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Abstract. We construct and analyze the backward Euler method for one nonlinear one-dimensional
parabolic equation with nonlocal boundary condition. The main objective of this article is to
investigate the stability and convergence of the difference scheme in the maximum norm. For this
purpose, we use the M-matrices theory. We describe some new approach for the estimation of the
error of solution and construct the majorant for it. Some conclusions and discussion of our approach
are presented.
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1 Introduction

In this paper, we solve the following nonlinear parabolic equation with nonlocal boundary
condition using finite difference method:

Bu

Bt
“
B2u

Bx2
´ fpuq ` ppx, tq, x P p0, 1q, t P p0, T s, (1)

upx, 0q “ ϕpxq, x P r0, 1s, (2)

up0, tq “ 0, γ
Bup0, tq

Bx
“
Bup1, tq

Bx
, γ P p0, 1q, t P p0, T s. (3)

The main objective is to investigate the stability and convergence of the difference
scheme in the maximum norm, which is defined for any vector V “ tViu, i “ 1, N , by
the formula

}V} “ max
1ďiďN

|Vi|.

Investigation of parabolic equations with nonlocal condition of type (3) has started in
the 1970s (see e.g. [13, 14]) when the new models for nonlocal problems with nonlocal
conditions of various types had been massively created. Boundary value problems for
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parabolic equations with nonlocal conditions of type (3) arise, for example, in exploring
diffusion of particles in turbulent plasma, as well as in investigation of heat conduction in
a thin heated rod when the flow change law is specified at the ends of the rod [13].

The initial research results for the linear parabolic equation with nonlocal condi-
tion (3) were associated with the stability and convergence of the difference scheme in the
maximum norm in the case of γ “ 1 [15, 16]. This research area of nonlocal problems,
however, was not developed. Later, stability of finite difference schemes for parabolic
equations with nonlocal condition of type (3) was investigated in other more complex
norms. These specific norms comply with specific properties of difference operators with
nonlocal conditions. In article [11] the following norm is defined:

}u}D “ pDu, uq
1{2, (4)

where D “ pMM˚q´1 is the positive definite matrix, and M is the matrix formed by the
eigenvectors (and, possibly, adjoint vectors) of difference problem.

The stability of parabolic equations with nonlocal condition of type (3) using energy
norm (4) was investigated in [9, 10, 24]. The stability of finite difference schemes for
parabolic and hyperbolic equations with integral boundary conditions in the norm }u}D
is widely investigated in [18, 20, 23, 25]. The convergence of finite difference method for
Poisson equation with nonlocal condition of (3) type is proved in [6, 30].

M-matrices theory is started to use for theoretical investigation and solving of prob-
lems with nonlocal conditions for the last few years. This approach is used to prove the
convergence of iterative methods for the systems of nonlinear difference equations [4,22,
28], also to prove stability of difference schemes in the norm }u}D [19,24]. Stability and
convergence in the maximum norm of finite difference schemes for differential equation
with integral boundary condition using M-matrices theory are proved in [5, 26].

In this article, we use the M-matrices theory for the system of difference equations
approximating differential problem (1)–(3).

The structure of the paper is following. The difference problem is formulated and the
structure of error of discrete approximation is considered in Section 2. The connection
between difference problem and M-matrices is briefly described in Section 3. Next, the
main result of this paper about convergence and stability of difference scheme in the
maximum norm is investigated in Sections 4 and 5. Comments and generalizations are
presented in Section 6.

2 Difference problem and approximation error

We solve differential problem (1)–(3) using finite difference method. We assume that the
solution upx, tq of (1)–(3) exists, is unique, and the derivatives Bku{Bxk, k “ 1, 4, and
Blu{Btl, l “ 1, 2, are continuous and bounded. We define

max

ˇ

ˇ

ˇ

ˇ

Bku

Bxk

ˇ

ˇ

ˇ

ˇ

ďMk, k “ 3, 4; max

ˇ

ˇ

ˇ

ˇ

B2u

Bt2

ˇ

ˇ

ˇ

ˇ

ď C2.

Also, we suppose the following assumption is valid for function fpuq,
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Hypothesis 1. Bf{Bu ě 0 for all values of px, tq P r0, 1s ˆ r0, T s and upx, tq.

Remark 1. Hypothesis 1 is inherent to the variety of convection-reaction-diffusion math-
ematical models. For example, the source function fpSq for some processes in bioreactors
has the following form [17]:

fpSq “
VmaxS

Ka ` S
,

where Spx, tq is the product, Vmax and Ka are nonnegative constants (for more details,
see also [27]).

Let U be the finite difference approximation of u. We denote

Uni “ U
`

xi, t
n
˘

,

where xi “ ih, i “ 0, N , h “ 1{N ; tn “ nτ , n “ 0,M , τ “ T {M ; N,M P Z.
We also denote

BxU
n
i “

Uni`1 ´ U
n
i

h
, B2xU

n
i “

Uni´1 ´ 2Uni ` U
n
i`1

h2
,

B
sxU

n
i “

Uni ´ U
n
i´1

h
, B

stU
n
i “

Uni ´ U
n´1
i

τ
.

We approximate equation (1) by difference one using the backward Euler method

B
stU

n
i “ B

2
xU

n
i ´ f

n
i

`

Uni
˘

` pni , i “ 1, N ´ 1. (5)

The approximation error is

riph, τq “ R1,iphq `R2,ipτq, i “ 1, N ´ 1, (6)

where
ˇ

ˇR
phq
1,i

ˇ

ˇ ď
h2M4

12
,

ˇ

ˇR
pτq
2,i

ˇ

ˇ ď
τC2

2
. (7)

To approximate nonlocal condition (3) with accuracyOph2q, we rewrite it in the following
form:

γ

ˆ

Bxu
n
0 ´

h

2

B2un0
Bx2

´
h2

6

B3run0
Bx3

˙

“ B
sxU

n
N `

h

2

B2unN
Bx2

´
h2

6

B3runN
Bx3

.

Assume that differential equation (1) is defined not only in the interval x P p0, 1q, but also
on the boundaries x “ 0 and x “ 1. Now, substitute into latter equality expressions of
B2un0 {Bx

2 and B2unN{Bx
2 from (1). Using BUn0 {Bt and BUnN{Bt approximations of order

Opτ2q, after elementary rearrangements, we have

γ

ˆ

Bxu
n
0 ´

h

2
fn0 pu

n
0 q `

h

2
pn0

˙

“ B
sxu
n
N `

h

2

`

B
stu
n
N ` f

n
N

`

unN
˘

´ pnN ` rN ph, τq
˘

, (8)
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where
rN “ R1,N phq `R2,N pτq, (9)

ˇ

ˇR1,N phq
ˇ

ˇ ď
hpγ ` 1qM3

3
,

ˇ

ˇR2,N pτq
ˇ

ˇ ď
τpγ ` 1qC2

2
. (10)

Excluding approximation error terms from equality (8), we get the equation, which ap-
proximates nonlocal condition (3) with accuracy |rnph, τq| “ Oph2 ` hτq. We rewrite
this equation in the following form:

B
stU

n
N “

2

h

`

γBxU
n
0 ´ BsxU

n
N

˘

´ γfn0
`

Un0
˘

´ fnN pU
n
N q ` γp

n
0 ` p

n
N . (11)

Remark 2. Difference equation (11) approximating nonlocal condition (3) in the case
fpuq “ 0 and ppt, xq “ 0 is usually provided without derivations and comments [9, 11].
We notice that in process of reworking equation (8) into form (11), we divided terms by h.
Therefore, the difference equation (11) differs from differential one by Oph` τq.

We complement the system of difference equations (5), (11) by following equations:

Un0 “ 0, n ě 0; U0
i “ ϕi, i “ 0, N.

As a result, we get the system of difference equations approximating problem (1)–(3)

B
stU

n
i “ B

2
xU

n
i ´ f

n
i

`

Uni
˘

` pni , i “ 1, N ´ 1,

B
stU

n
N “

2

h

`

γBxU
n
0 ´ BsxU

n
N

˘

´ γfn0
`

Un0
˘

´ fnN
`

UnN
˘

` γpn0 ` p
n
N ,

Un0 “ 0, U0
i “ ϕi, i “ 0, N.

(12)

3 M-matrices and systems of difference equations

We investigate the system of difference equations (12) using theory of M-matrices. We
provide the definition and some properties of M-matrices for this purpose [1, 29].

We use the notation A ą 0 (A ě 0) if akl ą 0 (akl ě 0) for all k, l. Also, A ă B
(A ď B) if akl ă bkl (akl ď bkl). Similar notation is used for vectors. There exist
a couple of equivalent definitions of M-matrices. We provide one that, in our opinion,
corresponds to the specifics of systems of difference equations.

Definition 1. A square matrix with real elements A “ taklu, k, l “ 1, 2, . . . ,m, is
called an M-matrix if akl ď 0 when k ‰ l and the inverse A´1, whose all elements are
nonnegative (A´1 ě 0), exists.

It follows from the definition that akk ą 0.
We point out several typical properties of the M-matrices that are used to investigate

system (12).

Proposition 1. If A1 is an M-matrix and A2 ě A1 and, additionally, all nondiagonal
elements of the matrix A2 are nonpositive, then A2 is also an M-matrix and A´1

2 ď A´1
1 .
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Proposition 2. If akl ď 0 when k ‰ l, then two next statements are equivalent:

(i) The matrix A´1 exists, and A´1 ě 0;
(ii) The real parts of each eigenvalue of A are positive: ReλpAq ą 0.

Now we start to investigate the system of difference equations (12). We define

zni “ uni ´ U
n
i ,

where Uni is the solution of difference problem (12), uni “ upxi, t
nq is exact solution

of differential problem (1)–(3). Using system (12) and expressions of approximation
errors (6), (9), we get

B
stz
n
i “ B

2
xz
n
i ´ d

n
i z
n
i ` riph, τq, i “ 1, N ´ 1,

B
stz
n
N “

2

h

`

γBxz
n
0 ´ Bsxz

n
N

˘

´ dnNz
n
N ` rN ph, τq,

zn0 “ 0, z0i “ 0,

(13)

where dni “ Bfpruiq{Bu, i “ 1, N . System (13) is two-layered difference scheme. We
write down this scheme in the matrix form

pA` τDnqz
n “ Bzn´1 ` gn, (14)

where A “ I ` τΛ, B “ I, I is the identity matrix, gn “ τt “ pτr1, τr2, . . . , τrN q
ᵀ,

Dn is the diagonal matrix with elements dni ,

Λ “
1

h2

¨

˚

˚

˚

˚

˚

˝

2 ´1
´1 2 ´1

. . . . . . . . .
´1 2 ´1

´2γ 0 . . . 0 ´2 2

˛

‹

‹

‹

‹

‹

‚

.

Eigenvalue problem for the matrix Λ

ΛV “ λV

is equivalent to difference eigenvalue problem

B2xVi ` λVi “ 0, i “ 1, N ´ 1,

2

h

`

BxV0 ´ BsxVN
˘

` λVN “ 0, V0 “ 0.
(15)

All eigenvalues of problem (15) are positive [12]:

0 ă λ0 ă λ1 ă ¨ ¨ ¨ ă λ2k´1 ă λ2k ă ¨ ¨ ¨ ă λN´1 ă
4

h2
,

λ0 “
4

h2
sin2

ˆ

1

2
ψh

˙

, λ2k´1 “
4

h2
sin2

ˆ̂

πk ´
1

2
ψ

˙

h

˙

,

λ2k “
4

h2
sin2

ˆ̂

πk `
1

2
ψ

˙

h

˙

, k “ 1,m,
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where ψ “ arccos γ, 0 ă ψ ă π, m “ pN ´ 1q{2 if N is odd, and m “ N{2 if N is
even.

Lemma 1. If γ P p0, 1q, then the matrix A “ I` τΛ is the M -matrix.

Proof. It follows from the definition of the matrix A that all diagonal elements are posi-
tive and nondiagonal are nonnegative. Since all eigenvalues of the matrix A are positive,
then all listed properties are suffiecient for the matrix A to be the M-matrix [29].

We use the result, proved in [5], to investigate stability and convergence of difference
system (12).

Lemma 2. (See [5].) Let V n and Wn be solutions of difference equations

pA`DnqV
n “ BV n´1 ` fn, n ě 1,

AWn “ BWn´1 ` gn, n ě 1,

respectively, where Dn “ tdnkku is a diagonal matrix, Dn ě 0. If A is an M-matrix,
B ě 0, W 0 ě 0, gn ě 0 as n ě 1, and |V 0| ďW 0, |fn| ď gn, then

ˇ

ˇV n
ˇ

ˇ ďWn, n ě 1.

Certain analogue of Lemma 2 for elliptic equation is known for a long time [8] and is
usually called comparison theorem [21]. FunctionW pxq is called majorant or comparison
function. One important feature of the comparison theorem is it is usually formulated as
one of the most important corollaries of maximum principle. It means that comparison
theorem is related to those systems of difference equations, which matrix is diagonally
dominant. In this article, diagonal dominance of a matrix is not mandatory property for the
selected investigation methodology of stability and convergence of systems of difference
equations.

Notice that while using Lemma 2 for investigation of stability and convergence of
specific difference scheme, it is not necessary to convert this scheme into (14) form, which
is used in the proof of Lemma 2. In certain cases, it is easier to reformulate Lemma 2 than
modify difference scheme.

So, now we rewrite difference scheme (13) in the matrix form slightly different
from (14)

zn ´ zn´1

τ
“ ´Λzn ´Dnz

n ` rn, (16)

where zn, rn are N th order vectors, Λ is the same matrix as in system (14). We reformu-
late Lemma 2 for this exact difference scheme.

Lemma 2'. Let zn be solution of (16) and Wn solution of equations

Wn ´Wn´1

τ
“ ´ΛWn ` gn. (17)

Let W 0 ě 0, gn ě 0 as n ě 1. Dn “ tdnkku is the diagonal matrix, Dn ě 0. If
|z0| ďW 0, |rn| ď gn, then |zn| ďWn, n ě 1.

https://www.journals.vu.lt/nonlinear-analysis
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4 Stability of difference scheme

Now, we investigate stability of difference scheme using statement of Lemma 2.
We use general stability concept since the system of difference equations is a nonlinear

problem. Indeed, assume two problems. One problem is system (12) with functions ppxq
and ϕpxq. We denote the solution of this problem Uni . And other problem is the same
system (12) with perturbed functions rppxq and rϕpxq. The solution of this problem is
denoted as rUni .

Definition 2. Difference scheme (12) is stable if for every ε ą 0, there exists δpεq ą 0,
not dependent on h and τ , such that

ˇ

ˇUni ´
rUni

ˇ

ˇ ď ε

if |pni ´ rpni | ď δ, |ϕi ´ rϕi| ď δ.

Note that such defined stability definition is usually called stability according to initial
conditions and right-hand side stability.

We denote

rzni “ Uni ´
rUni , δ0i “ ϕi ´ rϕi, δni “ pni ´ rpni .

Similarly to derivation of system (13), we have

B
strz
n
i “ B

2
xrz
n
i ´ d

n
i rz
n
i ` δ

n
i , i “ 1, N ´ 1,

B
strz
n
N “

2

h

`

γBxrz
n
0 ´ Bsxrz

n
N

˘

´ dnNrz
n
N ` δ

n
N ,

rzn0 “ 0, rz0i “ δ0i .

(18)

This system could also be rewritten in a form similar to (16)

rzn ´ rzn´1

τ
“ ´Λrzn ´Dnrz

n ` δn,

rzn0 “ 0, rz0 “ δ0.

(19)

Theorem 1. The difference scheme (12) is stable in the maximum norm if γ P p0, 1q.

Proof. We define function

W px, tq “
δ

2

ˆ

2´ x2 `
2x

1´ γ

˙

`
δt

2
, (20)

where δ is, so far, not defined number δ ą 0.
The proof consists of two parts. In the first part, we explain how to choose δ “ δpεq

such that
W px, tq ď ε

on all domain x P r0, 1s, t P r0, T s. In the second part, we prove that function W px, tq is
majorant for solution’s error rzni satisfying system (18).

Nonlinear Anal. Model. Control, 28(2):365–376, 2023
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(i) As γ P p0, 1q, then 2{p1 ´ γq ą 2. Therefore, W px, tq on the interval x P r0, 1s
is positive and monotonically increasing function of x. The same property for W px, tq is
also valid on the interval t P r0, T s. Hence,

W px, tq ď
δ

2

ˆ

1`
2

1´ γ
` T

˙

.

Consequently, the inequality W px, tq ď ε on the domain x P r0, 1s, t P r0, T s is valid if

δ ď δ0 “
2ε

1` 2
1´γ ` T

. (21)

(ii) Now, we construct the system of difference equations (17), whose solution is
W px, tq. W px, tq is defined by formula (20). To this end, we find gni values usingW px, tq
expression

gni “
3

2
δ ą δ, i “ 2, N ´ 1,

gn1 “
3

2
δ `

Wn
0

h2
ą δ, gnN “

3

2
δ ` γδ ą δ,

(22)

and also

gn0 “Wn
0 ą 0,

g0i “W 0
i “

δ

2

ˆ

2´ x2i `
2xi
1´ γ

˙

ě δ.
(23)

Next, we take two systems: system (19) for function rzni and system (17) for function
Wn
i . Values of gni are defined by formulas (22), (23).

Suppose δ is fixed in system (19) and satisfies inequality (21). Also, suppose that for
δni and δ0i in system (17), the following equalities are valid:

ˇ

ˇδni
ˇ

ˇ ď δ, i “ 1, N ;
ˇ

ˇδ0i
ˇ

ˇ ď δ, i “ 0, N.

Then, all assumptions of Lemma 2' for the systems of difference equations (17), (19) are
valid. Therefore,

ˇ

ˇ

rzni
ˇ

ˇ ďWn
i

for all i and n.
Now, combining both proof parts, we have that for every ε ą 0, the following

inequality is valid:
ˇ

ˇ

rzni
ˇ

ˇ ďWn
i ď ε

if
ˇ

ˇδni
ˇ

ˇ ď δ ď δ0 “
2ε

1` 2
1´γ ` T

, i “ 0, N, n ě 0.

Hence, according to Definition 2, it follows that difference scheme (12) is stable.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Stability of difference scheme for nonlinear parabolic equation with nonlocal condition 373

5 Error estimation and convergence of difference scheme

Now, we investigate the convergence of difference scheme (12) using the same Lemma 2'.
We consider system (16) for the error estimate zni “ uni ´ U

n
i , where uni and Uni are

solutions of differential and difference problems, accordingly. In accordance with error
estimates (7) and (10), we have

|ri| ď
h2M4

12
`
τC2

2
, i “ 1, N ´ 1,

|rN | ď
hM3pγ ` 1q

3
`
τC2pγ ` 1q

2
.

(24)

According to received estimates (24), we define majorant W px, tq

W px, tq “
h2Mpγ ` 1q

6

ˆ

2´
x2

2
`

2x

1´ γ

˙

`
τC2pγ ` 1qt

2
, (25)

where M “ maxpM3,M4q.
Now, define coefficients gni in system (17) so that the solution would be Wn

i defined
by formula (25):

gni “
τC2pγ ` 1q

2
`
h2Mpγ ` 1q

6
, i “ 2, N ´ 1,

gn1 “
τC2pγ ` 1q

2
`
h2Mpγ ` 1q

6
`
Wn

0

h2
,

gnN “
τC2pγ ` 1q

2
`
h2Mpγ ` 1q2

6
`
hMpγ ` 1q

3
.

(26)

Notice that Wn
i ą 0 for all i and n values.

Theorem 2. Let the following assumptions hold for the differential problem:

(i) γ P p0, 1q;
(ii) Bf{Bu ě 0 (Hypothesis 1);

(iii) The solution of differential problem is smooth enough (the error estimates (7) and
(10) are valid).

Then for the error estimate zni “ uni ´ U
n
i (here uni is solution of problem (1)–(3), Uni is

the solution of difference problem (12)), the following estimate is valid:
›

›zn
›

›

C
“ max

1ďiďN
|zi| ď C1h

2 ` C2τ, (27)

where constants C1 and C2 do not depend on h and τ .

Proof. We consider two already defined problems: system of equations (16) with un-
knowns zni and system (17) with unknowns Wn

i . For zni , estimates (24) are valid. For

Nonlinear Anal. Model. Control, 28(2):365–376, 2023
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system (17), values of gni are defined by formulas (26). Assumptions of Lemma 2' are
valid for both systems. Using these assumptions, we have

ˇ

ˇzni
ˇ

ˇ ďWn
i

for all i and n.
Since function αpxq “ 2´x2{2`2x{p1´ γq is positive and monotonically increasing

on the interval x P r0, 1s, so

Wn
i ď

h2Mpγ ` 1q

6

ˆ

1`
2

1´ γ

˙

`
τC2pγ ` 1qT

2
.

Consequently, the theorem is proved.

6 Comments and generalizations

In this article, we investigated the stability and convergence of the difference scheme
for one-dimensional nonlinear parabolic equation with nonlocal condition. The thorough
study of this problem for linear elliptic equations with Dirichlet boundary conditions has
started in 50–60’s [2, 7, 21] (and first time noticed in [8]). Particularly, in [7] a lot of
practical applications and comments on described methodology are given. It was noticed
that there is no universal algorithm for defining majorant for specific problem.

It is interesting to note that in all above cited monographs (as well as in most other
books), restrictions on the matrix of systems of difference equations AU “ f , A “ taiju,
i, j “ 1, n, are in fact the same

aii ą 0; aij ď 0, i ‰ j; aii ě
n
ÿ

j“1

|aij |, (28)

typical for the majority of simplest elliptical equations with Dirichlet boundary condi-
tions. These restrictions are sufficient for the system of difference equations to satisfy
the maximum principle. According to this principle, the solution Uij of the system of
difference equations can not reach the greatest positive and the smallest negative values
in the inner domain.

Comparison theorem directly follows from maximum principle. We formulated simi-
lar proposition in Lemma 2. However, this lemma is proved in [5] without using maximum
principle. The proof is based on the M-matrices theory. In other words, maximum prin-
ciple is not a necessary condition for the estimation of error using comparison theorem.
Therefore, third assumption of (28), namely, the diagonal dominance of the matrix is not
necessary.

Further, using Lemma 2 proof techniques, it follows that comparison is valid if the
matrix A of the system of difference equations has property A´1 ě 0. That is, if all
elements of the inverse matrix are nonnegative [5]. Matrices with this property are called
monotone (in the sense of Collatz [3, Chap. 3, Sect. 23]) [29].
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So, this paper is a first step to a new reseach methodology — applications of monotone
matrices for the differential equations with nonlocal conditions. The results of this paper
give some hope that the assumption aij ď 0, i ‰ j, is not the necessary condition for the
comparison theorem evaluation of the error.
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