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Abstract. This article is concerned with a generative approach to supervised classification of
spatio-temporal data collected at fixed areal units and modeled by Gaussian Markov random field.
We focused on the classifiers based on Bayes discriminant functions formed by the log-ratio of
the class conditional likelihoods. As a novel modeling contribution, we propose to use decision
threshold values induced by three popular spatial autocorrelation indexes, i.e., Moran’s I, Geary’s C
and Getis–Ord G. The goal of this study is to extend the recent investigations in the context
of geostatistical and hidden Markov Gaussian models to one in the context of areal Gaussian
Markov models. The classifiers performance measures are chosen to be the average accuracy rate,
which shows the percentage of correctly classified test data, balanced accuracy rate specified by
the average of sensitivity and specificity and the geometric mean of sensitivity and specificity.
The proposed methodology is illustrated using annual death rate data collected by the Institute
of Hygiene of the Republic of Lithuania from the 60 municipalities in the period from 2001 to
2019. Classification model selection procedure is illustrated on three data sets with class labels
specified by the threshold to mortality index due to acute cardiovascular event, malignant neoplasms
and diseases of the circulatory system. Presented critical comparison among proposed approach
classifiers with various spatial autocorrelation indexes (decision threshold values) and classifier
based hidden Markov model can aid in the selection of proper classification techniques for the
spatio-temporal areal data.

Keywords: separable covariance function, Bayes discriminant function, spatial weights, confusion
matrix, decision threshold values.

1 Introduction

Spatial classification is an important task in spatio-temporal data mining. A compre-
hensive literature survey on state-of-the-art advances in spatio-temporal data mining is
proposed by Hamdi et al. [15]. Compared with the general classification problem, spatial
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classification needs to consider the location information of the data and the interaction
among feature and label variables at every time moment. Bayesian classifiers are one of
the most common spatial classification tools. There are currently a variety of ways to
achieve the classification goal, but one of the most effective one is to use the discriminant
function.

In this study, we focus on the generative approach to supervised classification based
discriminant functions formed by log-ratio of spatio-temporal Gaussian conditional distri-
butions for features to enrich and generalize the traditional discriminant function theory.

Often before analyzing spatio-temporal datasets, spatio-temporal discretization (or
aggregation) is applied. The discretization is useful to summarize information and help
in extracting features within a spatio-temporal range rather than measuring a single point
[14].

The generative approach to supervised classification is studied by numerous authors
(see, e.g., [21, 26]). In the framework of this approach, the labeling of observations is
based on the class-conditional feature distributions and information about various
adjacency relationships. Spatial contextual classification problems arising in geospatial
domain has been studied in the vast literature (see, e.g., [1, 27]). It is usually assumed
that once the class label is known, feature observations are independent. This approach
comprises the generative classifiers based on naive Bayes or hidden Markov models
(HMMs) (see, e.g., [21]). Dučinskas [8] proposed and explored supervised generative
classification rules for spatial Gaussian data by avoiding assumption of conditional inde-
pendence. Comprehensive overview of methods for statistical classification and discrimi-
nation of Gaussian spatial data is provided by Berret and Calder [2]. The novel approach
to classification of Gaussian Markov random fields (GMRF) observation on the lattice
is developed by Dreižienė and Dučinskas [7] and Dučinskas and Dreižienė [9]. Some
authors have investigated the performance of the Bayes classification rules when training
samples consist of temporally dependent observations (see, e.g., [19]).

In the environmental agricultural and other research, data are often collected across
space and through time. The spatio-temporal data are usually recorded at regular time
intervals (time lags) and at irregular stations (areas) in compact area (see, e.g., [6]).
Modeling and prediction of a such type of data has been studied by the numerous authors
(see, e.g., [3, 5]).

However, generative statistical classification of spatio-temporal data has been rarely
considered previously (see, e.g., [17, 33]). It should be noted that deep learning methods
based on discriminative approach has been intensively studied now [34, 35], but these
methods are off scope of this paper.

In the present paper, we focus on the classification of spatio-temporal areal data mod-
eled by GMRF with separable spatio-temporal covariance specified by spatial margins
and discrete temporal margins (see, e.g., [5]). Areal data consist of observations collected
at subregions that form a partition of a region of interest. This data usually represent
summaries of a quantity interest over subregions over a period of time.

Our approach comprises the cases when the class label can vary across areal units
and over time. This assumption essentially widens the application area of the proposed
classification method, especially for the cases with the imbalanced data. Separability of
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covariances was assumed for the sake of reduction of complexity due to interdependencies
between features. The general objective of this study is to extend the previous investiga-
tions of spatio-temporal point referenced geostatistical data to spatio-temporal areal data.
As a novel modeling contribution, we propose to use decision threshold values induced by
three popular spatial autocorrelation indexes, i.e., Moran’s I, Geary’s C and Getis–Ord G.

Performance criterion of the classifier based on plug-in Bayes discriminant function
realized on previously described spatio-temporal data models is chosen to be the accu-
racy rate (ACC), which shows the percentage of correctly classified test data, balanced
accuracy rate (BAC) and geometric accuracy rate (GAC) evaluated from the confusion
matrices. For numerical illustrations, the HCAR model for spatial covariance (see, e.g.,
[29]) and AR(p) model for temporal covariance are considered. This is the extension of
the generative classification method for point referenced spatio-temporal data developed
by Karaliutė and Dučinskas [16,17]. Critical analysis of the proposed classifiers is carried
out for decision threshold values induced by several class label distributions. Critical com-
parison among proposed approach classifiers with various spatial autocorrelation indexes
(decision threshold values) and classifier based HMM is performed.

In order to carry out the study, this paper is organized as follows. First, Section 2
introduces the models for spatial-temporal Gaussian data. Next, Section 3 introduces
classifiers based on Bayes discriminant functions. The numerical analysis of annual death
rate data collected by the Institute of Hygiene of the Republic of Lithuania from the 60
municipalities in the period from 2001 to 2019 is presented in the experimental study
section. Finally, conclusions and comments are made in the last section.

2 Spatio-temporal data models and conditional distributions

The main objective of this paper is to classify scalar feature observations of GMRF
{Z(s; t): s ∈ D ⊂ R2, t ∈ DT = [0,∞]}, where s and t define spatial and temporal
indexes, respectively. Let {Y (s; t): s ∈ D ⊂ R2, t ∈ DT } be a random field that
represents class label and takes only the value 0 or 1 with prior probabilities π0(s, t) and
π1(s, t), respectively (see, e.g., [30]).

In this study, we assume that for l = 0, 1, the model of observation Z(s; t) conditional
on Y (s; t) = l is

Z(s; t) = µl(s; t) + ε(s; t),

where µl(s; t) is deterministic spatio-temporal mean. The error term is assumed to be
generated by the univariate zero-mean GMRF {ε(s; t): s ∈ D ⊂ R2, t ∈ DT }, with
covariance function defined by model cov(ε(s; t), ε(u; r)) = C(s, u; t, r) for all s, u ∈ D
and t, r ∈ T .

In the present paper, we restrict our attention to the separable spatio-temporal co-
variance model C(s, u; t, r) = CS(s, u)CT (t, r), where CS(s, u) denotes pure spatial
covariance between observations in areas s and u, and CT (t, r), denotes pure temporal
covariance between observations at time points t and r.

Under this assumption, the spatio-temporal covariance structure factors into a purely
spatial and a purely temporal component, which allows for computationally efficient esti-
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mation and inference. Therefore, separable covariance models have been popular even in
situations in which they are not physically justifiable. Many statistical tests for separability
have been proposed recently and are based on parametric models (see, e.g., [4, 12]) or
spectral methods [25].

Let S = {si ∈ D, i = 1, . . . , n} be a set of n nonoverlapping areal units (areas).
Assume that S is endowed with a neighbourhood system N = {Ni, i = 1, . . . , n},
where Ni denotes the collection of areas that are neighbours of area si. Usually, the
neighborhood Ni could be defined to be those areas with which area si shares a common
border. Data is recorded for each areal unit at consecutive time periods at t ∈ DT =
1, 2, . . . ,m,m+ 1.

At every time moment t, denote by nlt the number of areas with Y (s, t) = l. Thus
n = n0t + n1t for every t ∈ DT . Hence a set of class labels at any time moment can
differ in composition.

As it follows, the transpose of any matrix A is denoted by the symbol A′.
Suppose the training sample consisting of m temporal feature observations in Sn is

specified by n×m matrix Z = (Z1, . . . , Zm), where Zt = (Z(s1, t), . . . , Z(sn, t))
′.

This structure of data presentation is motivated by a model that assumes multivariate
(in space) time series. Denote by zt = (z1t , . . . , z

n
t ) and yt = (y1t , . . . , y

n
t ) the realized

value of Zt and Yt = (Y (s1, t), . . . , Y (sn, t))
′, respectively.

Set z̄t =
∑n

i=1 z
i
t/n and z̃t = zt− z̄t1n, where 1n denotes an n-dimensional column

vector whose elements are all equal 1.
Specify n-dimensional quadratic matrix W = (wij), i, j = 1, . . . , n, with (i, j)

element

wij =


0 if i = j,

1 if sj ∈ Ni,

0 otherwise.

To be specific, n-dimensional random vector Zt follows the Gaussian Markov graph-
ical model specified by the family of joint distributions defined on the undirected graph
G = (S;E), with S as set of nodes and edges E corresponding the endowed neighbor-
hood system N with spatial weights matrix W .

Define by H = D − W the Laplace matrix, where D is the diagonal matrix with
diagonal elements dii =

∑
sj∈Ni

wij , i = 1, . . . , n.
Global Moran’s I, Geary’s C and Getis–Ord G for n areas at the time moment t are

I(t) =
n

S0

z̃′tWz̃t
z̃′tz̃t

, C(t) =
(n− 1)

2S0

z′tLzt
z̃′tz̃t

, G(t) =
z′tWzt

z′t(J − I)zt
,

where

S0 =

n∑
i=1

n∑
j=1

wij , J = 1n1′n.

It should be noted that the expected value of Moran’s I is−1/(n− 1). Values of I that
exceed−1/(n−1) indicate positive spatial autocorrelation in which similar values, either
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high values or low values, are spatially clustered. Values of I below −1/(n− 1) indicate
negative spatial autocorrelation in which neighboring values are dissimilar.

The theoretical expected value for Geary’s C is 1. A value of Geary’s C less than 1
indicates positive spatial autocorrelation, while a value larger than 1 points to negative
spatial autocorrelation.

Geary’s C is inversely related to Moran’s I, but it is not identical. Moran’s I is a mea-
sure of global spatial autocorrelation, while Geary’s C is more sensitive to local spatial
autocorrelation. Geary’s C is also known as Geary’s contiguity ratio or simply Geary’s
ratio.

The Getis–Ord G-statistic (see, e.g., [11,13]) distinguishes between hot spots and cold
spots. It identifies spatial concentrations, i.e., G is relatively large if high values cluster
together and G is relatively low if low values cluster together.

In what follows, with an insignificant loss of generality, we focus on the linear inde-
pendent of time mean µl(s; t) = β′lx(s), where x(s) = (x1(s), . . . , xq(s))′ is the vector
of an explanatory variables, and βl is a q-dimensional vector of parameters, l = 0, 1.

Denote by X the n× 2qm matrix X = (X(1), X(2), . . . , X(m)), where

X(t) =


x′1(1− y1t ) x′1y

1
t

x′2(1− y2t ) x′2y
2
t )

...
...

x′n(1− ynt ) x′ny
n
t

 ,

and xi = x(si), i = 1, . . . , n.
Then the matrix model for Z conditional on {Yt = yt, t = 1, . . . ,m} is

Z = XB + E, (1)

where B = Im ⊗ β with 2q × 1-dimensional parameter vector β = (β′0, β
′
1)′, and n×m

matrix of Gaussian errors E = (ε(si; t), i = 1, . . . , n, t = 1, . . . ,m), and Im is m×m
identity matrix.

The covariance separability assumption implies that vec(E) ∼ Nnm(0, CT ⊗ Cs)
with CT = (ctrT = CT (t, r), t, r = 1, . . . ,m) denoting the m × m matrix of pure
temporal covariances and CS = (cijS = CS(si, sj), i, j = 1, . . . , n) denoting the n × n
matrix of pure spatial covariances.

Then under spatio-temporal data model specified in Eq. (1) it follows that

Z ∼ Nn×m(XB, CT ⊗ CS).

We concern with the problem of classification of the observations Z(si, m+ 1), i =
1, . . . , n, into one of two classes with given joint training sample Z. Or in other words,
based on the training sample information, we want to predict label of an observation of Z
in every location at the time moment t = m+ 1.

Set cm+1,r
T = CT (m+ 1, r), r = 1, . . . ,m, cm+1

T = (cm+1,1
T , . . . , cm+1,m

T )′ and e′i –
the ith row of identity matrix In.
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Then we can conclude that the conditional distribution of Z(si, m+ 1) given Z = z
and Y (si, m+ 1) = l is Gaussian, i.e.,(

(Z(si, m+ 1)
∣∣ Z = z; Y (si, m+ 1) = l

)
∼ N

(
µm+1
li(z) ,Σm+1,i(z)

)
, l = 0, 1, (2)

where
µm+1
li(z) = β′lxi +

((
cm+1
T

)′
C−1T ⊗ e′i

)
vec(E),

Σm+1,i(z) = var
(
Z(si, m+ 1)

)
− ciis

(
cm+1
T

)′
C−1T cm+1

T = ciiSρm+1

with
ρm+1 = cm+1,m+1

T −
(
cm+1
T

)′
C−1T cm+1

T .

In this study, we assume that the conditional distribution of label Y (si, m + 1), i =
1, . . . , n, given the joint training sample does not depend on features Z values in training
areas, i.e., P(Y (si, m + 1) = l | Z = z, Y = y) = P(Y (si, m + 1) = l | Y = y) =
πl(si, m+ 1), l = 0, 1. These conditional probabilities specify the label distribution and
induce decision threshold values.

3 Classification of regressive spatio-temporal models

In the present paper, we focus on the spatio-temporal Gaussian areal data with Markov-
type model for pure spatial covariance [5] when for geostatistical point referenced data,
the Matérn or powered-exponential class (see, e.g., [5, Sect. 4.1.1], [31, p. 31]) are the
most popular among statisticians.

Specific attention is given to the Gaussian spatio-temporal model with pure spatial co-
variances belonging to the HCAR models and with pure temporal covariance of stationary
AR(p) model.

This spatial covariance matrix for n areas Cs = σ2
sR, where R = (rij) denotes the

spatial correlation matrix with R = (In + ηH)−1. Here η > 0 is a spatial dependence
parameter, and σs > 0 is a scale parameter. Then spatial precision matrix is defined by
ΩS = C−1s = (In + ηH)/σ2

s .
For AR(p) model of temporal covariance, we have the following conditional moment

functions: µm+1
li(z) = µm+1

li + ((0, . . . , 0, αp, . . . , α2, α1)′ ⊗ e′i) vec(E) and Σm+1,i(z) =

ciiSσ
2
T , where ciiS = σ2

s(1 + ηhi)
−1.

Under the assumption that the classes are completely specified, the well-known Bayes
discriminant function (BDF) minimizing the total probability of misclassification is formed
by the log-ratio of conditional likelihood of distributions (see [19]) specified in Eq. (2),
that is,

WZ

(
Z(si, m+ 1)

)
= LZ

(
Z(si, m+ 1)

)
− γi(m+ 1), (3)

where γi(m+ 1) = ln(π0(si, m+ 1)/π1(si, m+ 1)) and

LZ

(
Z(si, m+ 1)

)
=

(
Z(si, m+ 1)−

µm+1
1i(z) + µm+1

0i(z)

2

)
× Σ−1m+1, i(z)

(
µm+1
1i(z) − µ

m+1
0i(z)

)
.
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So BDF classifies the observation Z(si, m+1) in the following way: class label takes
value 1 if LZ(Z(si, m+ 1) > γi(m+ 1), and 0 otherwise.

So LZ(Z(si, m+1) is a linear term, and γi(m+1) plays role of a decision threshold.
The probability of misclassification for WZ(Z(si, m+ 1)) is optimal under the crite-

rion of the minimum of misclassification probability.
However, in practical applications all statistical parameters of populations are rarely

known.
Then the estimators of unknown parameters found from the given training sample are

plug-in BDF specified in Eq. (3).
Replacing parameters with their estimators for BDF, we denote the plug-in Bayes

discriminant function (PBDF):

ŴZ(Z(si, m+ 1)
)

=

(
Z(si, m+ 1)−

µ̂m+1
1i(z) + µ̂m+1

0i(z)

2

)
× Σ−1m+1,i(z)

(
µ̂m+1
1i(z) − µ̂

m+1
0i(z)

)
− γi(m+ 1).

So PBDF has the same threshold as BDF, but differs in the linear terms.
In the present paper, we apply the averaged ML estimator of β and σ2

s that for any
fixed η > 0, is, respectively,

β̂ =

m∑
t=1

β̂(t)

m
, σ̂2

s =

m∑
t=1

σ̂2
s(t)

m
,

where
β̂(t) =

(
X ′(t)R

−1X(t)

)−1
X ′(t)R

−1Zt

and

σ̂2
s(t) =

1

n− 2q

(
Zt −X(t)β̂

)′
R−1

(
Zt −X(t)β̂

)
.

Three models label distribution for observation in si at t = m+ 1 are proposed. They
differ on the level of the incorporated spatio-temporal information.

It is obvious that each model for label distribution specifies specific decision threshold
value γi(m+ 1) for considered classifier.

Label distribution based on Moran’s I, Geary’s C and Getis–Ord G is denoted by

πM1t(si, m+ 1) =
1

1 + e−I(m)y∗
i (m)

, πC1t(si, m+ 1) =
1

1 + e−C(m)y∗
i (m)

and

πG1t(si, m+ 1) =
1

1 + e−G(m)y∗
i (m)

,

respectively, where y∗i (t) = 2yi(t)− 1.
Recall that HMM approach of classification is based on assumption of conditional

independence for feature observations and first-order Markov property for labels. In this
article, we restricted our attention on Gaussian observation with regression mean model
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Table 1. Confusion matrix for two-
class problem.

Ŷ (si, m+ 1)

Y (si, m+ 1) 0 1
0 a b
1 c d

and constant variance for each areal unit [20, 22]. The spatially weighted estimators of
regression coefficients, variances and transition probabilities are inserted in the PBDF.

Performance criteria of the generative classifier based on PBDF is evaluated by con-
fusion matrix formed for test data and fixing the results of correctly and incorrectly
recognized test observations of each class.

This procedure is realized via partitioning the observed data into training and testing
sets. Then classifier being designed on the training data, and its accuracy being validated
on the test data. In this paper, our focus is on using m temporal observations for training,
and the observations at time moment t = m+ 1 are used for testing.

Label prediction in areal unit si at time moment t = m + 1 is Ŷ (si, m + 1) =

H(ŴZ(Z(si, m+ 1)), where H(·) is the Heaviside step function.
Let

n∑
i=1

I
(
Y (si, m+ 1) = 0

)
I
(
Ŷ (si, m+ 1) = 0

)
= a,

n∑
i=1

I
(
Y (si, m+ 1) = 0

)
I
(
Ŷ (si, m+ 1) = 1

)
= b,

n∑
i=1

I
(
Y (si, m+ 1) = 1

)
I
(
Ŷ (si, m+ 1) = 0

)
= c,

n∑
i=1

I
(
Y (si, m+ 1) = 1

)
I
(
Ŷ (si, m+ 1) = 1

)
= d,

where I(A) denotes the indicator of event A.
The confusion matrices that will be applied for the assessment of the proposed classi-

fier performances are shown in Table 1.
Traditionally, the most commonly used empirical measure of classifier performance

is called accuracy rate that shows the percentage of correctly classified test data given by
the formula

ACC =
a+ d

a+ b+ c+ d
. (4)

However, in practice, situations with significant disbalance between the majority and
minority class examples frequently occur (see, e.g., [18, 23, 24]). Then the evaluation of
the classifiers’ performance must be carried out using specific metrics to take into account
the class distribution. In this article, we also used two other performance evaluation
measures based on confusion matrix.
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The first approximation of AUC is usually called balanced accuracy (see, e.g., [18,28])
and is specified by the formula

BAC =
1

2

(
a

a+ b
+

d

c+ d

)
. (5)

The second G-mean is important to measure the avoidance of the overfitting to the minor-
ity class and the degree to which the majority class is marginalized (see, e.g., [32]). It is
specified by the formula

GAC =

√
a

a+ b
· d

c+ d
. (6)

Below is a receiver operator characteristic (ROC) chart [25] that allows to visual-
ize the trade-off between sensitivity (true positive rate), i.e., TPR = a/(a + b) and
1-specificity (false positive rate), i.e., FPR = d/(c + d) for any confusion matrix corre-
sponding to selected decision threshold value.

4 Experimental study

The numerical analysis of annual death rate data collected by the Institute of Hygiene of
the Republic of Lithuania from the 60 municipalities in the period from 2001 to 2019 is
carried out.

For numerical illustrations of obtained results, we considered the Gaussian spatio-
temporal model with pure spatial exponential covariances and with pure temporal covari-
ance of stationary AR(1).

Crude death rate for each municipality measured in units per one hundred thousand
population is considered as variable Z. Three class label variables Y are specified by
the threshold to mortality index due to acute cardiovascular event, malignant neoplasms
and diseases of the circulatory system. Denote these label variables by ACE, MN and
CSD, respectively. For the cases with index values less than conventional threshold,
label variable takes value 0, and takes value 1 otherwise. Here we consider the case with
constant mean, i.e., µ(s; t) = βlx(s) with x(s) = 1.

Then for t = 1, . . . , 18,

X(t) =


1− yt1 yt1
1− yt2 yt2

...
...

1− ytn ytn

 .

Numerical illustrations are performed on 60 areas in two-dimensional areas that are
depicted in Fig. 1.

Data in the period from 2001 to 2018 (t = 1, . . . , 18) are used for training, and
remaining data (period 2019) are used for testing. Hence m = 18 and n = 60, i.e.,
we consider 18 · 60 observations for training and 60 for testing.
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(a) (b)

Figure 1. Classified Lithuanian municipalities in 2001 (a) and 2002 (b). Yellow color areas indicate
municipalities with low level of mortality due to ACE (with label value 0), and red areas indicate municipalities
with high level of mortality due to ACE (with label value 1).

Table 2. Annual imbalance ratio for various mortality reasons (class label variables).

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
ACE 1.73 2.33 2.16 2 1.61 4.45 2.16 3.29 2.33 1.73
MN 2.33 3 2.53 3.62 1.5 1.31 1.5 1.4 4 2.16
CSD 4 4 2.75 4.45 5 3.62 3 3 5 4.45

2011 2012 2013 2014 2015 2016 2017 2018 2019
ACE 2.33 1.4 1.22 1.14 1.86 0.76 0.71 0.5 0.3
MN 5 3 2.33 4.45 4.45 5 3.62 5.67 7.57
CSD 4 19 6.5 5 5.67 5 4 4.45 3

For t = 1, . . . ,m,m + 1, denote by IRt = nt1/n
t
0 the imbalance ratio. The graph of

IRt is depicted in Table 2.
As we can see in Table 2, in majority of time periods, CSD has the highest IR, the

next in the row is MN case, and the ACE has the lowest IR.
The values performance measures of the proposed classifier specified in Eq. (4)–(6)

for three label distribution models and various class label variables and classifier based
on spatial HMM (see [10]) are presented in Table 3.

As it might be seen from Table 3, the methods based on the incorporation of the
spatial index Geary’s C has an advantage against two others in all performance measures
for case with label variable ACE (i.e., the case with lowest IR), incorporation of Moran’s I
ensures the highest performance for the label variable MN (i.e., the case with lowest IR),
and at last, the incorporation of Getis–Ord G ensures the highest performance for the label
variable CSD (i.e., the case with highest IR).

ROC plot of presented in Fig. 2 visualizes the performances of proposed classifier for
decision threshold values induced by different spatial autocorrelation indexes and clas-
sifier based on HMM. Depicted points represent four classifiers and a random classifier
depicted by dotted line. It is easy to check that the area under the curve in the ROC plot
is equal to the performance measure BAC.
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Table 3. Performance measures of classifiers based on PBDF (numbers in
bold indicate highest values of performance measures).

Moran’s I Geary’s C Getis–Ord G HMM

ACE ACC 0.7333 0.7667 0.7500 0.6500
BAC 0.7019 0.7236 0.6630 0.6723
GAC 0.6994 0.7191 0.6427 0.6711

MN ACC 0.8000 0.8333 0.8500 0.7667
BAC 0.5768 0.7197 0.7291 0.5800
GAC 0.4980 0.7042 0.7119 0.4870

CSD ACC 0.8000 0.7667 0.7333 0.7833
BAC 0.6889 0.6667 0.6222 0.6778
GAC 0.6521 0.6360 0.5812 0.6441

(a) ACE (b) MN

(c) CSD

Figure 2. ROC plots for the problems with class label variables ACE, MN, CSD and HMM.
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5 Conclusions

In this paper, we developed the novel generative approach to classification of areal Gaus-
sian data based on Bayes discriminant functions and separable spatio-temporal covari-
ances comprising the situations when the class label can vary across areal units and over
time. A real data study has been conducted, and critical comparison of the performance of
the classifiers with decision threshold values induced by different spatial autocorrelation
indexes and classifiers based on HMM are performed.

The proposed methodology has several attractive features that make it compare fa-
vorably against other approaches to generative supervised spatial classification. First, the
method is applicable to both regular and irregular areal units (or lattice models of spatial
data) and avoids strict conditional independence assumption as in HMM. Second, the
approach provides an easily interpretable measure of competing classifiers performance
through various spatial autocorrelation indexes. Third, spatial data model can be easily
specified in terms of undirected graphs.

The obtained results with real data showed that the value of IR significantly influenced
the performance of proposed classifiers:

• The methods based on the incorporation of the spatial index Geary’s C has an ad-
vantage against two others in all performance measures for case with label variable
ACE (i.e., the case with the lowest IR);

• The incorporation of Moran’s I ensures the highest performance for the label vari-
able MN (i.e., the case with an intermediate IR);

• At last, the incorporation of Getis–Ord G ensures the highest performance for the
label variable CSD (i.e., the case with highest IR).

Finally, in majority cases of considered real data examples, the proposed approach to
generative classification shows better performance than classification based on HMM.

There are several reasons for further research. First, there is further scope for exploring
techniques supervising classification of spatio-temporal Gaussian data with nonseparable
covariance models. Second, future research may, also, include implementation of the
proposed classification technique in the context of spatio-temporal non-Gaussian models.
Finally, further research involving more covariates could help gain more insights into the
relative strength of the rival classifiers.
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