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Abstract. The MHD oscillatory flow of two immiscible, viscous liquids in a porous channel with
heat transfer is the subject of this investigation. The two liquid layers with different viscosities
flow in both regions. The analytical expressions for velocity and temperature distribution have
been derived by solving the governing flow equations using the regular perturbation method. The
effects of various parameters on the velocity, temperature, and Nusselt number have been shown
graphically, and numerical values of skin friction and flow rate are presented in tabular form and
discussed. According to our analysis, the mass flux reduces as the magnetic field strength rises.
While the temperature of the liquid enhances with an increase in the Eckert number and the Prandtl
number, the temperature distribution rises with a decrease in the thermal conductivity ratio. To
validate the results, the analytical solutions are compared with the fourth-order numerical Runge–
Kutta method coupled with the shooting approach, and the results are found to be in excellent
agreement.

Keywords: oscillatory MHD flow, permeable walls, Rosseland approximation, Hartmann number,
cross-flow Reynolds number.

1 Introduction

Recent research on the flows of immiscible liquids in porous space reflects the phe-
nomenon’s growing technical value in a variety of disciplines. Soil mechanics, groundwa-
ter hydrology, crude oil purification, water-to-oil mixtures in packed rocks, chemical engi-
neering, etc. are fields where immiscible fluid flows occur [2,4,8,12,15–18,20,24,27,31,
32]. Packham and Shail [16] investigated the problem of two immiscible steady cocurrent
viscous liquid flows in a pipe. Their findings indicate that if the cross-section of the duct is
symmetric with respect to the interface, the velocity distribution can be expressed in terms
of two different pipe-flow solutions. One corresponds to a single layer flow occupying
the full pipe, while the other corresponds to a comparable flow in a pipe whose cross-
section coincides with the space filled by a single liquid in two-phase motion. A solution
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for the imbibition phenomenon caused by relative wettability of flowing liquid in double-
phase flow through porous media has been explored by Mishra and Verma [15]. The
influence of peripheral-layer viscosity on time-averaged flux and mechanical efficiency
was investigated. Trapping zone’s development and growth in the core and peripheral
layers are explained by Pouliquen et al. [18]. Under the assumptions of long-wavelength
and low Reynolds number approximations, Ramachandra and Usha [20] investigated the
peristaltic motion of two immiscible viscous liquids in a circular tube in copumping
and pumping ranges. Umavathi et al. [27] explored the Poiseuille–Couette flow of two
immiscible liquids between inclined parallel plates assuming that one of the liquids is
electrically conducting, while the other liquid and channel walls are electrically insu-
lating. In their model, the viscous and Ohmic dissipation terms are accounted for in
the energy equation. The starting flow due to a sudden pressure gradient in a channel
containing two layers of different liquids is investigated by Wang [31]. Ansari and Deo [2]
examined the flow of viscous liquids of various viscosities in the presence of a constant
pressure gradient with two distinct layers of equal width. With the assumption that
the bottom layer’s fluid viscosity is greater than the top layer’s, analytical solutions for
the velocity distribution and flow rate are produced. The laminar flow of two viscous,
incompressible, electrically conducting, and heat-generating or -absorbing immiscible
fluids in an indefinitely long, impermeable parallel-plate channel filled with a uniform
porous media was investigated by Chamkha [8]. The MHD mixed convection flow in
a vertical channel with two regions between flat walls is examined by Petrovic et al. [17].
It is assumed that both regions are filled with porous media of different/equal permeability.
Region I contains the nanofluid whose base fluid is immiscible with the pure fluid flowing
through region II. Very recently, Bitla and Sitotaw [4] studied the combined influences
of slip and inclined uniform magnetic field on immiscible liquids (couple stress fluid and
Jeffrey liquid) flow in a porous channel. Most recently, Yadav et al. [32] analyzed the
influences of oriented magnetic fields and thermal radiation on the entropy generation of
two immiscible electrically conduction micropolar and Newtonian liquids in a rectangular
enclosure.

Pulsating flow problems in a channel or tube have captured a lot of attention re-
cently because of their potential applications in engineering and biological systems (see
[13, 14, 19, 21, 22, 30, 33]). Radhakrishnamacharya and Maiti [19] investigated thermal
effects of Newtonian viscous flow in a porous channel with oscillatory pressure gradient.
Mandal [14] examined a theoretical study to explore some of the significant characteris-
tics of nonlinear blood flow through a constricted flexible artery under the influence of
a pulsating pressure gradient. The flowing blood is characterised by a two-liquid model
consisting of a core region of suspension of all erythrocytes assumed to be non-Newtonian
and a peripheral layer of plasma as a Newtonian liquid. The fluid is injected from the
lower wall, and suction takes place from the upper wall of the channel. Subhashis Ray
et al. [21] performed numerical simulations to understand the development length of
sinusoidally pulsating laminar pipe flows in moderate and high Reynolds number regimes.
Vijayalakshmi and Srinivas [30] analyzed the thermal radiation effect on MHD pulsating
nanofluid in a porous channel considering base fluid as water with nanoparticles of silver
(Ag), copper (Cu), alumina (Al2O3), and titanium dioxide (TiO2). The effective thermal
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conductivity and viscosity of the nanofluid are calculated using the Maxwell–Garnetts and
Brinkman models. The pulsating flow of Eyring–Powell nanofluid in a porous channel
with a magnetic field was studied by Bharatkumar and Srinivas [13]. Blood was used
as the non-Newtonian base fluid, and gold and aluminum oxide were used as nanopar-
ticles. The pulsating Casson fluid slip flow in a vertical porous space with heat mass
transfer effects, assuming the liquid is injected into the channel from the left and then
withdrawn at the same velocity from the opposite wall, is reported recently by Srinivas et
al. [22].

Flows in porous space are of great interest due to their prevalence in nature. Such
flows have a variety of scientific and engineering applications including studying un-
derground water resources and seepage of water in river beds in agriculture engineering,
filtration and purification processes in chemical engineering, and the movement of natural
gases, oil, and water through reservoirs in petroleum technology [1,11,23,32]. Multiphase
flow with heat transport is being studied in a number of fields. MHD power genera-
tion, the petroleum industry, and magneto-fluid dynamics are all important uses. A wide
number of important practical problems of interest are unsteady. Further, despite a large
number of oscillatory flow investigations in different flow configurations (see [6–9, 11]
and references therein), only a few investigations on immiscible flows with oscillatory
pressure gradient have been documented. Umavathi et al. [25] explored the heat transfer
effect on the time-dependent flow of two immiscible liquids in a channel with transpiring
walls that oscillate at a time-dependent normal velocity. Umavathi et al. [28] reported
the time dependent flow of MHD two immiscible liquids in a channel with heat transfer.
It is assumed that one of the fluids and the channel walls are electrical insulated, and
the other fluid is considered to have electrical conductivity. Thermal effect on the time-
dependent flow in a composite channel with two parallel permeable plates along with
a fluid-saturated porous layer filling half of the distance between them and a clear viscous
liquid filling the other half was investigated by Umavathi et al. [26]. In a recent work,
Tiwari and Chauhan [23] explored the oscillatory blood flow with porous boundary in
a tube accounting for the effect of hematocrit-dependent viscosity. Most recently, Padma
Devi and Srinivas [10] studied the influence of thermal radiation effects on pulsating
MHD flow of two immiscible liquids in a channel filled with porous space.

Despite a significant amount of research on the topic of oscillatory flows in channels
and tubes, very few publications relevant to immiscible liquids with an oscillating pressure
gradient have been reported in the literature. Motivated by the works of Umavathi et
al. [25, 26] and Attia et al. [3] and keeping in view of the practical importance of the
oscillatory MHD flow of immiscible liquids in a channel, an attempt has been made to
present a mathematical model. Assuming that the channel is filled with a porous media,
the problem of thermal effects of the pulsating MHD flow of two immiscible liquids in
a horizontal channel with transpiring walls, accounting for the thermal radiation effect,
has been investigated in our present study. Closed-form expressions have been obtained
for the dimensionless velocity and temperature distributions. The effects of a number
of emergent parameters on temperature and velocity distributions have been graphically
depicted, and numerical values for flow rate and stress distribution have been provided in
a tabular form and quantitatively discussed.
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2 Mathematical formulation

Figure 1 shows the geometry under consideration containing two regions I and II with
porous medium permeabilities of K1 and K2, respectively. It is considered that regions I
is −h 6 y 6 0, and 0 6 y 6 h represents region II. Region I with a conducting viscous
liquid of density ρ1, viscosity µ1 and the other region is filled with a liquid of density
ρ2 (< ρ1) and viscosity µ2. The immiscible fluids are supposed to be incompressible,
and the flow is time dependent with an oscillatory pressure gradient driving it. It may
be noted that conducting liquids are immiscible with permeable channel walls at rest.
The temperature of the lower and upper channel walls are Tw1 and Tw2, respectively.
The induced magnetic field is neglected as the Hall effect of magnetohydrodynamics is
considered to be insignificant due to the low magnetic Reynolds number [6,9,29]. Further,
to simplify the governing equation the following assumptions [28] are used: (a) in the
porous medium the flow is laminar and incompressible; (b) the porous medium isotropic
and homogenous in both regions; (c) the fluid and solid phases in the porous medium are
assumed to have constant thermophysical properties; (d) the porous media non-Darcian
inertial parameter, which represents the additional pressure loss due to interpore mixing
present at high velocities, can be overlooked for sluggish flow in the porous medium [5,7].

Region I:

ρ1

(
∂u1
∂t

+ v1
∂u1
∂y

)
= −∂p

∂x
+ µ1

∂2u1
∂y2

− σ1B2
0u1 −

µ1u1
K1

, (1)

ρ1cp

(
∂T1
∂t

+ v1
∂T1
∂y

)
= K1

∂2T1
∂y2

+ µ1

(
∂u1
∂y

)2

− ∂qr
∂y

. (2)

Region II:

ρ2

(
∂u2
∂t

+ v2
∂u2
∂y

)
= −∂p

∂x
+ µ2

∂2u2
∂y2

− σ2B2
0u2 −

µ2u2
K2

, (3)

ρ2cp

(
∂T2
∂t

+ v2
∂T2
∂y

)
= K2

∂2T2
∂y2

+ µ2

(
∂u2
∂y

)2

− ∂qr
∂y

, (4)

where x-component velocity is u, y-component velocity is v, and fluid temperature is
represented by T , ρ1 and ρ2 are the densities, Cp is the specific heat, k1 and k2 are the
ratio of thermal conductivities, v1 and v2 are injection and suction at lower and upper
walls of the channel. The subscripts 1 and 2 are for region I and region II, respectively.
By invoking no-slip boundary conditions, velocity in the x-direction is zero at the walls
of the channel. Further, there is a continuity of the velocity, shear-rate, temperature at
the interface between the two liquid layers. B0 is the magnetic induction of the uniform
magnetic field. σ1 and σ2 are the electrical conductivity of the fluid. q∗r represents the
radiative heat flux. The radiative heat flux q∗r , using the Rosseland approximation, is
q∗r = −(4σ∗/(3k∗))∂T ∗4/∂y∗. Here σ∗ = (5.6697×10−8 Wm−2K−4) and k∗ represent
the Stefan–Boltzmann constant and Rosseland mean absorption coefficient, respectively.
Expressing T ∗4 as a linear function of T , under the assumption that within the liquid the
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Figure 1: Sketch of the model

the following assumptions (Umavathi [31]) are used: (a) In the porous medium
the flow is laminar and incompressible. (b) The porous medium isotropic and
homogenous in both regions. (c) The fluid and solid phases in the porous medium
are assumed to have constant thermophysical properties. (d) The porous media
non-Darcian inertial parameter, which represents the additional pressure loss due
to interpore mixing present at high velocities, can be overlooked for sluggish flow
in the porous medium ( Chamkha [6], Chamkha [8])
Region-I

ρ1

(
∂u1
∂t

+ v1
∂u1
∂y

)
= −∂p

∂x
+ µ1

(
∂2u1
∂y2

)
− σ1B2

0u1 −
µ1u1
K1

(1)

ρ1cp

(
∂T1
∂t

+ v1
∂T1
∂y

)
= K1

∂2T1
∂y2

+ µ1

(
∂u1
∂y

)2

− ∂qr
∂y

(2)

Region-II

ρ2

(
∂u2
∂t

+ v2
∂u2
∂y

)
= −∂p

∂x
+ µ2

(
∂2u2
∂y2

)
− σ2B2

0u2 −
µ2u2
K2

(3)

ρ2cp

(
∂T2
∂t

+ v2
∂T2
∂y

)
= K2

∂2T2
∂y2

+ µ2

(
∂u2
∂y

)2

− ∂qr
∂y

(4)

where x-component velocity is u, y-component velocity is v and fluid temper-
ature is represented by T, ρ1 and ρ2 are the densities, Cp is the specific heat, k1

5

Figure 1. Sketch of the model.

temperature variations are small [30], we get

T ∗4 ∼= 4T 3
1 T

∗ − 3T 4
1 .

The fluid flow is subjected to the following conditions [25, 26, 28]:

u1 = 0, T ∗
1 = T1 at y = −h,

u2 = 0, T ∗
2 = T2 at y = h,

u1 = u2, T ∗
1 = T ∗

2 at y = 0,

µ1
∂u1
∂y

= µ2
∂u2
∂y

, K1
∂T ∗

1

∂y
= K2

∂T ∗
2

∂y
at y = 0,

v1 and v2 representing injection and suction at lower and upper walls, respectively. Taking
v1 = v2 = v and

v = v∗
(
1 + ε∗B∗e

ıwt
)
,

where B∗ is positive constant. ω denotes the frequency parameter, ε∗ = const and con-
sidered to be small. Periodically transpiration velocity varies with time about a nonzero
constant mean v∗, and it is assumed here. The nondimensional quantities and the pressure
gradient are

−∂p
∂x

=

(
∂p

∂x

)

s

+ ε∗

(
∂p

∂x

)

o

eıωt,

Ps = (∂p/∂x)s, Po = (∂p/∂x)o are the pulsations that are both steady and oscillating,
respectively, and the frequency parameter is ω. x = x∗/h, y = y∗h, u∗i = ui/u1, u∗i1 =
ui1/u1, u∗i2 = ui2/u1, t∗ = tv/h2, v∗ = (h/ν)v, R = v∗h/ν, w∗ = wh2/v (cross-flow
Reynolds number), K∗

i = Ki/h
2, τ∗i = τi/(ρu

2), p∗ = p/(ρu2), M1 = B0h
√
σ1/µ1

(Hartmann number of region I), M2 = M1

√
β/γ (Hartmann number of region II),

θi = (T ∗
i − T1)/(T2 − T1), Pr = (µ1/K1)Cp (Prandtl number), Rd = 4σ∗T 3

1 /(k
∗K1)
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(thermal radiation), Ec = u1
2/(Cp(T2 − T1)) (Eckert number), α = ρ1/ρ2 (ratio of

densities), β = µ1/µ2 (ratio of viscosities), δ = k2/k1 (ratio of thermal conductivities),
γ = σ1/σ2 (ratio of electrical conductivities), v = (ν/h)v∗ = v|v∗|, P = K2/K1 (ratio
of permeabilities), α1 = β/α.

Equations (1)–(4) are reduced when nondimensional quantities are introduced and the
asterisks are removed: for region I,

(
∂u1
∂t

+Rv
∂u1
∂y

)
= −∂p

∂x
+
∂2u1
∂y2

−
(
M1

2 +
1

K1

)
u1, (5)

(
∂θ1
∂t

+ Rv
∂θ1
∂y

)
=

(
1

Pr
+

4Rd

3Pr

)
∂2θ1
∂y2

+ Ec

(
∂u1
∂y

)2

; (6)

for region II,

α1

(
∂u2
∂t

+Rv
∂u2
∂y

)
= −β ∂p

∂x
+
∂2u2
∂y2

−
(
M2

2 +
1

K2

)
u2, (7)

(
∂θ2
∂t

+ Rv
∂θ2
∂y

)
=

(
δα

Pr
+

4Rdα

3Pr

)
∂2θ2
∂y2

+
Ec

α1

(
∂u2
∂y

)2

. (8)

The flow is subjected to the conditions

u1 = 0, θ1 = 0 at y = −1, (9)
u2 = 0, θ2 = 1 at y = 1, (10)
u1 = u2, θ1 = θ2 at y = 0, (11)

µ1
∂u1
∂y

= µ2
∂u2
∂y

, K1
∂θ1
∂y

= K2
∂θ2
∂y

at y = 0. (12)

For the velocity and temperature distributions in both regions, the governing equations (5)–
(8) along with conditions (9)–(12) can be derived in the form [25, 28]

ui = ui1 + ε∗ui2e
ıωt, θi = θi1 + ε∗θi2e

ıωt.

The steady and oscillatory flow governing equations are reduced to the following systems:
steady flow

d2u11
dy2

−Rdu11
dy
−
(
M1

2 +
1

K1

)
u11 + Ps = 0, (13)

d2u21
dy2

− α1R
du21
dy
−
(
M2

2 +
1

K2

)
u21 + βPs = 0, (14)

P1
d2θ11
dy2

−Rdθ11
dy

+ Ec

(
du11
dy

)2

= 0, (15)

P22
d2θ21
dy2

−Rdθ21
dy

+
Ec

α1

(
du21
dy

)2

= 0; (16)
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oscillatory flow

d2u12
dy2

−Rdu12
dy
−
(
M1

2 +
1

K1
+ ıω

)
u12 −AR

du11
dy

+ P0 = 0, (17)

d2u22
dy2

− α1R
du22
dy
−
(
M2

2 +
1

K2
+ α1ıω

)
u22 − α1AR

du21
dy

+ βPo = 0, (18)

P1
d2θ12
dy2

−Rdθ12
dy
− ıωθ12 −AR

dθ11
dy

+ 2Ec
du11
dy

du12
dy

= 0, (19)

P22
d2θ22
dy2

−Rdθ22
dy
− ıωθ22 −AR

dθ21
dy

+ 2
Ec

α1

du21
dy

du22
dy

= 0. (20)

The corresponding boundary conditions become as follows:

u11 = 0, u12 = 0, θ11 = 0, θ12 = 0 at y = −1,
u21 = 0, u22 = 0, θ21 = 1, θ22 = 0 at y = 1,

u11 = u21, u12 = u22, θ11 = θ21, θ12 = θ22 at y = 0,

µ1
∂u11
∂y

= µ2
∂u21
∂y

, µ1
∂u12
∂y

= µ2
∂u22
∂y

,

K1
∂θ11
∂y

= K2
∂θ21
∂y

, K1
∂θ12
∂y

= K2
∂θ22
∂y

at y = 0.

3 Results of the problem

Steady flow described in equations (13)–(16) is given by

U11 = C1e
A2y + C2e

A3y +A18,

U21 = C5e
A10y + C6e

A11y +A19,

θ11 = C9 + C10e
RP2y + P4e

2A2y + P5e
2A3y + L6e

(A2+A3)y,

θ21 = C13 + C14e
RP23y + P25e

2A10y + P26e
2A11y + P27e

(A10+A11)y.

Oscillatory flow described in equations (17)–(20) is given by

U12 = C3e
A5y + C4e

A6y +B6Re
A2y +A7Re

A3y +A8,

U22 = C7e
A13y + C8e

A14y +A15Re
A10y +A16Re

A11y +A17,

θ12 = C11e
P20y + C12e

P21y

+R2P9e
RP2y +RP10e

2A2y +RP11e
2A3y +RL11e

(A2+A3)y

− P12e
(A2+A5)y − P13e

(A2+A6)y −RP14e
2A2y −RP15e

(A2+A3)y

− P16e
(A3+A5)y − P17e

(A3+A6)y −RP18e
(A2+A3)y −RP19e

2A3y,

Nonlinear Anal. Model. Control, 28(3):393–411, 2023

https://doi.org/10.15388/namc.2023.28.31503


400 M. Padma Devi, S. Srinivas

θ22 = C15e
P31y + C16e

P32y

+R2P33e
RP23y +RP34e

2A10y +RP35e
2A11y +RP36e

(A10+A11)y

− P37e
(A10+A13)y − P38e

(A10+A14)y −RP39e
2A10y −RP40e

(A10+A11)y

− P41e
(A11+A13)y − L41e

(A11+A14)y −RL42e
(A10+A11)y −RP42e

2A11y,

where

A1 =M2
1 +

1

K1
, A2 =

R+
√
R2 + 4A1

2
, A3 =

R−
√
R2 + 4A1

2
,

A4 = A1 + ıω, A5 =
R+
√
R2 + 4A4

2
, A6 =

R−
√
R2 + 4A4

2
,

A7 =
B∗A3C2

A2
3 −RA3 −A4

, A8 =
P0

A4
, A9 =M2

2 +
1

K2
,

A10 =
Rα1 +

√
R2 + 4A9

2
, A11 =

Rα1 −
√
R2 + 4A9

2
, A12 = A9 + ıω,

A13 =
Rα1 +

√
R2α2

1 + 4A12

2
, A14 =

Rα1 −
√
R2α2

1 + 4A12

2
,

A15 =
B∗α1C5A10

A2
10 −RA10 −A12

, A16 =
B∗C6α1A11

A2
11 −RA11 −A12

,

A17 =
aP0

A12
, A18 =

Ps

A1
, A19 =

βPs

A9
.

The Nusselt number is given by

Nu =

(
∂θ1
∂y

)

y=−1,1

+ ε∗e
ıωt

(
∂θ2
∂y

)

y=−1,1

.

The skin friction at the walls can be obtained from

τ1 =

(
1

R

∂u1
∂y

)

y=−1,1

, τ2 =

(
1

αR

∂u2
∂y

)

y=−1,1

.

The flow rate in the regions I and II are as follows:

Q1 =

0∫

−1

u11 dy + ε∗

[ 0∫

−1

u12 dy

]
eıωt,

Q2 =

1∫

0

u21 dy + ε∗

[ 1∫

0

u22 dy

]
eıωt.
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4 Shearstress and massflux tables

Table 1. Variation of shearstress with viscosity at lower wall (M1 = 1, K1 = 0.1).

α

ωt 1 1.5 2 2.5 3

0 38.1987 17.249 17.7028 18.0116 18.234
π/4 210.8757 269.0525 305.1805 329.7975 347.6488
π/2 227.2824 290.7204 330.1327 356.9945 376.4771
π 227.0013 290.2134 329.4765 356.2308 375.6321

Table 2. Variation of shearstress with viscosity at upper wall (M1 = 1, K1 = 0.1).

α

ωt 1 1.5 2 2.5 3

0 18.3780 20.4232 21.6940 22.5522 23.1886
π/4 426.4041 631.0661 758.1629 844.7646 907.5654
π/2 458.2961 680.1070 817.9255 911.8631 979.9983
π 457.3337 678.8298 816.4572 910.2622 978.2991

Table 3. Variation of shearstress with permability at lower wall (M1 = 1, β = 1).

K1

ωt 0.1 0.7 0.8 4 6

0 38.1987 28.8720 22.9679 17.8042 17.8659
π/4 154.9495 95.8267 158.0346 204.9536 241.6031
π/2 165.8972 102.4825 169.8677 220.6863 260.3490
π 165.8566 101.4846 168.4336 219.0335 258.5165

Table 4. Variation of shearstress with permability at upper wall (M1 = 1, β = 1).

K1

ωt 0.1 0.7 0.8 4 6

0 18.3780 17.0156 16.9920 19.0424 18.9948
π/4 202.3083 172.4195 150.9035 134.6744 121.9970
π/2 216.1291 183.0788 159.3295 141.4503 127.5143
π 214.7513 181.7536 158.0796 140.3015 126.4929

Table 5. Variation of shearstress with M1 at lower wall (K1 = 0.1, β = 1).

M1

ωt 0.1 0.5 1 1.5 2.5

0 36.8281 37.1755 38.1987 39.7201 16.8522
π/4 201.7956 204.0947 210.8757 220.9876 246.0617
π/2 217.3622 219.8743 227.2824 238.3330 265.7517
π 217.0461 219.5668 227.0013 238.0867 265.5622

Table 6. Variation of shearstress with M1 at upper wall (K1 = 0.1, β = 1).

M1

ωt 0.1 0.5 1 1.5 2.5

0 17.3244 17.5617 18.3780 20.01447 21.4113
π/4 333.0033 354.5011 426.4041 563.2338 6.1833
π/2 357.9430 381.0420 458.2961 605.2922 6.4198
π 357.1798 380.2326 457.3337 604.0432 6.4130
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Table 7. Variation of massflux with viscosity at both the walls (M1=1, K1=0.1).

α

ωt 1 1.5 2 2.5 3

0 0.5710 0.6543 0.7356 0.8163 0.8962
π/4 0.5337 0.6114 0.6874 0.7625 0.8372
π/2 0.5701 0.6532 0.7346 0.8150 0.8950
π 0.5674 0.6503 0.7314 0.8117 0.8914

Table 8. Variation of massflux with permability at both the walls (M1 = 1, β = 1).

K1

ωt 0.1 0.7 0.8 4 6

0 0.5710 2.1761 2.3467 4.2283 4.5334
π/4 0.5337 2.0676 2.2329 4.0640 4.3608
π/2 0.5701 2.1292 2.2905 4.0362 4.3162
π 0.5674 2.0757 2.2322 3.9562 4.2361

Table 9. Variation of massflux with M1 at both the walls (K1 = 0.1, β = 1).

M1

ωt 0.1 0.5 1 1.5 2.5

0 0.6123 0.6015 0.5710 0.5290 0.4393
π/4 0.5725 0.5625 0.5337 0.4941 0.4101
π/2 0.6111 0.6004 0.5701 0.5281 0.4388
π 0.6079 0.5973 0.5674 0.5259 0.4374

5 Discussion of results

The closed-form solutions obtained have been numerically evaluated for a wide range of
parameters and the results are graphically (Figs. 2–6) and in the tabular form (Tables 1–9).
Velocity distribution is displayed in Fig. 2 for the fixed values of M1 = 1, M2 = 2,
K1 = 0.1, K2 = 3, ω = π/4, Ps = 2.5, Po = 2, α = 1, β = 1, ε∗ = 0.1, R = 0.02,
A = 0.1, t = 1 on the velocity profiles. The influence of the ω on fluid velocity is depicted
in Fig. 2(a). It is evident from the same that with a raise in the frequency the velocity of
the fluid enhances. Figure 2(b) demonstrates the effect of the Hartmann number on the
distribution of the velocity. A drag force will be developed, because of the magnetic field,
which will act opposite to the flow. As a consequences, velocity of the fluid falls, as the
magnetic field strength raises. The variation of velocity with R is illustrated in Fig. 2(c)
and it reveals that the fluid velocity drops as the cross-flow Reynolds number raises. It
is evident from Fig. 2(d) that the ratio of viscosity is raised, the viscosity of the fluid of
the region I will be more, and thus fluid velocity in the lower region will be less when
compared to upper region II, and a maximum velocity can be witnessed in the region II.
The velocity distribution for various values of the permeability ratio parameter is shown
in Fig. 2(e). A raise in the velocity can be observed with a rise in the permeability of the
medium since barriers placed on the flow path reduce as P increases allowing for free
flow thus increasing the velocity.

Temperature distribution is depicted in Fig. 3 taking M1 = 1, M2 = 2, K1 = 0.1,
K2 = 0.23, k1 = 1, k2 = 0.5, ω = π/4, Ps = 2.5, Po = 2, α = 1, β = 1, δ = 2, γ = 1,
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(a) (b)

(c) (d)

(e)

Figure 2. Velocity distributions: (a) influence of ω, (b) influence of M1, (c) influence of R, (d) influence of β,
(e) influence of P .

ε∗ = 0.01, R = 0.02 on the temperature profiles. Figure 3(a) reveals that as R raises, the
fluid temperature falls. The thermal condition of the fluid in the channel tends to cool as
the thermal conductivity ratio raises which is evident from Fig. 3(b). Figure 3(c) reveals
that the temperature of the fluid falls with the increasing the value of radiation parameter.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Temperature distributions: (a) influence of R, (b) influence of d, (c) influence of Rd , (d) influence of
Ec, (e) influence of M1, (f) influence of Pr .

Since radiation has the effect of slowing down the rate of energy transfer to the fluid,
which reduces the fluid’s temperature, the results qualitatively correspond to expectations.
Figures 3(d) and 3(f) are sketched to see the influence of Ec and Pr , respectively, on θ.
The fluid temperature raises with Ec is true because the increase in kinetic energy within
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(a) (b)

(c) (d)

Figure 4. Variation of unsteady velocity and temperature profiles with (a)–(b) ω, (c)–(d) R.

the channel generates additional heat within the moving fluid. The values chosen for Pr
are for the air (Pr = 0.71), carbondisulphide (Pr = 2.36) and water (Pr = 6.9).
Figure 3(f) depicts the effect of the Prandtl number on the temperature distribution of
the fluid. The increase in viscous diffusion that increases internal temperature due to the
existence of viscous dissipation, resulting a rise in the temperature. The influence of M1

on the distribution of temperature is illustrated in Fig. 3(e). It is clear that raise in M1

causes the 0 temperature of the fluid to fall.
Figures 4, 5 shows the velocity and temperature of unsteady profiles oscillates with

M1 = 1, M2 = 2, K1 = 0.1, K2 = 0.23, k1 = 1, k2 = 0.5, Rd = 1, ω = π/4,
Ps = 2.5, Po = 2, α = 1, β = 2, ε∗ = 0.1, Pr = 6.9, R = 0.02. For plotting the graphs,
the unsteady velocity and temperature distribution are taken as ut = εeıwt(u12 + u22)
and θt = εeıwt(θ12 + θ22). From Fig. 4 the unsteady liquid of velocity profile shows
oscillations with increasing frequency. Magnitude of the unsteady velocity is higher in
region II. The unsteady temperature profile shows oscillations with a raise of ω that the
magnitude of the unsteady temperature is higher in region I, of the oscillatory pressure
gradient and the amplitude of the oscillations enhances with Ec, as shown in Fig. 5(c).
Unsteady velocity and temperatures of cross-flow Reynolds numbers and magnetic field
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(a) (b)

(c)

Figure 5. Variation of unsteady velocity and temperature profiles with (a)–(b) M1, (c) Ec.

are illustrated in Figs. 4(c), 4(d), 5(a), 5(b), respectively. In Fig. 4(c) the unsteady velocity
in the lower region is higher than the upper region of the channel, and from Fig. 4(d) the
unsteady temperature in the lower region will be higher and magnitude of the oscillations
for the unsteady temperature distribution increases with R in region II and a reverse
trend can be noticed in the other region. Further, maximum unsteady velocity occurs
for hydrodynamic case (see Fig. 5(a)), and from Fig. 5(b) unsteady temperature will be
greater for the hydrodynamic case with maximum deviations in the vicinity of the suction
wall.

Figure 6 depicts the heat transfer rate at the walls of the channel for fixed values of
M1 = 1, M2 = 2, K1 = 0.1, K2 = 0.23, k1 = 1, k2 = 0.5, ω = π/4, Ps = 2.5, Po = 2,
α = 1, β = 1, R1 = 1, ε∗ = 0.1, Pr = 6.9, Ec = 0.5. We can see from Figs. 6(a) and
6(b) that an increase in Eckert number enhances the rate of heat transfer at the injection
wall, while it reduces at suction wall of the channel. Figures 6(c) and 6(d) indicates that
as Rd increases, the heat transfer rate diminishes in the lower wall of the channel, while
it raises at the suction wall.

For many relevant parameters, the analytical solution for shear stress is examined with
K1 = 0.5, K2 = 3, Ps = 2.5, Po = 2, ωt = π/8, ε∗ = 0.1, the results are shown in
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(a) (b)

(c) (d)

Figure 6. The effect of heat transfer rate at two walls with (a)–(b) Ec and (c)–(d) Rd

Tables 1–6. It has been observed from Tables 1, 2 that there is raise in viscosity, stress
distribution at both the walls are higher at ωt = π/4, π/2, π and oscillates at ωt = 0 in
Table 1. At the lower wall of the channel the permeability raises, skin friction decreases
at ωt = 0 and oscillates with raise of ωt = π/4, π/2, π in Table 3. From Table 4 shear
stress decreases with raise of ωt and oscillates at ωt = 0. With a raise in ωt, skin friction
at both walls falls from fixed values of other parameters. It is evident from Tables 5, 6 that
the magnetic field strength raises, skin friction increases at ωt = π/4, π/2, π in Table 5
and ωt = 0 in Table 6 and oscillates at ωt = 0 in Table 5 and ωt = π/4, π/2, π in Table 6.
Numerical values for mass flux are shown in Tables 7–9 for various physical parameters.
It is observed that α and K1 raise, mass flux increases (see Tables 7 and 8). Massflux has
been evaluated for various values ofM1, and the numerical values are shown in Table 9. It
reveals that mass flux falls as the magnetic field strength raises with fixed values of other
parameters. A comparative study with that of Umavathi et al. [28] is presented in Fig. 7(a).
Further, the closed-form solutions obtained in the present study have been compared with
the numerical values obtained by the Runge–Kutta method of the fourth-order coupled
with the shooting approach solved in MATHEMATICA, and results have been depicted
graphically in Figs. 7(b) and 7(c). It is found that the results are in good agreement.
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(a) (b)

(c)

Figure 7. (a) Comparison of the results for velocity with previous and present paper with M1 = M2 = M ,
K1 = K2 = 0 , ρ1 = ρ2 = ρ0, Ps = 2.5, Po = 0; (b)–(c) Comparison of the results for velocity and
temperature observed analytically and numerically with M1 = 1, M2 = 2, Ps = 2.5, Po = 2, K1 = 0.1,
K2 = 3, α = 1, β = 1.

6 Conclusions

This study was concerns with the oscillatory MHD two immiscible liquids flow in the
porous space in a channel, with permeable boundaries. Thermal characteristics along
with the thermal radiation have been accounted in the flow investigation. Solving the
governing flow equations, closed-form solutions are obtained for physical variables of
interest. The influence of pertinent parameters such as frequency, density ratio, viscosity
ratio, the ratio of thermal conductivity, radiation, porosity, cross-flow Reynolds number,
Hartmann number, Eckert number, and Prandtl number on flow variables have been stud-
ied. The results of these investigations could be helpful in the filtering process for various
underground liquids, crude oil extraction, etc. The outcome of the important findings is
summarized as follows.

• A rise in the magnitude of the oscillations in the unsteady velocity and temperature
distributions occurs with the frequency parameter of the pressure gradient. The
velocity of the fluid decreases with a rise in the frequency parameter and Hartmann
number.

• A raise in the viscosity ratio parameter enhances the velocity of the fluid in both
the regions and due to the decrease in the viscosity of the liquid, velocity will be
higher in the region II of the channel when compare to the region I.
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• As the permeability ratio of the porous media rises, the velocity distribution im-
proves because barriers imposed on the flow channel decrease as P increases,
allowing for free flow and therefore increasing velocity.

• Velocity distribution reduces in the lower region of the channel and enhances in the
upper region with a rise in the cross-flow Reynolds number.

• As magnetic field strength increases the mass flux decreases.
• There is a fall in the temperature of the fluid with a raise in the crossflow Reynolds

number.
• Temperature distribution enhances with a decrease in the thermal conductivity ratio,

whereas increase in Eckert number, and Prandtl number.
• As the radiation raises, the heat transfer rate decreases at the lower boundary of the

channel, and there will be a rise at upper boundary in the heat transfer rate.
• Rate of heat transfer falls as the radiation parameter rises at the lower wall and

enhances at the upper wall of the channel.
• The results for the hydrodynamic problem can be obtained when M1,M2 → 0.

Further, the results of Umavathi et al. [28] can be recovered, as a limiting case,
when M1 → M , M2 → 0, K1 → 0, K2 → 0, ρ1 = ρ2 = ρ0, Rd → 0 with
constant pressure gradient for the corresponding problem.
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