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Abstract. We introduce here a predator—prey model where the prey are affected by a disease. The
prey are assumed to gather in herds, while the predators are loose and act on an individualistic basis.
Therefore their hunting affects mainly the prey individuals occupying the outermost positions in the
herd, which is modeled via a square root functional response. The conditions of boundedness and
uniform persistence are established. Stability and bifurcation analysis of all feasible equilibrium
are carried out. Conditions on the model parameters for the possible existence of limit cycles are
derived, global stability analysis is also shown in proper choice of suitable Lyapunov function.
Numerical simulation of the various bifurcations validate the theoretical results. It is found that
the system ultimate behavior depends mainly on two crucial parameters, the force of infection and
predator average handling time. A discussion of the biological significance of the investigation
concludes the paper.

Keywords: ecoepidemic model, herd behavior, disease in prey, bifurcations, limit cycle, uniform
persistence, global stability.

1 Introduction

In recent times, herd behavior was introduced in interacting population systems of var-
ious nature, of symbiotic, competing and predator—prey type, by [2], via a square root
functional response, which models the predator—prey interaction occurring mainly on the
perimeter of the prey herd. The main result appears to be the possible onset of persistent
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oscillations, which are not originated by the Holling type II functional response. Thus
a different mechanism, other than feeding saturation, entails as consequence the insur-
gence of limit cycles. It should be noted that in fact, the idea of a nonlinear response
involving a power law for the prey dates back a few decades, appearing indeed already
in the original work of Gause [8]. Anyway, after the appearance of [2], other researchers
undertook similar investigations based on the same idea. In particular, [4] considers a sim-
ple predator—prey model with interactions on the boundary, but in which also feeding
saturation through a Holling type II functional response appears. Note also that the shape
of the herd does not remain circular at all times so that, in general, the square root term
becomes inadequate. But [5] shows that the modification to account for this change via
a generic exponent in place of the square root do not lead to substantial modifications
in the results. Further, a minimal model combining ecoepidemics and group behavior is
introduced in [22], while an ecoepidemic model with prey herd behavior and an infection
in the predators appears in [3]. Ecoepidemic models with Holling type I and II responses
but without the group effect are, for instance, found in [12, 19]. In [24], they introduce
a pathogenic agent, which influences the force of infection. Also, a predator-only equilib-
rium exists, which not appear in our system. Biologically, this occurs due to the absence
of other food sources except for prey.

In [23] the alternative cases of infection remaining harmless for predators, infected
individuals being not predated and the infected prey being toxic for predators were con-
sidered. It is assumed that susceptible prey behave individually, while infected gather
together. Occasional contacts among the solitary susceptibles S and the herd of infected
lead to new contagions via interactions with the infected individuals I occupying the
outermost positions in the group, this being modeled by the term S+v/T.

Our basic assumption here is to revisit the assumptions of [23], exchanging the roles
of the two prey subpopulations. Thus susceptible prey group together, while infected
abandon the herd and behave individually. Still, the susceptibles can be infected via
interactions that occur on the herd boundary, modeled in this case via the term I VS.

The paper is organized as follows. In the next section, we formulate the model and
then discuss the boundedness and the persistence of the species. Next, we analyze the
different kinds of feasible equilibria and carry out their stability analysis as well as in-
vestigating the Hopf and other bifurcations. Using Bendixson’s criterion, we show the
conditions for nonexistence of limit cycles at E,. Applying instead the center manifold
theorem, we also investigate the onset and nature of the bifurcating limit cycles. By
using the results on uniform persistence, the conditions for global stability are obtained,
constructing the suitable Lyapunov function. The fourth section contains the numerical
validation of the results as well as the bifurcation diagrams. A final comparison with the
earlier model of [23] concludes the paper.

2 Mathematical model formulation

We consider the situation in which prey are affected by an unrecoverable disease so that
their population X is partioned among susceptibles s and infected ¢, X = s + ¢. Infected
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are assumed to be too weak to reproduce and compete with susceptibles for resources.
They also drift away from the herd of susceptible prey and therefore are hunted on a one-
to-one basis by predators. Also, the disease is assumed not to spread to the latter. The
predators furthermore hunt the susceptible prey herd by mainly capturing the individuals
occupying the perimeter of the herd and are subject to feeding satiation. Thus hunting on
susceptible prey obeys a law that is the combination of Holling type II and the square root
functions:

Fls) = —2Y°

ST Thays M

where T}, represents the predator’s prey handling time, and « is the predator’s search
efficiency. Finally, infected prey with occasional contacts with the susceptible’s herd
could transmit the disease. Again, we assume that this process occurs mainly on the
boundary of the herd.

With these assumptions, the model reads:

ds rs(1—8> _avsp — Xin/s,

at K) 1+hays
d&i

d—;:/\i\f—mip—,ui,

dp O10/sp .

L _ NI gmip — bp.
dt 1—|—ha\/§Jr 21 = op

The first equation models the susceptible prey dynamics: they reproduce logistically with
reproduction rate r and carrying capacity K, are hunted on the perimeter of the herd by
predators with the functional response (1) and become infected with transmission rate A,
again by contacts on the herd boundary.

The second equation describes the infected prey recruited by “successful” contacts
with susceptibles, hunted at rate m by predators and subject to natural plus disease-related
mortality .

Finally, the third equation contains the predators evolution. They are specialist on the
modeled prey, hunt the susceptible ones by predating on the herd perimeter with con-
version rate ¢, while capture the infected ones on an individual basis and with possibly
a different conversion rate 62 due to the fact that the latter might be less palatable or
contain different, most likely less, nutrient than the susceptible ones. Their mortality rate
is 4.

Note that this model differs from other similar ones already published. In particular,
with respect to [16], here infected prey are also abandoned, but we assume that they
occasionally can still interact with the susceptible ones on the boundary of the herd, while
in [16], such contagion process is assumed to occur inside the herd, before the infected
abandon the it. A different mechanism is instead modeled in [6], where infected stay in
the herd and are subject to hunting as the susceptibles are, this predation occurring once
more on the perimeter of the herd.
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Letting /s = S, then the above system reduces to

2
dszl[r5<l—s> ol Al| = Fh,

dt 2 K) 1+haS

dr

4 = MS—mIP —pl = F, )
dP  6,aSP

E—m—i—GngP—éP—Fgg,

which is now the subject of our investigation.

3 Mathematical analysis

3.1 Persistence

A system is persistent if a compact set ¥ € G = {(S,I,P): S > 0,1 > 0, P > 0}
exists so that all the solution of system (2) eventually enter and remain in it.

Theorem 1. System (2) is persistent if the following conditions hold:
(1) o> p+9,
(i) a4+ ha’VEK < p+6 — WK,
(iii) pOom(KX* + pha KX* — p? X — p*ha)r > KAY(—a X+ X + § ha p),
(iv) 01(6°01h* + 6 5303h% — 46%07h® + 10 07h*6° — 5 01 h*5*
+5a01hé — 10 03h?6* + 667 — a6,” — 46%0th + a h®5%)
< 'K (A6 a’K0} — 6 pa'Ko7h?s?
+4paKO1h36% — pa Kh6* + mrs®0; — pa Ko}
+3X03a3K0,h% — X303 Kh3 — mré 03 Ka? — 315203 K6?h
+2mrd?03 Kah — mré30, Koa’h? +4pu a4K9i’h6).
Proof. The proof is given in Appendix C. O
3.2 Boundedness

Proposition 1. The healthy prey population is uniformly bounded.

Proof. From system (2) we have

ds 1 S? aP 1 S? rS 9

Therefore

limsup S(t) < VK.

t—o0

Now there exist a A; > 0 such that for all ¢ > A;, we have S(t) < K + ¢ = D. O

Nonlinear Anal. Model. Control, 28(2):326-364, 2023


https://doi.org/10.15388/namc.2023.28.31549

330 Md.S. Rahman et al.

Proposition 2. The second equation of (2) can be bounded from above as follows:

dI MWK
&:)\IS—mIP—uI<I()\\/f7(—u):Iu(Ro_l)’ ROZ\MF'

Therefore when Ry > 1, then epidemic will spread, and if Ry < 1, then epidemics is
eradicated.

Theorem 2. All the solutions of system (2), which initiate in RZ, are uniformly bounded.

Proof. Let us define the function
1
T=S+1+ P 3)
01
Differentiating with respect to time (3) and taking ¢ < min{u, J}, we obtain

dT 1 52 aP
g =2les(1-22) - Y AT 4 AIS —mIP — I
a T 2[7«5*( K) 1+ has A}LAS mE

1 91aSP qP
— | — IP — 6P I+ -—
01[1+ha5+92m ] ]+qS+q —1—91
1 52 P(6—q) K(2q+7)
< = _ = — _ _
< 2[7‘5(1 K)] +q¢S—(n—q)I o < .

= ¢.

Applying the theory of differential inequalities [18], we obtain
0<q(S,I,P) < g(l —e ™) 4 q(So, Io, Po)e™ ™,

and for ¢ — oo, we have 0 < o < ¢/q, where, 0 = {(S,I,P): S > 0,1 > 0,
P > 0}. Hence for any ¢ > 0, all solutions of the system are confined in the region
G={(S,I,P)eR3: T < ¢/q+e}. O

3.3 Equilibria and their feasibility

The reduced system of equation has following equilibria: the trivial equilibrium F (0, 0, 0),
the susceptible prey-only point E;(v/K,0,0), the predator-free equilibrium Fy /),
ru(KA2—p?)/K\*,0), the infected prey-free equilibrium E3(S3, 0, P3), the coexistence
endemic equilibrium E, (S, I, P.). Here Ej is feasible when K \? > 12, that is,

Ry > 1. 4
Further,

B 5 1601 (Ka2602 — 2 Ka20,6 h + Ka252h? — §2)
" a(f; — ho)’ 3 al(=0, + 6 h)K '

Ss

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

An ecoepidemic model with healthy prey herding and infected prey drifting away 331

FE5 is feasible if

W <h<h® or <5< )
where
[3] - Kﬁla —(5\/? [3] o (971 [3] - K91a [3] - ﬁ
ho oo hi" = 5 and 9, —7}1[(0[4_\/?, 07 = R

In the coexistence equilibrium,
AS. — 1 [ 0+ aS.(dh — 61)

P* B * T )
m Oom (1 + haSy)
S, is the real positive root of the equation
4
> At =0, (©)
i=0

where
Ag = —K(=Xd + pabs) <0, A1 = (Ao —rm)02 K + Aa(0h — 01)K,
Ay = —rKbymha < 0, Az =rfom, Ay = rfomha,

When
A ex < sl 7
where
6
0 T LT 2 T 6, —610n) N

then A; < 0 and Ay < 0, which satisfy Descartes rule of sign to have a unique positive
real root S, of (6). Moreover, by the above condition (7), I, and P, also feasibles. Hence
E. (S, I, P.) is feasible when (7) is satisfied.

3.4 Stability analysis

The system Jacobian matrix Jp = DF of system (2) is given by

Hl-%) - T oasr 3 ~ 5
Jp = A AS —mp—p —Im
(1%% OamP s +0aml = 0.
3.4.1 The behavior near Ey(0,0,0)
The eigenvalues of the Jacobian matrix Jg, are
A =20 P = AP =,

which shows that Fy is an unstable hyperbolic critical point, namely, a saddle with the
instability in the orthogonal direction to the /P-plane.
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3.4.2  The behavior near E, (VK ,0,0)
3.4.2.1 Stability

At the equilibrium point F;, the eigenvalues of the Jacobian J; are

ravK
r, )\[2}31] _ )\\/?_ 1, )\[El] . 10&\/’

)\[El]:_ __aeva
! 3 1+ havK

Thus E; will be asymptotically stable if
Ry <1, 0< K < Sz (8)

3.4.2.2  Bifurcations

Here and in what follows, to investigate local bifurcations, we use Sotomayor’s theorem
[10,13]. N

The Jacobian J; = (J;?), 4,7 = 1,2, 3, the eigenvalue —r, while the remaining ones
vanish if and only if det J; = 0, which gives

A= )\[tel] _ L o= a[tel] _ d 01 _ 9[t€1] _ 6(\/E+Kha)
VK’ VE (0, —6h)’ ! Ka
2 2
K = (Ko gleal) plted B el — O
’ ’ A2’ a?(6,—6h)’
p=plte) = \WEK h:hWﬂ=§@311§3
’ Kéa

(1) Let 1 and v, be the eigenvectors correspondlng to the elgenvalue 0 of the matri-
ces J; and its transpose J1, respectively. For A = A te1] | we obtain &= (0, gg ],O) and
i = (m[ll], m[1 ],0), where

[12]
m_ _Ji

1 = J[11] 1

and g[ ] m[1 ] represent arbitrary nonzero real numbers. We find

VBB D)) =0, AT [DEy (B M) ()] = VEm Pl

[1]2 T
7}‘ [D2F(E17>\[tel])(:ulaul)] (0 9[2] O) <_3T\’r/n[i{7070> = Oa

(113

T
YE[DPF By, A¥) (g, pa, pa)] = (0,65, 0) (—3”"’;?,0,0> = 0.

Hence the system will experience neither a saddle node nor a transcritical bifurcation
at Fy for A = \lteil,

(ii) For h = hl*1] let po and v, be the elgenvectors of the elgenvalue 0 of the ma-

trix .J; and its transpose, respectively. Then 73 = (0, 0 gg ]) T= (m[2 o m[2 ]) where
w_ A
2 = J[11] 2

1
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Supercritical pitchfork bifurcation

] Stable branch
| T
Stable branch Unstable branch

—44 Stable branch

-10.0 =75 =50 =25 0.0 2.5 5.0 75 10.0

Figure 1. Choosing K = r, for K < 0, there is one stable equilibrium at S = 0. For K > 0, there is an
unstable equilibrium at S' = 0 and two stable equilibria at S = +v/ K at F.

and g£3] , m[23} represent any two nonzero real numbers. Since
52mB! g[3]
A (B A)] =0, 9 [DEL (B W) ()] = —222 0,

T2 t (3] 37”777[21]2 B
Y2 [D F(Elvh[ el])(:U’Qa;uQ)] = (0,0,91 )(_ \/E a0a0> = 07

[1]3

3 T
FY;F [DBF(Elvh[t61])(:u/2a,u25/-112):| = (anaggﬂ) (_74’,?(2?070) =0,

system (2) will experience neither a saddle node nor a transcritical bifurcation at F; for
h = hlter]
(iii) For K = Klte1l et v5 and ps3 be the eigenvectors respectively corresponding

to the 0 eigenvalues of the matrix .J; and its transpose. We obtain pi = (m31 ,ms ", 0),
43 = (0,45",0) so that

n_ I

mq = — m
3 117773 »
‘]1

2], 2
3

where g5~, m5~ are two nonzero real numbers. Then

T
ﬁWM&KWmmﬁwwg&Qo,

2 N

73 [DFic (Br, KU (ns)] = g5 my’ 5 # 0,

[1]2 T
e 3rm
73T|:D2F(E17K[tll])(:UQuu?)] = (0’g£2]70) <_ \/% 5070> =0,
so that the system will experience neither a saddle node nor a transcritical bifurcation
at By for K = Klte1],
For K = Kt let 4, 4 respectively denote the eigenvectors corres[ﬂondin to

the eigenvalue 0 of the matrix J; and its transpose. Then we get uj = (mj’,0, m43]),
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I = (0, 0,94[1 ]) so that

1 JP s
m&] _ J11m[ ]7
where gg ], [ I are two arbitrary nonzero real numbers. Then
71 [Fx (B, Kt'))] = (0, ¢k ,0)<T\F 0 o) =0,
T[DF (E K[tez])( )] — (94[13]m4 9104) £0
V4 K\, Ha)| = KEel(1 + havK ,7[@])2 )
s 3rm 3 T
74T|:D2F(E15K[tez])(:u47,u4):| (O 0 g[])(_}—;aoao) =0

for which the system have neither a saddle node nor a transcritical bifurcation at £ for
K = Kltea],

3.4.2.3 Global stability analysis at Fy
Theorem 3. The point E1(S1,0,0) is globally asymptotically stable.
We defer the proof to Appendix G.

3.4.3 The behavior near Fo
3.4.3.1 Stability

One eigenvalue of the Jacobian J; is

[Ea] _ Orap Oomrp B Hgmru3 s
! A+ hap A2 KM ’
and the other two are the roots of the equation 22 4 a,x + as = 0, where
1 3 2 2,2
= Lo Bney o, TN — )
2 K)\2 2K )2

E5 will be locally asymptotically stable if the Routh—Hurwitz conditions are met, a; > 0
and as > 0, which explicitly become

w2 {3u2 Hgmru3} ;b Oomrp

L oW e _ 5O
<K <ming e T Nthap TN ©

)2
3.4.3.2  Bifurcations

The matrix J, = (J;j), i,7 = 1,2,3, has a zero eigenvalue if and only if det Jo = 0,
which provides A = {2 \lte2r]} | = (ltea] Rltead]) oy = fylte=] yltear]) ) where

2
)\[tez] _ I K[t?z] ’u[tez] = WK
ﬁ7 A27 )

and the values of K[te21] \lte2r] and ylte21] are reported in Appendix E.

https://www.journals.vu.lt/nonlinear-analysis
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(i) For A = Al*¢2] let s, 75 respectively be the eigenvectors corresponding to the
zero eigenvalue of the matrix J and its transpose. We obtain v4 = (0, gg], 0), us =

(m[51] , mg] ,0) where

m_J3° m
mg" = J211 )

and m[ ] gé Vare any two positive real numbers. Since

TMQ(KAQ . ,u2)g£2]

75T [F)‘ (E27 )\[tez})] = )\[te2]5 = 0’
1]
”Y:aT[DFA(EQ,/\[t”])(%)] %#0

Pyg [DzF(EQ’ )\Eteﬂ) (H’E’)a HE’))] = *Tm[sl]zg‘[g] 7é 07

the system experiences a transcritical bifurcation at Fy for A = )\Eteﬂ. Similarly, for
K = Klte2l |y = plte] there will be a transcritical bifurcation around Fs.

For A = Alfe21] let pg, 7 respectively be the eigenvectors corresponding to the
zero eigenvalue of the matrix Jo and its transpose. We obtain v¢ = (0,0, gf[f]), pd =

(mg] , mg] , m[6 ) ), where

33 13 13
n_ _Js ml3 = J3° 3 R J2° 3
Mg J21 = J211m6 ) me™ = _J212 meg ",

and m[ | gé Vare any two positive real numbers. Since

T
V& [Fa (B2 Ale2)] = (0,0, 98 (—I; 5212,0) =0,

[3]&]5’3
6 oA A=M\ltear]

Ve [D*F (Ez, 211 (16, 116)] = 0,

V& [DFy (B, A1) (u5)] = gE'm £0,

the system will experiences neither saddle-node nor a transcritical bifurcation at £ for
A = Altear],

(i) If AL”>) = 0 and the other eigenvalues of J; are nonzero, we will get K = K [te2/]
so that let u7, v7 respectively be the eigenvectors corresponding to the zero eigenvalue of
Jo and J3 . Then pud = (m[71],m[7],m[73]) v+ = (0,0, g[ ]) so that

S T N [ N/ S

=- ——=m
21 117 > 7 127 >
J2 J3 J3
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3] 13

where m~", g are two nonzero real numbers. Since

. rS2 T
'Y;F [FK (E27 K[t 21])] (0 0, [3]) <2K[t321] ,0, O) =0,
3 0J3°

V¥ [DFk (Ba, K1) (7, p7)] = g i

70,

K=Kltear]

K[t(iz[]

system (2) will experience neither a saddle-node nor a transcritical bifurcation at Es for
K = Klte21]_ Similarly, there will be neither saddle-node nor transcritical bifurcations at

p = plteal,

3rS. mm2 T
;I‘ [DQF(EQ, K[tem]) (17, U7)] (0 0, [3]) (_277 )\m[71]m[72]’ 0) =0,

3.4.3.3 Global stability analysis at Fo

Theorem 4. The equilibrium point Es is globally asymptotically stable if

korL /\ Kk 2
ko’l"\/i—f—)\ or \/> 0 — < k.

VE T2 VR
The proof is given in Appendix G.

3.4.4 The behavior near E3(S3,0, P3)
3.4.4.1 Stability

At E5 the eigenvalues of the Jacobian J; = (J§j ), 4,7 = 1,2, 3, are roots of the cubic
equation x3 — (J31 + J2)2? + (J31J22 — J3LIR) + J31JI3J22 = 0, where the
expressions of Ji!, J22, J3!, Ji3 are reported in Appendix A. By applying Routh—
Hurwitz criterium, the equilibrium is asymptotically stable if

h < h[13]’ G1 < K < GQ, G1 = maX{ll,lz,lg}, (10)

where h[lg] = 01 /9, and the values of [;,7 = 1, ..., 3, and G5 are given in Appendix A.

3.4.4.2 Bifurcations

The matrix J; = (Jgj) 1,7 = 1,2, 3, has a zero eigenvalue if det J, = 0, which gives
K = {Kltesl [ltear]} ', = {pltes] pltesi]} The eigenvalues of J3 are

P R L ARV R N P

When A = 0, we will get K = Kltes], b, = hltes] and %! 5 =0 gives K = Kltear],
h = hltes1]. Here
52

K = Kltesrl =
(02 — 20,0h + 62h2)a2’

https://www.journals.vu.lt/nonlinear-analysis
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and hltes1] is the positive value of

Kbia+ 6vVEK
Kéa ’

The values of K = K[t¢s] b = hlt¢s] are mentioned in Appendix E.

(i) For K = Kltesl  there exist eigenvectors ug, Vs corresponding to the vamshmg

eigenvalue of Js and its transpose, respectively. Then pug = (m[sl],mg],mé]) Ta =
[2] (3]
(0,95 ", g5 ') so that
11 732 31 712
w__J5 m B _ Js Js" = J5J37 i)
mg" = J31 ’ mg™ = JELTI ms*

where mg ], g[ ] are nonzero real numbers. Since

2K[te3] ?
Ve [DFx (B3, K'Y (ug)] = 0,

T [tes]\] — [2] rSs ' _
78 [FK(E37K )] - (0798 70) 17 teal an _07

the system will experiences neither saddle-node nor transcritical bifurcations at F5 for
K = Kltes],

For K = Kt¢31] there exist eigenvectors jig, Y9 corresponding to the vanishing eigen-
value of J3 and its transpose, respectively. Then pd = (mg] ,0, mgg]), 74 = (0,0, gég])
so that

m_ I3 s

mg = mg
9 11 )
‘]3

where mg[) }, g[ ] are nonzero real numbers. Since

T [Fr (B, Kl*s11)] = (0,457, 0) 5 50) =0
Yo K 35 - y 99 2K[t€31]7 ) — Y

«
% [DFxc(Bs, K1) (uo)] = (01 — 6h)gmy) #0,

1
o [DF (B, K1) (o, po)] = 595" mg'mg’ (61 — 5h)? # 0,

the system experiences a transcritical bifurcation at F3 for K = Ktesi],

(ii) For h = hltes] there exist eigenvectors fig, s corresponding to the vanishing
eigenvalue of J3 and its transpose, respectively. We find pi, = (m[llo} , m[12(17 m[130]), Vip =
(0, g%, 0) so that

32 11 732 31 712
1 _ J3 (2] 3 J3 57— J5 37 g
m = mig, m = myg,
10 J?::’l 10 10 J§,1J§3 10
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(2] [2]

where myy, gi are any nonzero real numbers. Since

fY;I(‘) [F}L (E37 h[tes])] = 07

2895 P, —010252P; \"
T [DF, (Es, hlts = (0,920 @ o5 1E 2378 )~
’710[ h( 3> )(NIO)] ( 98 ) 2(1+h[t€3]a53)2’ ’(1+h[t63]a53)2 )

1o [D?F (Es, h[te?’]) (110, 1110)] =0,

the system will experiences neither saddle-node nor transcritical bifurcations at Fs for
h = hltes],

For h = hlt®s1], there exist eigenvectors 1111, Y11 correspondm% to the vanlshlng
eigenvalue of J3 and its transpose, respectively. Then pi; = mu,O mn) Ve =
(0, 0,9531]) so that

m_ _J3° )
myp = ngmll,

3 3 . . i
where m[n], gH are nonzero real numbers. The system will experiences transcritical

bifurcation at F5 for h = hl*®31] in view of the following results:

25, P, 610252P;  \"
LIE,(E pltesr] 0,0 (3] @ o373 0,— ! 39
711[ i( 35 )] ( 91 ) 2(1+h[t€31]a53)27 ) (1+h[te31]0¢53)2
_ 91191Q2S§P3 o

(L4 RltearlaSy) —

A [DFw (s, hltea)) (1)) = 267V gﬁ]mﬂ #0,

3] 1 92

5 [DQF(E&h[tei”])(ﬂu»/in)] = gllm

010(K 7& 0-

3.4.4.3 Global stability analysis at Fs
Theorem 5. The equilibrium E5(S3,0, P3) is globally asymptotically stable if the fol-

lowing conditions hold:

r <

1 ng Ozk‘g\/ K 201
— | —=+ —— — f1a |, ks > —.
VE\VEK 2 VK

The proof is contained in Appendix G.

3.4.5 The behavior near E.(Sy, L., Px)
3.4.5.1 Stability

Proposition 3. The coexistence equilibrium is asymptotically stable if and only if by > 0,
bz > 0, byby > b3 hold.

The proof and the values b;, i = 1, 2, 3, are given in Appendix B.
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3.4.5.2 Hopf bifurcation

Proposition 4. System (2) undergoes a Hopf bifurcation at coexistence E, when the
critical parameter A = Aoy € Dyp = {Aer € RT: a1(Aer)az(Aer) = az(Aer) } with

al()\cr)7 a2()\cr)7 a3(>\cr) > 0’ |:(;1/\ Re{xj()\)}:| A=\ 7& >

The proof is once more written in Appendix D.

3.4.5.3 Other bifurcations
We rewrite system (2) as

%:F(X)a X:(S7I7P)t, F:(FlvFQ;FS)t7 JEDF(X)a (11)

where I is a C' function in some open subset of RYY. One of the eigenvalues of .J, =
(J2), 4,7 = 1,2,3, vanishes if and only if det J, = 0, i.e., m = my with

o )\10&(02(] - 01)

. r(K —352) a?P.h
1T o g

2K * 2(1 + haS,)?’
q=1+ hasl,.

11
JU =

Let U = (v),7%,7) . V. = (u}, ub, ps)T respectively denote the two eigenvectors
corresponding to the zero eigenvalue of .J and its transpose .J T, then we have

SR VI R Y T

= =7 = =M
J31 J*21J::,2 3 JiQ JiZJE?’ 3

with 1, 74, 1}, 11 being arbitrary nonvanishing real numbers. Since V'F,,, (E., m4) #0
and VIDFE,,(E.,m4)(U) # 0, there are three cases:

Case 1. There exist a Turing-saddle node bifurcation node if the following conditions
hold:
a?P,h 352 27 mbyq?
+r<— =

2(1 + haSy) K’ ~a(faqg —0;) (12)

Case 2. There is a Turing-transcritical bifurcation if conditions (12) hold along with

~ L(Pia+ LX)

h = 1
Aa S, (13)

Case 3. There is a Turing-pitchfork bifurcation if conditions (12) and (13) hold to-
gether with the critical value of m and the variational matrices being reported
in Appendix E.
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3.4.5.4 Global stability at E,

Theorem 6. The coexistence equilibrium E, (S, L., P.) is globally asymptotically stable
if it satisfies conditions similar to the ones of [12,20] and [19], i.e.,

1 < mi aK—2r a+m
— < min , ,
02(2ha+3) Ka(2h8am+3601 —3h6)’ 30am + 3 01a+2habam—3had
. 1 1
0 < mln{m(392m+391a+2ha92m), 3h(2h92m—|—391)}, (14)
K > Q—T.
o

The proof is given in Appendix G.

3.4.5.5 Nonexistence of periodic solutions near E.(Sy, I, P.)

To show the nonexistence of periodic orbits of the system near E. (S, I, Pi), we apply
the technique of Li and Muldowney mentioned in [19]. Recalling the notation in (11),
we denote by Jy) the (§) x (%) second additive compound matrix associated with the
Jacobian J [19]. Explicitly,

P11 + Pao Va3 -3
I = V32 V11 + U33 V12
—U31 ¥o1 Va2 + U33

We now use the results of [17] on Bendixson’s criterion in R™ to analyse closed orbits.

Theorem 7. A simple closed rectifiable curve that is invariant with respect to system (2)
cannot exist if the following condition holds [12]:

OF, OF, OF, OF,
SUP{ ox, + Oz + q;s ( o0z, ‘ 0z

>:1<r<s<n}<0. (15)

Proof. Let us reduce the system dimension by setting

Su:% I — % P = % ¢ =rt, mHZ%, p' = IM{
N — % o = % §"=6K> 0/ =K, 0]=K"0, (= 1:;7;5*
to obtain
% _ %[s*u —82) —a¢ - AL] = F,
% = ALS, —mI. P, — ul, = F,
%]; = 015.0( + 0mI.P, — 6P, = F}.
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Now (15) becomes
m(—1+ 62)P, + %[1 =382+ A5, —p+61a(¢) <0,
(=Px+ 020, )m+ AS, —u— 96 <0, (16)
(=14 62)m + N1, + %[1 —382] -6 <0.

Sufficient conditions to satisfy (16) are

1 u—ﬂlag
— < S, < B
73 \

P, w+o

7 S*<7)\ ,

1-2

In these conditions, system (2) admits no periodic solutions. O

0y <1,

3.4.5.6  Stability of bifurcating limit cycle

We now establish the stability of the limit cycle arising from the Hopf bifurcation. To this
end, we apply the center manifold theorem [15,20]. Since the Jacobian J, (S, I, P.) has
purely imaginary eigenvalues leading to the Hopf bifurcation, we can analyze the present
system just on a two-dimensional manifold, where the flow is exponentially contracting.

We translate E, to the originby S = S — S,,] =1 — I, and P = P — P,. The
original system becomes

d S 5: 1
) =2(1)+o] (17)
P P b3
where the Jacobian J, is
A T
G —3 Pl
OPT? gomp, 0
with
G r(K — 35?) n T2P*h, _ @ 7
2K 2 1+ halS,
and

¢ = %hTQS'P —- 1,52,
¢2=ASI—mIP, B (18)
¢3 = (0.7 — 0,T%hS,)SP — 0omIP

+ (20, T°h* S, P, — 26, T*hP,) 5.
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We neglect the higher-order term such as S and the ones containing

1[3S,r a®h?P,
T = - + 3
2| K (14 hasSy)

At the Hopf bifurcation, the characteristic equation has the eigenvalues A\; = —a; = 7
for some 7, and Ay 3 = £12,/az = £ww, where

01 OZQP
2+2haS,’
Let the eigenvector of J, associated with A\; be 7;, and the ones corresponding to Az 3

be 1y £ 1m3, where 71, 172, n3 denote real vectors. Then it can be shown that the matrix
B = [U,;] = [n3m2m1] is nonsingular and

1
w? =ay = I,0om>P, + 51*/\2 +

0 _wT )\mI* /\ml* _nT

—w 0 2 2

B'JB=|w 0 0|, B=|[|-wlLm (Gmf AT, (Gm— —fnm)l ,
00 7 ~wG W+ AL oG+ AL

and Q;; = B~' = (1/A)[qi;], where A = det B.

Next, letting:Y = (5,1, P)T, we use the following linear transformation: Y = BW
with W = B=1Y = (I, I3, I3)". Explicitly,

5 I
[|=B|nL]. (19)
P I

Substituting (19) into (17), we get

d d
3 (BW) = LUW + Fy(BW), d—‘t” = (B"'J.B)W + B"'Fy(BW).  (20)

Now (20) can be rewritten as
I=Hl+F(l,2), i=Nz+G(l,z2), (21)

where [ = (I1,15)", z = (I3). H and N are the constant matrices

H= (2 0w>7 N = (n),

and I} and G are C? functions. System (20) can now be written as

d I 0 —w 0 I o1
Gl2]=w 0 o)L +B | g2 |- (22)
I3 0 0 =n/) \I3 ®3

Now system (22) has a local center manifold z = f(l), | < ¢, where f is in C?. The
function f(I) can be approximated arbitrarily closely by a Taylor series as shown in the
next theorem.

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

An ecoepidemic model with healthy prey herding and infected prey drifting away 343

Theorem 8. Let ¢ : R — R™ be C' in a neighborhood of the origin, ¢(0) = 0,
¢'(0) = 0 and Mp(l) = O()l|*) as | — oo, where Mp(l) = ¢'(I)[NIl + G1(1,¢(1))] —
Ho(l) — Fi(l, ¢(1)) and >« > 1. Then f(1) = ¢(1) + O(|I|*) as | — oo.

Hence in the present case the center manifold up to a quadratic approximation is
described by

1
Iy = f(I1,I2) = 5(511112 + 21211 I + bao13).
It follows
dly (df df) (‘”1>
P dlr |
dt d[l dls d—t2
which leads to
dr. 0 - I
dtg (bialy + bioly, bioly + bools) (w 0w> (é) . (23)

Calculating ¢+, ¢2, ¢3 of (19), we have
S = Uil + Upals + Ussls,
I = Uy Iy + Usaly 4 Upsls, (24)
P = U111 + Usals + Uszls.

Now from (18) and (24) we get

¢ =T>h |:(U11]1 + Usalz) <U31I1 + Us2lo + U33/21> + U13A(U3111 + U32-’2)}
-T [(Ull-[l + Urelz)? + Uz A(Uni 1 + U1212)]7
P2 =A [(Unh + Uials) (U2111 + Uz2l> + U23;1) + U13A(U21[1 + U22]2)]
- m[(U31I1 + Usala) <U21I1 + Us2lo + U23/21) + U33A(U21I1 + U22-72)]
¢3 = (20, T°h*S, P, — 20, T*Ph) (U111 + Ui212)* + Uiz A(Ur1 Iy + Ura )]

A
+ (6.7 — 6, T%hS,,) |:(U11]1 + Uials) <U3111 + Us2la + U332)
A
+Uis— (U31I1 + U3212)}

A A
—O0om [(U31]1 + Usaly) (U21]1 + Ugals + U232> +Usz— (U21-71 + U22-’2)]

A =23 = by I? + 2byo01 s + booI2.
From (22) the left-hand side of (23) becomes

0o — I
(b11I1 + bi2l2, bioli + b22‘[2) (w Ow> (I;)

= WhioI? 4 booI1 Tow — whiy 1 Iy — whyoI2
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1
+ Z(Q31¢1 + g3202 + q3393)

1
= g(bllll2 +2b1o 1 Iy + b I3) + Z(Q?,l(bl + Q3202 + Q33¢3),

(b11 7 + 2b1211 15 + byoI3)

[NAES]

which equals the right-hand side of (23). Comparing both sides, the coefficients of 1%,
L 15, 12, we get

I = wbig — Qbu = Q31 [T?hUs Uy — ThUTy | + Q32 [AU11Uz1 — mUs1 Usi]
01
+ Q [ T U11U31 + 92mU31U21 - 7P hT3U11 s

Iy = w(bgy — bi1) — nbiz = Qs1 [T?h(Ur1Usz + U12Us1) — 271Uy Uno]
+ Q32 [A(U11Usz2 + U12Us1) — m(Us1Usz + UsaUsy )|

01 20
+Q33[ T?(U11Usa+UsaUsy) +02m(U31U21+U32U21)7—1P hT3U 1 Ua |,

Iy = 751722 — whiz + Q31 [T?hU12Uss — TUD,| + Q32[AU12Uss — mUsaUss]
01 2 61 3772
+ Q33 ET U12Usz + 0amUszoUze — EP*hT Uiy |-

Here [Q;;] = [(1/A)gs5], i, j = 1,2, 3. It can be easily shown that
14wl +2nwly +n° 4+ 2021 + 2w? 77—|—4w2F1

bir — =

11 5 2

b2 = 3w bog = ————.
w n

Then the flow on the center manifold is governed by the two-dimensional system
R=HR+ F(R, f(R)). (25)

The central manifold theorem tell us that (25) contains all the information needed to
determine the asymptotic behavior of the solution of (21).

Theorem 9. Suppose the zero solution of (25) is asymptotically stable (unstable), then
zero solution of (21) is asymptotically stable (unstable).

In detailed form, (25) can be written as

g I 1) 0 —w I 1 + I
de¢ I 2 T \w 0 I 2 X’
where, letting h.o.t. standing for higher-order terms,

[Qn(bl + Q1292 + Q1363 + h.o.t],

> \

*[Q21¢1 + Q2202 + Q233 + h.o.t.].

I>
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The stability of the limit cycle arising from a Hopf bifurcation is determined by the

sign of (2:

1
2 = II11 + Y12 + oo + Yoo + " [IT12(IT11 + IT3)

Hij =

— D12(Z11 + Ta2) — 11 Z11 + 1o Y]

011(0,0) . _ 91(0,0)
aLoI; Ik ALOLOI,

(26)

If 2 < 0, the Hopf bifurcating limit cycle is stable, and the Hopf bifurcation is super-
critical; if {2 > 0, the bifurcating limit cycle is unstable, and the Hopf bifurcation is
subcritical. The sign of {2 can be obtained by substituting into (26) the values of 17111,
2112, H122, 2222, Hlla ng, HQQ, 211, EQQ, 212 given in Appendlx F.

4 Simulations

4.1 Numerical settings

For the convenience of the reader, all the conditions found and the numerical data used in
the following are listed in Tables 1-6.

Table 1. Conditions of equilibrium global stability.

Equilibrium  Global stability condition
Eq Unconditionally globally stable
E, korvK + X < k\‘}T—L + A‘ﬁko, \/% < ko

Nkg akgxﬁ 20
E3 r < \/—( 9104) ks > Vi
E* K>2Z -

6< min{ﬁ@(@gm + 3?111 + 2hafam), 3)(%(2}1)92771 +301)} ety
. 3(—2r+aK 3(a+m
< min{ Ka(2hOzm+301 —3h3)° 392m+391a+2ha02m—3ha5}

Table 2. Changes of various parameters values in the different equilibrium points.
Equilibrium points o A m 01 02 1) r K h m
Eq 0.7 0.2 2 0.6 0.4 2.1 0.6 50 0.1 0.5
E> 0.7 024 2 0.19 039 04 08 80 1.5 0.2
E3 0.9 02 0.899 0998 0.89 28 24 100 0.2 3

Table 3. Analytic conditions for feasibility.
Equilibrium Feasibility condition Sufficient condition
Ey - -
E; - 0<K<m1n{>\2, 2}

[

By KX2 > p? min{ %, 2:715 }>K>“—2
B3 KoradVE < O 01> 6h, G1 < K < G2
E* A > 5%791 < 0h K > max{y1,y2,y3}
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Table 4. Stability conditions (LAS := locally asymptoically stable,
US := unstable saddle point, GAS := globally asymptotically stable).

Point Local nature Sufficient condition Global nature
Eo usS

Eq LAS - -

Es LAS a? —4az <0 GAS

E3 LAS - GAS

E* LAS - GAS

Table 5. Variables and parameters used during simulations.

Definitions Units Value
S Susceptible prey density v
I Infected prey density v -
P Predator density v -
T Prey growth rate t—1 3.1
K Prey carrying capacity v 120
@ Predator search efficiency t—1 0.9
h Predator average handling time v1t—1
A Force of infection t—1 -
m Predation rate on infected prey t—1 -
o Infected prey natural plus disease-related mortality rate t—1 -
01 Susceptible prey conversion factor - 0.9998
02 Infected prey conversion factor - 0.89
0 Predator natural mortality rate t—1 2.8
Table 6. Summary of the equilibria numerical results of system (2) (LAS := locally

asymptotically stable, US := unstable saddle point, HB := Hopf bifurcation, GAS := globally
asymptotically stable).

A 02 Solutions Eigenvalues Result
By 0.2 0.2 (7.071067,0,0) (—0.3,0,—1.891304) LAS
Es 0.24  0.39 (8.33,3.66,0) (—0.00044, —0.319 £ ¢0.058) GAS

E3 0.2 0.9 (7.1029, 0, 21.3839) (—0.1413 £ 20.843, —63.63) GAS

The disease-free equilibrium E; = (7.1, 0,0) can be achieved with the parameters of
Table 2, which satisfy the feasibility condition X < min{100, 59.2}.

The equilibrium E5 = (8.33,3.66, 0) is obtained with the values of Table 2 satisfying
the global stability condition

korL N MWK ko
VK 2
See Appendix G with the eigenvalues in Table 6.

E5 = (7.1029, 0, 21.3839) arises by the parameter values from Table 2 satisfying the
global stability condition

korvVK + ) = 3.69 < =10.55.

<1<Nk3+ak3\/f
VE\VK 2

See Appendix G with the eigenvalues provided in Table 6.

— 91a> = 2.575.
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L, Fredator .
_ Predator

Predator

Susceptible prey Infected prey — Susceptible prey Infected prey Susceptible prey

(@ (b) (©
Figure 2. (a) Stable phase portrait for Apin = 1.8 < Acr. (b) Phase portrait for A = 0.513, m = 1.2,

1 = 0.01 and other parameter values taken from Table 5. (c) Limit cycle for A = 3.7 > A¢; showing the Hopf
bifurcation.

Infected prey

_Predator
Predator

Infected prey Susceptible prey Infected prey h Susceptible prey

(a) h =0.198 (b)yh =0.2

_ Predator
, Predator

Infected prey Susceptible prey Infected prey Susceptible prey

(c) h =0.207 (d)h =0.213

Figure 3. Sequence of changes in the stability of F’3 as function of the predator average handling time A for
h = 0.2. There is a stable limit cycle arising from a Hopf bifurcation in frame (b). In frame (d), it becomes
a stable spiral using the parameter values A = 1, 4 = 0.1, m = 3, K = 120 and the other ones from Table 5.

E. = (10.06,0.78,16.77) is obtained by the choice A = 2, h = 0.4, m = 1.2, u =
0.01 and the other parameters from Table 5 satisfying the global stability conditions in
Section 3.4.5: 0.9061254081 < min{5.726564961, 1.352970737}, § <min{6.178166667,
3.211500000} and K > 6.888888888.

The Hopf bifurcation discussed in Section 3.4.5.1 is numerically validated by the
parameters h = 0.513, m = 1.2, ;x = 0.01 and the other ones from Table 5. By varying
the values of A we obtain Figure 2. Increasing the value of A to 1.8 while keeping the
same values for the remaining parameters, all the feasibility conditions of the coexistence
equilibrium are satisfied, giving F,(8.989,1.151,27.708). Here A\pin = 1.8, Aex = 3
and A\pax = 4.4. E, is asymptotically stable when Ay, = 1.8 < Ae;. When A lies
between A, and the maximum value of ., a bifurcating limit cycle occurs from a Hopf
bifurcation; Fig. 2. Here {2 = 10.49; see Section 3.4.5.6. Therefore the Hopf bifurcation
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is subcritical. An extensive numerical simulation shows that when the value of ) is very
close to A\, the three populations S, I and P take long time to stabilize whereas when A
crosses the value ., coming very close to Ay .x, the three populations become unstable.
Thus in summary we have the following proposition.

Proposition 5. The interval [Amin, Amax| contains a critical value ¢, where a subcritical
Hopf bifurcation occurs. For the Hopf bifurcation in the interval [Amin, Amax), the interior
equilibrium point is asymptotically stable between Apyin and Ay, and for X lying between
Aer and Amax, a limit cycle occurs. On the other hand, for X\ > Anax, the equilibrium
does not exist.

The basic reproduction number depends on the ratio between infection and prey mor-
tality multiplied by the square root of the system carrying capacity K. The disease will
not die out if the prey mortality increases due just to infection rather than the natural
predation rate.

4.2 Interpretation

Note that the trivial equilibrium is always unstable. This indicates that each subpopulation
cannot disappear, thereby preserving the ecosystem.

The equilibrium E} is locally asymptotically stable if (8) holds, which biologically
can be expressed by saying that the carrying capacity is bounded by a combination of
the prey mortality rate and disease transmission. The bound is directly proportional to
the former and inversely to the latter. In addition, it contains the equilibrium level of the
predator-free point, which indicates the possibility of a transcritical bifurcation among the
two equilibria.

Asymptotic stability of E; occurs for Ry < 1; see (8). E» is feasible for Ry > 1;
see (4). These are opposite conditions so that a transcritical bifurcation occurs for which
FE5 emanates from E; when the latter becomes unstable. Also, F is stable for )\%2] <A<
/\[12], which gives a condition for disease control.

The disease-free equilibrium FE3 is feasible when the predator search efficiency h =
(av/K)~! lies in the interval (h[o?’], h[lg]); see (5). We find numerically the disease-free
system experiences a Hopf bifurcation with bifurcation parameter .

Es is stable for b < h® (see (10)), and the coexistence equilibrium is feasible for
h > h[13] (see (7)) so that there exists a transcritical bifurcation for which the coexistence
equilibrium F, emanates from the disease-free equilibrium E'3 when the latter becomes
unstable; recall Section 3.4.5.4. Also, for feasibility condition of the interior equilibrium,
the force of infection must lie in the interval ()\gk] , )\[1*]); see (7). This gives the condition
for disease control. Based on these results, for all the equilibrium points, we underline
the relevant role played by the parameter A for the stability of points E; and E», while
the parameter h is critical for achieving the disease-free equilibrium. The coexistence
equilibrium evolution is regulated by the force of infection. Below a certain value of A,
the system may become extinct; Section 4.3.

In addition, the equilibria global stability conditions reported in Table 3 are obtained
using Lyapunov and Lasalle theorem of Section 3.4.5.4.
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The crucial role of the parameters A, p, 02, §, h and r in the control of the dynamical
behavior of the system is therefore apparent. A future direction of the present work
therefore can be well extended by introducing recovery of disease incorporating the prey
refuge.

4.3 Bifurcations

We now investigate the bifurcations and corresponding limit point diagrams with respect
to the disease transmission .

The parameter values are taken from Table 5 with initial conditions S(0) = 7, I(0) =
0.7,and P(0) = 16 and A = 1, h = 0.213, p = 0.1, m = 3. Using MATCONT, we find
the stable (blue) and unstable (red) branches of the bifurcations; see Figs. 4-5.

In each bifurcation diagram in the AS, AI, AP-planes, there exists a complete loop
on the right half part. It has two branches, one of which is stable (blue), and the other is
unstable (red) branch. The loop joins two different equilibria, thereby, it is a heteroclinic
loop. This can be interpreted by saying that the heteroclinic point has different past and
future. Also, the existence of a heteroclinic orbit for the critical parameter value related

Branch Point at E3

Hopf bifurcation at E'«

Branch Point at Fy

i ’ A
(@) (b)

Figure 4. (a) All bifurcation situations of (2) for susceptible prey .S at all possible equilibria Fo, E1, E2, E3
and F, for the parameter values given in Table Sand A = 1, h = 0.213, . = 0.1, m = 3. (b) The bifurcation
diagram with the stable (blue) and unstable (red) branches in the AS-plane.

i5f Branch Point at 2

Limit Point at Ex

sl Branch Pointat B3 Hopf bifurcation at Ex

(@) (b)

Figure 5. (a) All bifurcation situations of (2) for the infected prey I at all equilibria Eg, E1, E2, E3 and Ex
for the parameter values in Table 5 and A = 1, h = 0.213, u = 0.1, m = 3. (b) Bifurcation diagram with the
stable (blue) and unstable (red) branches in the AI-plane.
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Branch Point at 53 Hopf bifurcation at E

Branch Point at 5 Limit Point at E's

(a) (b)

Figure 6. (a) All bifurcation situations of (2) for the predators P at all equilibria Eg, F1, F2, E3 and E. for
the parameter values in Table 5 and A = 1, h = 0.213, u = 0.1, m = 3. (b) View of the bifurcation diagram
with the stable (blue) and unstable (red) branches in the A P-plane.

to the force of infection implies biological overexploitation by the disease [21]. This
shows that the force of infection affects the ultimate behavior of both system populations,
determining their survival or extinction.

S A comparison

The model presented here is closely related to the one of [23], where instead of the
infected, it is the susceptible prey that behave individually. In both cases, the ecosystem
cannot disappear, a result that from the biodiversity point of view is good. It is mainly due
to the fact that environment has always means to support the prey, in particular healthy
prey, by providing them enough feeding resources.

In [23] the predator-free point harbors always the disease endemically. In addition,
we find the coexistence equilibrium in which also predators thrive, but where again the
disease is not eradicated.

In this system, however, the disease can be eradicated, while the healthy prey is
preserved at equilibrium F. Its feasibility and stability conditions provide the theoretical
tools to achieve such goal if needed.

On the other hand, if the predators constitute a nuisance and should be eliminated,
both here and [23] contain the predator-free point. The role of the relevant parameters in
controlling the possible system outcomes have been elucidated and can be obtained from
the tables provided in the previous sections.

The predator-free equilibrium becomes unstable for a very low predator mortality rate
5 < 61, where 611 = 0,0/ K (1 + haVK)~!; see (8). A similar result is found for the
disease in predators [4, 9], where environmental carrying capacity K and the predation
rate play an essential role. We find a supercritical pitchfork bifurcation around F; at K.
In addition, the predator’s average handling time h influences the threshold level. In [3],
it is shown that the stability of the prey-only equilibrium in a predator—prey model with
disease in predator changes when the predator mortality rate exceeds a threshold value.
We have also similar results but for a large enough prey mortality rate, p > ul*l, where
influences the threshold value, which represents a different result from [3].
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The predator-free point becomes unstable in the presence of the disease in [23][. But
in this system the predator-free point is stable for 1 < Ry < Rg)’], where ROB] =
min{v/3, [fomru(t'A2)~1/2); see (9).

In [2,4, 9] the disease-free equilibrium is stable if the deaths of infected predator lie
above a threshold value, where only susceptible predators thrive. A similar situation arises
in [23], where the stability of the disease-free system required the predator mortality rate
must fall below a threshold so that the predators invade the environment permanently. In
this system, we find both upper and lower threshold value for predator mortality rate J.
For the feasibility of the equilibrium point, it must lie in the interval (5([,3] , 5f ]); see (5).
The stability of F5 holds for small enough predator’s mortality rate, 6 < (55 ]; see (10).
The predator average handling time h plays a role in both 6([)3] and 0 53] . A healthy predator—
prey system becomes stable for predation rate above a threshold value in [3], but we get
an opposite condition: the disease-free system is feasible for low prey search efficiency
a < ol where o8l = §[VK (6, — 5h)] L.

Both prey-only and predator-free equilibria are unconditionally unstable in [24]. In-
stead, we get suitable stability conditions.

The different roles of the various parameters are shown in different equilibrium points.
However, \ has the most crucial role for which a heteroclinic orbit in the coexistence
equilibrium arises. It leads to extinction when the force of infection falls below the thresh-
old )\B*]; see (7). From the ecological point of view such a situation can arise due to
overexploitation of force of infection discussed in Section 4.3. Both the theoretical and
numerical analysis are found important to draw conclusions on a general level.

Acknowledgment. The authors are grateful to the reviewers for their beneficial com-
ments and recommendations in the development of the manuscript.

Appendix A: The Jacobian Jp

A.1 Entries of J3 = (J;j), 1,7 =1,2,3

Nll . a N22
11 3 13 22 3
=3 = (=0, + 6h)— =3
J3 2D?1)17 J3 ( 1 + )915 J3 D%Q’
31 T(yKOé(fgl + 6]1)2 32 Ggmr501K
Jy = J3® =

- K(—6 +6h)2a2 — 62’ a?K6? — 2a2K6,06h + a2 K§2h% — 62’
N3t = (a'K?07 — 30 K?016h + 2a* K*6036°h* — 40°K636° + 20" K676°h®
+ 80’ K076°h) (=301 K?6'h* — 4010° K6*h® + 30,6 + o*6° K*hP)r,
Di' = 0, K(—0;1 + 6h)*a® (0® K07 — 20K 6,6h) + (oK §°h* — 6%),
N2 = —Ku(—6, + 0h)3a® — KSA(—0; + 6h)*a?
— 8(=01 + 5h)(—pud + mré K)a + \63,
D3? = (K (=01 + 6h)*a® — 6°) (=61 + 6h)a.
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A.2 Valuesoflq,ls,l3

Nh 52

o T e T e ¢ arene

Iy — 62(3601 + 6h)

a?(03 — 025h — 0102h2 + §3h3)’

N = 7(302603 — 5(2/5m + ha®)d0; + 6106k + §°h3a?) 82,

D" = a?(6h — 01)* (o (r — 2p)03) (= (R(—4p + 1)a® — 2Xa + 2rm) 667
— (h(2p + r)o + 20 had®0y + ra”5°h?),

Go = mré0; [042 (rm§9:1)’ — 2rm629%h) + (rm(5391h2 — X603 4 3aN5%0%h
—3aA6301h? + Notah® + 0o’ — 40203 uh + 69%042;152}12)
x (—40102ud®h? + a®us*h*)] .

L=

Appendix B: Proof of Proposition 3

The Jacobian eigenvalues at E, are the roots of the cubic equation L3+by L2+by L+b3 =0,
where

1r(K—-3S%) 1 o?Ph 5 1. .5 6102 P,
by = —= CUAN by = L0om?P, + I N>+ — 1~ —*
1T K 2(1+ haS,)?" 7 2t A B 2has, )
b _I*ngzP* r(K — 35?) . a?P.h B I.mbiaP. )\ B aXdomli, P,
8 2 K (1+haS.)?|  2(1+haS,)?  2(1+ haS,)

By the Routh—Hurwitz criteria asymptotic stability is achieved whenever b; > 0, b > 0,
b1by > b3, ie., K > max{yl, Y2, yg}, where

1
y1 = = [3rSZ (1 + 2hasS, + h*a?S2)] + 2rhasS, + rh*a®S2 + o* P, h,
T
1
Yo = 5 (30mr S (1 + 2haS. + W0 SY)) + 20smrhasS. + Oymrh?a’S?
2
+ Xab + Aabs + a*N03hS, + Osma’P.h,
Z1
Ys = —,
22

21 = 3rS2(010° P, + 201 \haS, 4+ 40LN*h%a*S2) + 40LN°h% 0’ S3
+20R*a* S22 4 2ha 8,0, P, + 4h°a® SP T % 4 h2a* S26, P, + 4I,)\?,

29 = 10102 Py + 20r [ A2 haS, + 40rI*)\2h2a2Sf + 40rl*)\2h3a353
+20rh*a* S A% + 2rha?S,0, P, + 4rh5a®SST, A% + rh?a*S?0, P,
+ 1203 P.A2 IS, + 1204 P.h3 I N2 52 + 40° P,hA I N2S2 — 81, mb aP A
— 8aMymI, P, + 4rI,\* + 40* P,hI,\* + o* P,h6, P, — 240> mI, P,0,hS,
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— 2403 AmI, P01 h%S? — 8a* A\mI, P61 h3S3 — 320°\mI, P,05hS,
— 483 mI, P,0,h%S? — 320 \mI, P30 53 — 8a® A\m1I, P,0,h*S2.

Appendix C: Proof of Theorem 1

We prove the persistence of system (2), applying average Lyapunov function method
[7,14]. Consider the Lyapunov function V (S, I, P) = S70[71 P72 where jo, j1 and ja
are positive real numbers such that in the interior of R3,

V(S,I,P .S I P N,
O(5,1,P) = VES,I,P; =Jog +Jlj +j2F = D727
No = jorSK + jorS?Kha — jorS® — jorS*ha — joaPK — Ijo K
+ 21y KOamhaS + 251 KAS 4 2j1 KAS?ha — 2j1 KmP
—2j1 KmPhaS — 2j1 K — 251 KphaS + 2jo Ka + 215 KOam
— TjoAKhaS — 252 K6 — 2jos Kdhas,
Dg = 2K (1 + ha¥).
(i) At the trivial equilibrium point £ (0, 0,0), ©(0,0,0) = a—p—06 > 0ifa > p+4
when we choose jo = j1 = jo.
(ii) At the boundary equilibrium point,
_ IWE+jAKha—jip—jiphaV K +j20—jad—jadhaVK

9(\/?’070) 14+hovVK

0

ifoao> (u+0 - MWEK)1+ hoVK).

(iii) Similarly, at the predator-free equilibrium,
1

K AHX 4 hou)

+ 7“,u292mhaK)\2 — ru392mx\ — ru492mhoz) >0

6(Ss, I»,0) o (K (a0 — 8)A° — ShapK\* + rufam > K
if

uegm(K/\g + phaK\? — 2\ — ,u3hoz)r > KXY{(—a) + 06X + Shap),
and the infected prey-free equilibrium is positive, that is,

1
Ora*(—01 + hO)*K
+ 4(—5/4j2ha® + h(j1p + j26)a® + 1/4j1 A — 1/45ymr) 60 K0}

— 6h6 0K (=5/3j2ha® + h(jip + jad)a® + 1/2j1Aa — 1/3j1mr) 03
+46° (—5/2j20° Kh* + Kh*(jip + j20)a*

+3/4j, \a® Kh? — 1/4j:mrKa*h? + 1/4j1mr)912

— B*6*a® K (—5j2ha® + h(jip + j2b)a + j1A) 01 — joa® Kh®6%) > 0

O(83,0,13) = (—Ka*(—jaa + j1p + j20)63
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if we choose jo = j1 = jo for all cases when

01(5°0,h* + 6503 h* — 46*07h* + 10a07h*5® — 5ab h*6* + 5adihs
—10a83h%6% + 607 — ab — 46%01h + ah®5°)
< a'K(M®K0} — 6pa* KOTh*6” + 4pa* K01 h*6° — pa Kh's*
+mré30; — pa* K07 4 30203 K60 h* — A6 o Kh3 — mréf3 K o?
— 3APQPKOTh + 2mrs*07 Ko’ h — mré®01 Ko h® + Apa K67 hé).

Since the value of ©(S, I, P) is positive at all boundary points, system (2) is persistent.

Appendix D: Proof of Proposition 4

Bifurcation analysis deals with structurally unstable systems. The characteristic equation
of (2) at F, is
22+ a12? + asx + az = 0, (D.27)

where a1 = —tr(Jy), aa = My, a3 = —det(J,). Now when A = A, so that ajas =
as, the characteristic equation (D.27) factorizes as (22 + a2)(z + a;) = 0. Its roots
are 1 = 1\/az, T2 = —1 /a2, r3 = —a;. In a neighborhood of A, the roots of
the characteristic equation (D.27) for all A are of the form x; = 71(A\) + 112 (), z2 =
T1(A) — 1o (A), 23 = —73(\), where 71 (\), 72(A), 73(\) are real.

To verify the transversality condition, we substitute 2:(\) = 71 (A)+272(A) into (D.27)
to get

(11 4+ 172)3 + a1 (11 +172)? + ag (11 +17m2) +az = 0.

Separating the real and imaginary parts, we find

2 2 2
713 — 317 —|—a1(7'1 - 7'2) +asm + a3 =0,

37’1272 - 7'23 + 2a17170 + asme = 0. (D-28)
From the second equation of (D.28), as 7o # 0, we can set
f(n) =73 =37 + 2a171 + as, (D.29)
and substituting the value of 7 into the first equation of (D.28), we get
2 = 3nf(m) +as (7‘12 — f(ﬁ)) +asm + a3 =0. (D.30)

Differentiating (D.30) with respect to A, we get
dn
dXA
+ a; (27’1 - f/(’?'l))

dr dr da
- 3Tlf’(71)d*; - 3f(Tl)T; + T;(Tf — f(m))
dr das dn % _0

DT e T T

2
37
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Since 71 (A¢r) = 0, from (D.29) we get f(0) = az and f/(0) = 2a;. Thus

dmy 1 dag da1
Iy T 9/.2 1 | Ay Acr ;
{d)‘ } A=A 2(af + az) { dA >dA ] 70

x3()\cr) = _TS(/\cr)~

Now [d71/dA]a=x., < 0 when the condition of Proposition 3 is satisfied. Hence, E is
unstable when A < A, and stable when A > A.,. Thus a Hopf bifurcation occurs at
A= Aere

Appendix E: Notations used in other bifurcations

The variational matrix is as follows:

D?*F(xz,m)(U,U)

_PF, OF O°F o°F oF
= 052 Sz U 6 oy Ul'U;Q"’mUlUB"’ 8y8xu2u1 +ﬁu2
o2 O F O°F 0°F
T 022" T gnap " T gL, T g2 s
D3F(z,m)(U,U,U)
PF ., OPF 5P, 3 , & )
055 " T 5220y "1 T 20,8 T a2 2 T e Y2
PF OF o, OF PFE
Doy U2 T 5022 ST Graya, 1S T G2 U1t
PE . OF ., OF PF ,  OF ,
W 2 l—l—aTayQul 2+3 97202 ugulug—l—muzul—i—a—yg%
PF P PE, PF ., PF
9202 23 1 gyoz05 128U T GLg,2M8 2 T g a2 t2ts T g g2 M
o OF . O PF
92020y 12 T 57921 T 5og,9, 1312 T 5,212
OF , OF , OPF , OF
- WWUB + 9120z 3" + 9220y 312 * 93

where F = (Fy, Fy, F3)T, and
O3 Po(Poav + LA + L AhaS,) i

VIF(E.,ma) =

(]_ —+ hQS*) 7
TDF(E. = BT a5
VEDF(Ema)U) = = ey
TDQF E* — —L
Vv (Ev,ma)(U,U) K(1+4 haS,)3\’
3

T 13 R I VR
VID F(E,.,m4)(U,U,U) = K(1+ haS, )4\’
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m = py(—0omPArK + 30omPvirS: — KA aPoyy — KA\ps01 005,

+ o P KAy + K Mty 6 — Oom P2, o> h K — K A\p010% S?h+2 K Ay hadS,
+ KM\iy0h?a?S? + I,a*03 P K pyuuhS, + I.a*02 P2 K pymhS,

— L.a?05 P, K by AS?h+ I, a0 P, K iy ji4- Iy P2 K plym+a 09 P. K \y; hS,
+ 60om P,y 7S ha — 205m P, r KhaS, — omP,y,rKh*a*S?

— L.afs P, K iy \S. — L. K \i0amh?a®S? — 21, K \iyfamhaS,

— LK \us0om + 392mP*'y{rth2a2),

N2 = iy (60am P, rS, + 180am P, rS%ha + 180am Py, rS3h%a?

+ 605m P, 1S R + 20om P2y, 2P hP K — Oom P,y o s hIK

— Oom P,y 02 ush? K S, + Loiha®03 Pu Kmyuyh?S? — Ioy) phofy P K
+ I*,u’QOzHQP*Km,ug — I*’yiu'QOzSGQP*K)\h2Sf — QI*Viu’QaQHgP*K)\hS*
+ 21, 10202 P, KmypishS, + 2K A0102 P by, > — K AOamyiy il

— 3K N0amyplypiyhaS, — 3K Namplypiyh*a?S? — K N0ompubh®a’S3
— KXoy pily — KN010”y pishS.)

12

ns = 27y ps(—30amPiyir — 120mP,y rhaS, — 180smP.yirh*a’S?

— 120ym P,y rh3a3S3 — 30,mP,y,rh*a*S? 4+ 30.m P2~ a*h3 K

— 20omP,0h? s K — 20omP.a* W3 us K S, + 30103h? K AP, i)
— 201 0*h K\ — 2010 R KAps S, ),

= Nm
=5
Ny = Loy plyala P K + 21, pt) 110?03 P, K ARS, + I gt pih 005 P, K AR S?
— 2K N0 Pohyt,” + KO o pily + K010 i hS,
D,, = 1892P*u’12r53ha + 1892P*u327°5>‘:’h2a2 + 692P*,u£2r54h3a3
— 02 Pyt &P s h K — 0o Py 0P i h* K Sy + Lpiya®05 P K i hS?
+ Lopthalo P K pily + 21, 1 0® 09 Py K s hS, — 3K N0apiy iy hauS,
— BK Moyl pihh2028,% — K NoptlypibhPa®S3 + 20, P21 > 0P h2 K
+ 605 P 1S, — K N0a iy,
Fltear] _ Oomr (X + hay)
A2(—X3 4+ X201 pav — A20hap + Oamrp) + Oamrpu2ha)’
K[te3] _ mr5391

= ’
=

E=a? (uoﬂ@‘f—4ua29‘;’5h+6ua20f52h2 — 4000, 53R + a5t ht — Noab?
+ 3X%abih—3X\5% ab h? + A6  ah® +mré6? —2mr§29%h+mr§391h2).
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Now Al¢21] is the positive root of the equation Z?:o b; X* = 0, where

by = Ogmru4hoz, by = 92mr,u3, by = —02mru2Khoz,

by = —OomrukK, by = Kap(sh — 01), bs = 0K,

plte21] is the positive root of the equation Z?:o ¢;Y' = 0, where

co = 0K\, c1 = —MNiaK + M Kha — 0omrK,

cog = —OomrKha, c3 =0 -—2mr, c4 = Oomrha,

and K*e3 is the positive root of the equation Z?:o d;Z'/(5a) = 0, where

do = pa* K0} — N6 K03 — mrs®0; + mréf Ka?,
dy = 36AK0a* — 26mKrfia — 4uK63a3,
dy = —30M01a + mKréb, + 6uK0?a?,
ds = \K§ — 4uKb a, dy = pK.

Appendix F: Notations used in Section 3.4.5.6

II=0Qmn

A A
Tzh{(Unh +Ui212) <U31]1 +U32[2+U332) + U13§(U3111 +U3212)}

— Ty {(Uni ]y + Uralo)? + Uis A(Un I + U1212)}]

+ Q12

[ A A
)\{(U1111+U12]2) (U21]1+U22]2+U232> + U132(U21-71+U2212)}

A A
- m{(UZ’)lIl + Uszlo) (U2111 + U1y + U232> + U33§(U21I1 + U2212)H

+ Q13

A
+ U13§(U3111 + U3212)}

A
(0.7 — 91T2h5*){(U11]1 + Uszly) <U31[1 + Us2l + U332>

A A
- 92m{(U31]1 + Usaly) (U2111 + Ugals + U232> + U335(U21[1 + U22fz)}

+ (26

T3h*S, P, — 201 T*P.h) { (Ui 11 + Ur21)? + Uns A(Uni Ih + Ulglg)}} ,

I, = Qll [T2h{2U11U31} — T1{2U121 }} + Q12 [)‘{QUllUQl} - m{2U31U21}]
+ Qu3[(1T — 1 T%hS*) {2U11Us1 } — 03m{2U31 Uz }
+ (260 T°h>S, P, — 26, T°hP.){2U7, }],
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IIyy = Upy [T?h{2U12Us0} — T1 {207, }] 4 Q12 [AM2U12Us2} — m{2U32U32} ]
+ Q3 [(1T — 1T°hS.){2U12Us2} — 03m{2U32Ua0 }
+ (20.T%h*S, P, — 20, T°hP,){2U15°}],

Iy = Upy [T?h{U11Uss + Ur2Us1 } — T1{2U12U11 }] + Q12 [MU11Uzs + Ur2Us1 }
— m{Us1Uzs + UspUa1 }] + Q13 (1T — 61 T?hS,){U11Usz + Ur2Us1 }
— 03m{Us1Usz + UsoUa1 } + (201 T°h* S, P, — 20, T*hP.){2U12U11 }],
211 = Qu [T?h{2011Us1} — T1{2U11° }] + Q22 [AM{2U11U21} — m{2U3,Us1 }
+ Qa3 [(61T — 61 T?hS,){2U11Us1 } — 0om{2U31Us; }
+ (20, T*h*S, P, — 20, T*hP,){2U11° }],

L3 = Qa1 [T?h{2U12Us2} — T1{2U12° }] + Q22 [AM{2U12U20} — m{2U32Us2})
+ Qa3 [(1T — 1T°hS. ) {2U12Us2} — 03m{2U32Us0 }
+ (201 T%h2S. P, — 20, T*hP,) {2U12° }],

Z12 = Qo [T*h{U11Uss + Ui2Us1 } — T1{2U12U11}] + Qo2 [MU11Usz + Ui2Us }
— m{Us1Usz + UsaUs1 }| + Qa3 [ (61T — 91T2h5*){U11U32 + U12Us1 }
— 03m{Us1Usz + UsoUa1 } + (201 T°h* S, P, — 20, T*hP,){2U12U11}],
Yoo = Q21 [Tzh{3U12U33b22 + 3U13U32b22}]
+ Q22 [M3U12Ua3b22 + 3U13Ua2b22} — m{3Us2Ussbas + 3Us3Uszbas }]
+ Q23 [(91T — 91T2h5*){3U12U33b22 + 3U13Us2b92}
— 0oam{3Us2Ua3b92 + 3Us3Ua2b22}
+ (20, T%h25, P, — 20, T*hP,){6bssU13U15}],
Sz = Qo1 [T?h{2U11Ussb1z 4+ U12Ussby1 4 2U13Us1b12 + UrsUszbyi }]
+ Q22[M2U11Ua3b12 + U12Ua3b11 + 2U13Us1b12 + U13Usz2b11 }
— m{2U31Uz3b12 + UsaUasbi1 + 2U33U21b12 + UszUsobi1 }]
+ Qa3 [ (61T — 1 T*RS.,.)
x {2U11Us3b12 + U12Ussb11 + 2U13U31b12 + U13Uszbiy }
— 02m{2U31Uasb12 + UsaUazbi1 + 2U33U21b12 + UszUszzbi1 }
+ (26, T°R*S, P — 20, T*hP,){2b1,U13U12 + 4b12U13U11 ],

Iy = Q1 [T?*h{3U11Ussb11 + 3U13Us1b11}]
+ Q12 [M3U11Uasb11 + 3U13Ua1b11} — m{3Us1Ussbr1 + 3Us3Us1bi1 }]
+ Q13[(1T — 01T°hS, ) {3U11Ussb11 + 3U13Us1b11}
— 0om{3Us1Ua3b11 + 3U33U21011}
+ (26, T°h*S, P, — 20, T*hP,) {6b11U13U11 }],
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25 = Q11 [T*h{U11Ussbos + 2U12Us3b12 + U13Us1bog + 2U13Us2b12} ]
+ Q12[MU11Uazsbgz + 2U12Ussb12 + U13Us1baa + 2U13Us2b12}
— m{Us1Uzsbaa + 2UsaUssb12 + UsgUa1bao + 2Us3Usabi2}]
+ Q13 [(017 — 61 T*hS,){U11Ussbaz +2U12Us3b12+ U13Us1 b2 +2U13Us2b12}
— Oom{Us1 Uazbag + 2U32U23b12 + UszUsa1ba + 2U33U22b12}
+ (201 T3h*S, P, — 201 T*h P, ) {4b12U13U12 + 2bosUr3U11 1]

Appendix G: Proof of global stability

G.1 AtE;

Let R? = [(S,I,P) € R*: S > 0,1 > 0, P > 0] and consider the scalar function
defined in [1, 11]

Z1:<S—51—Slln5)+I+P. (G31)
1

The derivative of (G.31) along the solution trajectories of (2) is

dz, s1\dS dI dP S1) (1 S?

b T [ I e 1 1——1). G.32

&t ( S)dt+dt+dt s )\ & (G.32)
At the equilibrium point E; of system (2), we have K = S?, and using it in (G.32), we
obtain

4z, 1 2 r )
—_— - —_ — —= = — = - < M
=S Sl)<1 512) 75 (S —S1)%(S+5) <0 (G.33)

with the derivative vanishing when (.5, I, P) = (51,0, 0). The proof follows from (G.33)
and Lyapunov-Lasalle’s invariance principle [11].

G2 AtE;

LetR3 = [(S,I,P) € R3: S > 0,1 > 0, P > 0] and consider the scalar function
Z : RY — R defined by

I
Zzzko(s_sg_s;m5,>+(1_15_1;1n,). (G.34)
52 ‘[2

The derivative of equation (G.34) along the solution of system (2) is given by

Az, S5\ dS -\ dI
dt _k2<1_ S)dt +(1_ I)dt
_ :ZCO Sé TSB ,
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At the equilibrium point E5 of system (2), we have

S '3
S, — ’”7 AL =0, =Sl (G.36)

Then equations (G.36) reduce (G.35) to

dZy ko S-S5 ., 1S
a2 S

rS— M- <S§ Tf( AIQ)]+)\(II§)(SS§)

k
— 2;(5 SQ)[T(S—Sg)—;{(53—553)—A(1—I§)] +AI—15)(S—S5)

o koT’ 7‘/430 2 12
=353 —(S—85)? QKS(S S5)? (S +59 2+Sg)

Ak

— 5o (S=S)U L) +A(S=S;) (I~ 1)

k?()’l“ k‘o’l“ 2 ’ / )\kio A N2 A )\kio I\2
< | == = _ Z_Z _
\[25 2KS<S +585+57) TR (S=5)*+ |5 15 (I-1%)

korvK  korL Akof A A MeoVE Lo
<[ > Q\F 1 (S S5)%+ 374 (I-13)* (G.37)

so that the above derivative is nonpositive if
korL MWKk 2
korvVK + X\ < + : —— < ko,
OT \/E 2 K 0
and it vanishes when (S, I, P) = (S5, I},0), where
L= K+Q+

A2

and S% = p/\, Iy = rp(KA? — p?)/K\*. The proof follows from equation (G.37) and
Lyapunov-Lasalle’s invariance principle [11].

G3 AtEs

Let RS = [(S,I,P) € R3: S > 0,1 > 0, P > 0] and consider the scalar function
Zs Rﬁ_ — R defined by

P
Zo—ks(S— 8 —Sm =)+ (P-Py— Py L (G.38)
S5 P;

At the equilibrium point F3, we have

T‘Sg OéPg 5= 910453 (G39)

7"53_7 1+ha53:0’ 1+ haSs”
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Equations (G.39) reduce (G.38) to

3 3
%;k3<1%>(rg’“504’r53+7"53+0‘}’3>

dt S K 1+ haS K 1+ haSs
01045 91&53
+(P_P3)[1+ha5 "~ 1+ haS;
]{/‘3 r
2S(S S3) |:7“(S —S3) — E(SS — ng) —a(P - Pg)]
+ 9104(3 — S3)(I — Ig)
’l"kg T]Cg
= 5o (8= 80" = 525 (5 = 83)* (5% + 59 + 3)
7"]€3

- —(S S3)(P — P3) + 61a(S — S3)(I — I3)

< % _ Tk3(52+553+5§) +Ck7]€3+ 910[
25 2K S 45 2

B (s s

910[ Oékg 2
+ [245}@1’3)

7‘/{33\/7 ’I"k3 Oékg\/? 91(1
< [ 5 2\/* 1 + D) :|(S Sg,)
. [91; - ozk34\/>] (P — P3)2. (G.40)

Again, the above derivative is nonpositive if

1 N K 2
(M e E )
VE\VK 2 VK

and it vanishes when (S, I, P) = (Ss,0, Ps), where N = K + /K S3 + S3. The proof
follows from (G.40) and Lyapunov-Lasalle’s invariance principle.

G4 AtE,

Let R? = {(S,I,P) € R*: S > 0,1 > 0, P > 0} and consider the scalar function
Z : R3 — R defined by

SS S
— 5 4
5 S+

S I,

Z(t) = ky

PP P
2/ 5 * (G.41)
P,

The derivative of equation (G.41) along the solution trajectories of (2) is

dZt)(S,1,P)  dZ,(t)(S,1,P) = dZs(t)(S,I,P) = dZs(t)(S,I,P)
dt N dt + dt + dt '
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Now

dZdl()(SI P)k1<1ii‘><r(ss*)<1(5;*)2)

OZ( *)
ey M),
dzjt(t) (S,1,P) = (1 — II) (A(S = 8.) =m(P = P,) — ),
dZs(t) P, Ora(S —5)

o ST P)—k2<1—P*> (M—i—ﬁwz([—h)—é).

Therefore, letting S — S, =z, [ — I, =y, P — P, = z, we get

dz(t)
& —(S,1,T)
7;{1?;[ o(K —2®) — Kaz — KAy(1 + haz)] + y(Az — mz — p)
koz
+ m [610x + (1 + haz)(B2my — 6)]

—kyrat 4 kyra® — ki Khoda?y + kohafomayz + M1 — k1 K)xy
+ m(keb2 — 1)yz + (k201 — k1 Ko — kahad)zx — py — Skoz

1 1 1 1 had
< |:k1’l"+3h01m+2>\(1le)+2K29106 leOz292:|gj2
1 1 1 1 had
- N - B E) |y 4|2 SKobio — —k Ko — — 20| 2
—l—{ghozm—i-?/\( k1 )]y —I—L))hozm—i—Q 201 2k1 o 5 02}2
having taken
1 3
[ P
T K > 0,(2ha + 3)’
3(—2r 4+ aK) 3(a+m)

kl < ) k2 g ’
Ka(2h8am + 361 — 3h0) 30am + 301 + 2habam — 3had
which correspond to assumptions (14). Also, the derivative vanishes only at the equilib-
rium E,. Thus Z(¢) is a Lyapunov function and by Lasalle’s theorem global stability
follows.
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