrer(t)

6 2

m∑
h=1

m∑
r=1

ωr
∣∣ahr||eh(t)||er(t)

∣∣
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6
m∑
h=1

m∑
r=1

ωr|ahr|
(
eh(t)eh(t) + er(t)er(t)

)
=

m∑
h=1

m∑
r=1

ωr|ahr|eh(t)eh(t) +

m∑
h=1

m∑
r=1

ωh|arh|eh(t)eh(t) (14)

and
m∑
h=1

m∑
r=1

eh(t)∆ahr(t)ωrer(t) +
m∑
h=1

m∑
r=1

er(t)ωr∆ahr(t)eh(t)

6 2

m∑
h=1

m∑
r=1

√
er(t)ωr∆ahr(t)eh(t)eh(t)∆ahr(t)ωrer(t)

6 2

m∑
h=1

m∑
r=1

ωr
∣∣ãhr∣∣∣∣eh(t)

∣∣∣∣er(t)∣∣
6

m∑
h=1

m∑
r=1

ωr|ãhr|
(
eh(t)eh(t) + er(t)er(t)

)
=

m∑
h=1

m∑
r=1

ωr|ãhr|eh(t)eh(t) +

m∑
h=1

m∑
r=1

ωh|ãrh|eh(t)eh(t). (15)

Similarly,

m∑
h=1

m∑
r=1

eh(t)bhrθrer(t− τ) +

m∑
h=1

m∑
r=1

er(t− τ) θr bhreh(t)

6 2

m∑
h=1

m∑
r=1

√
er(t− τ)θrbhreh(t)eh(t)ahrθrer(t− τ)

6 2

m∑
h=1

m∑
r=1

θr|bhr|
∣∣eh(t)

∣∣∣∣er(t− τ)
∣∣

6
m∑
h=1

m∑
r=1

θr|bhr|
(
eh(t)eh(t) + er(t− τ)er(t− τ)

)
=

m∑
h=1

m∑
r=1

θr|bhr|eh(t)eh(t) +

m∑
h=1

m∑
r=1

θh|brh|eh(t− τ)eh(t− τ) (16)

and
m∑
h=1

m∑
r=1

eh(t)∆bhr(t)θrer(t− τ) +

m∑
h=1

m∑
r=1

er(t− τ) θr∆bhr(t)eh(t)

6 2

m∑
h=1

m∑
r=1

√
er(t) θr∆bhr(t)eh(t)eh(t)∆bhr(t)θrer(t− τ)
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6 2

m∑
h=1

m∑
r=1

θr|b̃hr|
∣∣eh(t)

∣∣∣∣er(t− τ)
∣∣

6
m∑
h=1

m∑
r=1

θr|b̃hr|
(
eh(t)eh(t) + er(t− τ)er(t− τ)

)
=

m∑
h=1

m∑
r=1

θr|b̃hr| eh(t)eh(t) +

m∑
h=1

m∑
r=1

θh|b̃rh| eh(t− τ)eh(t− τ). (17)

Submitting (14)–(17) into (13), one has

c
t0D

µ
t V (t) 6 −

m∑
h=1

[
2kh + 2ε∗h −

m∑
r=1

ωr
(
|ahr|+ |ãhr|

)
−

m∑
r=1

ωh
(
|arh|+ |ãrh|

)
−

m∑
r=1

θr
(
|bhr|+ |b̃hr|

)]
eh(t)eh(t)

+

m∑
r=1

θr
(
|bhr|+ |b̃hr|

)
eh(t− τ)eh(t− τ)− 2ϑ

m∑
h=1

(
eh(t)eh(t)

)1−λ
6 −ζhV (t) + ξhV (t− τ)− 2ϑV 1−λ(t),

and there exists η > 1 such that ζh − ξhη > 0. Then using fractional-order Razumikhin
theorem, for all t > t0, we have

c
t0D

µ
t V (t) 6 −(ζh − ξhη)V (t)− 2ϑV 1−λ(t) 6 −2ϑV 1−λ(t).

Therefore, according to Lemma 4, systems (8) and (9) are FTLPS, the setting time T
is reckoned by

T3 = t0 +

(
µ

2ϑ
V µ−1+λ(t0)B(µ, λ)

)1/µ

. �

Corollary 2. Suppose Assumption 1 is held and under controller (12). Systems (10) and
(11) are finite-time lag projective synchronization and meet the following conditions:

ζ̃h = 2kh, ξ̃h >

m∑
r=1

θr|bqh|

in which

2ε∗h =

m∑
r=1

ωr|ahr| −
m∑
r=1

ωr|arh| −
m∑
r=1

θr|bhr|,

and the time T4 is reckoned by

T4 = t0 +

(
µ

2ϑ
V µ−1+λ(t0)B(µ, λ)

)1/µ

.
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Remark 2. Judging from the existing research results, there are few conclusions about
the FTLPS analysis of FOQVNNs with uncertain parameters. [19] studied the synchro-
nization and quasi-synchronization problems of FOQVNNs with uncertain parameters
and proposed lexicographical ordering approach, which can be used to fix the range of
two different quaternion-values. By constructing a Lyapunov function and comparison
theory, the global asymptotic synchronization and stability of delayed FOMQVNNs with
uncertain parameters are studied, and some appropriate criteria are established in [22].

Remark 3. Different from [22], this paper uses the non-decomposition method instead
of the decomposition method, that is, directly regards the system as a whole and no
longer divides the system into other subsystems for analysis, which greatly reduces the
computational complexity to a certain extent.

Remark 4. In [30], the projection synchronization of the FOQVNNs model when γ = 0
was studied, obviously the lag projection synchronization considered in this paper can
be regarded as a generalization of the above reference, and the theoretical conclusions
obtained were more general.

Remark 5. The finite-time synchronization problem of delayed FOQVNNs was analyzed
in [26]. Compared with the FOQVNNs model considered in this paper, this paper not only
added the time delay term to the model, but also considered the uncertainty term that will
affect the stability of the neural networks. Therefore, the model designed in this paper
was more realistic and easier to be verified in practical applications.

5 Numerical simulations

In this section, the example of the FTLPS is given to show the validity of the results
obtained in Theorems 1 and 2.

Example. Consider the following delayed FOQVNNs with uncertain parameters as drive
and response systems, respectively:

c
t0D

µ
t φh(t) = −khφh(t) +

m∑
r=1

(ahr +∆ahr(t))fr
(
φr(t)

)
+

m∑
r=1

(
bhr +∆bhr(t)

)
gr
(
φr(t− τ)

)
+Wh(t), (18)

c
t0D

µ
t ϕh(t) = −khϕh(t) +

m∑
r=1

(ahr +∆ahr(t))fr
(
ϕr(t)

)
+

m∑
r=1

(
bhr +∆bhr(t)

)
gr
(
ϕr(t− τ)

)
+Wh(t) + Ih(t), (19)

where φq(t) = φRq (t) + iφIq(t) + jφJq (t) + kφKq (t) with φRq (t), φIq(t); φJq (t), φKq (t) ∈ R,
ϕq(t) = ϕRq (t) + iϕIq(t) + jϕJq (t) + kϕKq (t) with ϕRq (t), ϕIq(t), ϕJq (t), ϕKq (t) ∈ R;
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the activation functions f(·) = g(·) = tanh(φRh (t)) + i tanh(φIh(t)) + j tanh(φJh(t)) +
k tanh(φKh (t)); h = 1, 2, W1(t) = W2(t) = 0, µ = 0.92, τ = 1,

K = diag(k1, k2) =

(
15 0
0 10

)
,

A = (ahr)2×2 =

(
2.4− 0.1i+ 2.2j + 3k −2 + 1.5i+ 0.3j + 1.5k
−1.1 + i+ j + 2k −2.3 + 2i+ 2.1j − 2k

)
,

B =
(
∆ahr(t)

)
2×2,

where ∆a11 = 0.5 sin(t) + 0.5 cos(t)i+ 0.8 cos(t)j + 0.5 sin(t)k, ∆a12 = 0.5 sin(t)−
0.5 sin(t)i + cos(t)j − 0.5 sin(t)k, ∆a21 = 0.5 cos(t) + 0.5 cos(t)i + 0.5 cos(t)j +
0.5 cos(t)k, ∆a22 = 0.5 sin(t)− 0.5 sin(t)i− 0.5 sin(t)j − 0.5 sin(t)k,

C = (bhr)2×2 =

(
2− 0.6i+ 2j + 2k −5 + 6i+ 2j
−2− 3i+ j − 1.1k −1 + 1.4i+ 1.9j − 0.1k

)
,

D =
(
∆bhr(t)

)
2×2,

where ∆b11 = 0.5 sin(t) + 0.5 sin(t)i+ 0.8 sin(t)j+ 0.5 sin(t)k, ∆b12 = −0.5 sin(t)−
0.5 sin(t)i − 0.5 sin(t)j − 0.5 sin(t)k, ∆b21 = 0.5 cos(t) + 0.5 cos(t)i + 0.5 cos(t)j −
0.5 sin(t)k, ∆b22 = 0.5 sin(t)− 0.5 sin(t)i− 0.5 sin(t)j − 0.5 sin(t)k.

Under the quaternion-valued feedback controller (3), let the initial values of sys-
tem (18) and (19) are φ(0) = (4.2 + 2i + 2j − 2.3k, 2.2 − 2i + 2j + 3.1k), ϕ(0) =
(2.8+4.1i+5j−4.5k, 4−4.5i+4.5j+4.3k). The state tracks of synchronization error
without controller (3) are displayed in Figs. 1 and 2, which derived that systems (19) and
(18) cannot achieve FTLPS. Next, we set values to the parameters in controller (3), that
is, ε1 = 46, ε2 = 35, δ1 = 0.5, δ2 = 2.5, ϑ = 12, λ = 0.9. Then through the calculation,
one has V (0) = 36.65, and two parameters that satisfy the conditions in Theorem 1 are
obtained, namely, ρ1 = 6.5, ρ2 = 32, %1 = 7, %2 = 7. In addition, there is η = 1.1 such
that ρh − %hη > 0 making fractional-order Razumikhin theorem established. Therefore,
systems (18) and (19) can realize FTLPS and the settling time T1 ≈ 0.8730, which is
shown in Fig. 3, and the state variables curves are depicted in Figs. 4 and 5.

In the quaternion-valued adaptive controller (12), we set ε1(0) = 43, ε2(0) = 38,
ϑ = 6, λ = 0.4, and the initial values of system (18) and (19) are φ(0) = (1−1.8i+3j−
2.3k, 2− 2.2i+ 2j + 3.1k), ϕ(0) = (3 + 5.4i+ 5.3j − 2.5k, 2.4− 4.7i+ 5.5j + 4.3k).
Similarly, through simple calculations, we can get V (0) = 115.6342, ε∗1 = −4.515,
ε∗2 = −3.555 and the constants ζ1 = 30, ζ2 = 14, ξ1 = 20, ξ2 = 9 satisfying the
conditions of Theorem 2. Also, there exists η = 1.2 such that ζh − ξhη > 0 making
fractional-order Razumikhin theorem established. It can be seen in Figs. 6 and 7 that the
trajectories of various state variables without the controller are disordered and cannot
achieve synchronization. From Fig. 8 the system error gradually tends to zero, that is, the
synchronization between systems (18) and (19) has been achieved in a finite time, and the
settling-time can be calculated by the formula as T3 ≈ 0.8814. Meanwhile, Figs. 9 and
10 depicted that the trajectory of each state variable can indeed achieve synchronization
at this time.
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Figure 1. Under σ = 2, γ = 1, state trajectories of φR1 , σϕR
1 , φI1, σϕI

1, φJ1 , σϕJ
1 , φK1 , σϕK

1 without
controller (3).

Figure 2. Under σ = 2, γ = 1, state trajectories of φR2 , σϕR
2 , φI2, σϕI

2, φJ2 , σϕJ
2 , φK2 , σϕK

2 without
controller (3).
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Figure 3. Finite-time synchronization error eR1 , eR2 , eI1, eI2, eJ1 , eJ2 , eK1 , eK2 under controller (3).

Figure 4. Under σ = 2, γ = 1, state trajectories of φR1 , σϕR
1 , φI1, σϕI

1, φJ1 , σϕJ
1 , φK1 , σϕK

1 .
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Figure 5. Under σ = 2, γ = 1, state trajectories of φR2 , σϕR
2 , φI2, σϕI

2, φJ2 , σϕJ
2 , φK2 , σϕK

2 .

Figure 6. Under σ = 2.3, γ = 1, state trajectories of φR1 , σϕR
1 , φI1, σϕI

1, φJ1 , σϕJ
1 , φK1 , σϕK

1 without
controller (12).
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Figure 7. Under σ = 2.3, γ = 1, state trajectories of φR2 , σϕR
2 , φI2, σϕI

2, φJ2 , σϕJ
2 , φK2 , σϕK

2 without
controller (12).

Figure 8. Finite-time synchronization error eR1 , eR2 , eI1, eI2, eJ1 , eJ2 , eK1 , eK2 under controller (12).
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Figure 9. Under σ = 2.3, γ = 1, state trajectories of φR1 , σϕR
1 , φI1, σϕI

1, φJ1 , σϕJ
1 , φK1 , σϕK

1 .

Figure 10. Under σ = 2.3, γ = 1, state trajectories of φR2 , σϕR
2 , φI2, σϕI

2, φJ2 , σϕJ
2 , φK2 , σϕK

2 .
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6 Conclusion

This paper discussed the FTLPS problem of time-delayed FOQVNNs with uncertain
parameters. First, in order to ensure the stability of the NNs, both time-delay terms and
uncertainties are considered in the model. Secondly, using a non-decomposition method
under two different types of controllers gives two criteria that can ensure that FOQVNNs
lag projection synchronization in finite time. In addition, the obtained theoretical results
are effectively proved by a numerical simulation. In our future work, the proposed method
can be used to study other dynamical behaviors of delayed FOQVNNs with uncertain
parameters, such as stability, stabilization, and so on.
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