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Abstract. This article studies the distributed optimization problem for multi-agent systems with
communication delays and external disturbances in a directed network. Firstly, a distributed
optimization algorithm is proposed based on the internal model principle in which the internal
model term can effectively compensate for external environmental disturbances. Secondly, the
relationship between the optimal solution and the equilibrium point of the system is discussed
through the properties of the Laplacian matrix and graph theory. Some sufficient conditions are
derived by using the Lyapunov–Razumikhin theory, which ensures all agents asymptotically reach
the optimal value of the distributed optimization problem. Moreover, an aperiodic sampled-data
control protocol is proposed, which can be well transformed into the proposed time-varying delay
protocol and analyzed by using the Lyapunov–Razumikhin theory. Finally, an example is given to
verify the effectiveness of the results.

Keywords: distributed optimization, internal model principle, directed network, multi-agent
systems, Lyapunov–Razumikhin theory.

1 Introduction

During the last decade, the distributed optimization problem of multi-agent systems has
been widely studied due to its potential applications in sensor networks [1], resource
allocation over networks [5], economic dispatch [2], and so on. The core of the distributed
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optimization problem is to minimize the sum of the local objective functions of all agents
in a distributed way in which each agent only accesses its local cost function. The
distributed optimization problem, as contrasted with multi-agent system consensus [13,
18, 19], minimizes the optimization function while also forcing all agents to the same
state.

In the study of distributed optimization, how to design effective algorithms has be-
come a hot topic for various multi-agent systems. The existing distributed optimization
algorithms can be roughly divided into two categories: discrete-time algorithms [10, 12,
23] and continuous-time algorithms [4, 6, 9]. It is well recognized that the design of
the distributed optimization strategy for practical large-scale systems is apt to encounter
two main issues simultaneously. On the one hand, the communication delays will affect
the dynamics of the system and even destroy the stability due to the finite bandwidth of
the network. To solve the distributed optimization problem with communication delays,
some distributed algorithms were given in [21, 22]. In [21], the distributed optimization
is addressed based on a continuous-time multi-agent system in the presence of time-
varying communication delays by the Lyapunov stability theory. When the number of
agents is large, verifying the solvability of the linear matrix inequality (LMI) conditions
becomes difficult. Based on the Lyapunov–Razumikhin theorem, the authors propose
a distributed controller [22] that allows agents to achieve consensus while enduring in-
terconnection delays, avoiding the need to verify the LMI conditions, and reducing the
computation burden. On the other hand, external disturbances are also unavoidable in
many physical systems, which may degrade the performance of systems. In existing
works, the internal model principle can effectively restrain some uncertain disturbances
caused by the external environment. In [11], the heterogeneous linear multi-agent system
subject to external disturbances was investigated, and it was proved that the protocol
devised by the internal model principle can make all agents reach the optimal output.
Furthermore, there are some distributed optimization algorithms in the current studies.
For instance, motivated by the internal model idea, a distributed optimization protocol was
proposed for a class of nonlinear multi-agent systems with external disturbances in [16].
To solve distributed optimization for continuous-time multi-agent systems with unknown
frequency disturbances, a distributed optimization algorithm by using an adaptive internal
model approach was designed in [17].

It is not difficult to find that all the above works [11, 16, 17, 21, 22] are focused
only on one issue while ignoring the other. To the best of the authors’ knowledge, the
distributed optimization problem for multi-agent systems by simultaneously considering
the communication delays and disturbances was rarely studied. Although the distributed
optimal problem of the system with both communication delays and external disturbances
was investigated and some sufficient conditions in terms of LMIs were derived based on
the Lyapunov–Krasovskii functionals in [15], sufficient conditions are only applicable to
undirected networks, and it is difficult to verify the LMI conditions when the network
size is very large. Additionally, in some systems, delayed information is intentionally
used to ensure the system performance and simultaneously reduce input cost. Because of
this, it is crucial to implement consensus algorithms in multi-agent systems based on the
sampled-data control method. A typical example is the sampled-data system [3,14], where
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the sampled data are used during sampling intervals and updated at sampling instants.
Whereafter, the distributed consensus optimization problem of multi-agent systems with
delayed sampled-data is considered in [20].

Motivated by the aforementioned discussion, this paper concentrates on the distributed
optimization problem for multi-agent systems with both communication delays and ex-
ternal disturbances over a directed network. Based on the internal model principle, a new
kind of distributed optimization protocol is proposed, and the convergence of the protocol
is analyzed by using the Lyapunov–Razumikhin theory. The key contributions of this
paper are listed as follows:

1. Unlike the distributed continuous-time optimization algorithms in [21, 22] and
[11, 16, 17], which only consider communication delays or external disturbances.
We propose a new distributed optimal protocol for multi-agent systems with both
communication delays and external disturbances under a directed network in which
each agent only uses its information.

2. Compared with [15], this paper utilizes the Lyapunov–Razumikhin theory to ana-
lyze the optimization problem of multi-agent systems with communication
delays, which can enable the agents to achieve consensus and avoid verifying the
LMIs. In addition, the stability conditions are derived via the construct Lyapunov–
Razumikhin function, which can estimate the upper bound of communication
delays and can also clearly find the relationship among the parameters in the al-
gorithm.

3. In general, the distributed optimization problem with aperiodic sampling and exter-
nal disturbances can be transformed into one with communication delays. There-
fore, the protocol and theoretical method proposed in this paper can be extended to
the aperiodic sampling data systems.

The remaining sections are organized as follows. Some preliminaries and problem
statements are given in Section 2. In Section 3, the main results are detailed. An example is
given to illustrate the effectiveness of the results in Section 3. Section 5 gives a conclusion
to this paper.

Notations. Let N, R, and Rn denote the sets of natural numbers, real numbers, and
real vectors of dimension n, respectively. In ∈ Rn×n represents n × n identity matrix,
1n(or 0n) denotes an n-dimensional column vector whose all entries are 1 (or 0). For
a matrixA,AT is its transpose, λmin(A), and λmax(A) denote the smallest and the largest
eigenvalues of the matrix, respectively. For vectors x1, x2, . . . , xn, col(x1, x2, . . . , xn) =
[x1

T, x2
T, . . . , xn

T]T. Let ‖·‖ and ⊗ represent the Euclidean norm and the Kronecker
product, respectively. The gradient of f is denoted by∇f .

2 Preliminaries

2.1 Algebraic graph theory

Let G = (V, E ,A) represent a weighted digraph with the finite set of nodes V = {1, 2,
. . . , N}, edge set E ⊆ V × V , and weighted adjacency matrix A = [aij ] ∈ RN×N . Let
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Ni = {j ∈ V, (j, i) ∈ E} be the set of neighbors of node i, and the weighted adjacency
matrix A = [aij ] is defined as aii = 0, aij > 0 if (j, i) ∈ E and aij = 0 otherwise.
If
∑N
j=1 aij =

∑N
j=1 aji for all i ∈ V , then the digraph G is called weighted-balanced.

The digraph G is called strongly connected if there exists a directed path between any
different nodes. The Laplacian matrix of digraph G is L = [lij ] ∈ RN×N , which is
defined as lii =

∑N
j=1, j 6=i aij and lij = −aij for i 6= j.

Lemma 1. (See [7].) Let L be the Laplacian matrix of a directed graph G, then it has
at least one zero eigenvalues, and all the nonzero eigenvalues have positive real parts.
In particular, if G is strongly connected, L has a simple zero eigenvalue with 1N =
[1, 1, . . . , 1]T ∈ RN as its right eigenvector.

2.2 Definitions and lemmas

Consider the following time-delay system:

ẋ(t) = f(t, xt), t > t0,

x(θ) = Π(θ), θ ∈ [−τ, t0],
(1)

where xt(θ) = x(t + θ) and f(t, 0) = 0. In the sequel, suppose that t0 = 0. Let
C([−τ, 0],Rn) be a Banach space of continuous function Π : [−τ, 0] → Rn with the
norm ‖Π‖ = sup−τ6θ60 ‖Π(θ)‖.

Lemma 2. (See [8].) Suppose that the function f : R × C([−τ, 0],Rn) → Rn is con-
tinuous, and f maps bounded sets of C([−τ, 0],Rn) to bounded sets of Rn. Let Π1(t),
Π2(t), and Π3(t) be continuous, nonnegative, nondecreasing functions with Π1(t) > 0,
Π2(t) > 0, Π3(t) > 0 for t > 0 andΠ1(0) = Π2(0) = 0. There is a continuous function
W (t, x) such that

Π1

(
‖x‖
)
6W (t, x) 6 Π2

(
‖x‖
)
, t ∈ R, x ∈ Rn.

In addition, if there exists a continuous nondecreasing function Π(t) with Π(t) > t,
t > 0, and

W
(
t+ θ, x(t+ θ)

)
< Π

(
W (t, x)

)
, θ ∈ [−τ, 0], (2)

such that

Ẇ (t, x)|(1) 6 −Π3(t),

then the solution x = 0 of system (1) is uniformly asymptotically stable.

Lemma 3. (See [15].) For a positive matrix M ∈ RN×N and for all a, b ∈ RN , it has

2aTb 6 aTM−1a+ bTMb.

In particular, when M ∈ RN×N is an identity matrix, it yields 2aTb 6 aTa+ bTb.
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2.3 Problem formulation

We consider a multi-agent system consisting of N agents, and the interaction topology is
described by a digraph G. The dynamic of the ith agent is described by

ẋi(t) = ui(t) + di(t), i = 1, 2, . . . , N, (3)

where xi(t), ui(t), di(t) ∈ Rn are the state, control input, and external disturbance of
agent i, respectively. Suppose that di(t) is governed by an exosystem

v̇i(t) = Bvi(t), di(t) = Cvi(t), (4)

where vi(t) ∈ Rs is the state of the exosystem state. B ∈ Rs×s and C ∈ Rn×s are the
constant matrices with appropriate dimensions. Suppose that all eigenvalues ofB ∈ Rs×s
are distinct lying on the imaginary axis, which means the disturbance is bounded.

The optimization problem of multi-agent systems (3) is defined as

minimize F
(
x(t)

)
=

N∑
i=1

fi(xi(t)), xi(t) ∈ Rn,

subject to (L⊗ In)x(t) = 0Nn,

(5)

where x(t) = col(x1(t), x2(t), . . . , xN (t)) ∈ RNn, L is the Laplacian matrix of the
communication topology G. In this paper, our goal is to design a distributed optimization
algorithm such that all agents’ states reach consensus and converge to the optimal solution
of the optimization problem (5) via local communication.

Assumption 1. The digraph G is strongly connected and weighted-balanced.

Remark 1. From Assumption 1 zero is a simple eigenvalue of matrix L, and 1T
NL = 0.

Moreover, there exists a matrix Q2 ∈ RN×(N−1) with

1T
NQ2 = 0, QT

2Q2 = IN−1, Q2Q
T
2 = IN −

1

N
1N1T

N

such that the matrix QT
2 LQ2 = J in which the real parts of all eigenvalues of J are

positive, and J + JT is a positive definite matrix.

Assumption 2. For each agent i ∈ V , the function fi is differentiable, and its gradient
satisfies li-Lipschitz (li > 0) condition in Rn, i.e.,∥∥fi(x)− fi(y)

∥∥ 6 li‖x− y‖ ∀x, y ∈ Rn.

Assumption 3. For each agent i ∈ V , fi is mi-strongly convex (mi > 0) that means

(x− y)T
(
∇fi(x)−∇fi(y)

)
> mi‖x− y‖2 ∀x, y ∈ Rn, x 6= y.

Remark 2. Based on Assumption 3, the global optimization function F (·) is strongly
convex due to the strong convexity of local cost function fi(·). Therefore, Assumption 3
guarantees the uniqueness of the optimal solution to (5).
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3 Main results

Due to the existence of disturbance di(t), some existing optimization algorithms are
not applicable. Before designing the distributed optimization algorithm, we first give the
following transformation.

Let

p(λ) = λs + as−1λ
s−1 + · · ·+ a1λ+ a0

be the minimal zeroing polynomial of the matrixB and qi(t)=(qi1(t), qi2(t), . . . , qin(t))T

with qij(t) = (dij(t),ddij(t)/dt, . . . ,d
s−1dij(t)/dt

s−1)T, j = 1, 2, . . . , n. It can be
seen that qij(t) satisfies q̇ij(t) = Φqij(t), dij(t) = Ψqij(t), where

Φ =

[
0 Is−1
−a0 −a1 − a2 · · · − as−1

]
, Ψ = [1, 0, . . . , 0︸ ︷︷ ︸

s−1

].

Then the disturbance di(t) can be rewritten as

q̇i(t) = (In ⊗ Φ)qi(t), di(t) = (In ⊗ Ψ)qi(t). (6)

Since the pair (Φ, Ψ) is observable, so there exists a matrix P such that H = Φ+PΨ
is Hurwitz stable.

3.1 Optimization protocol with communication delays

From above transformation the following internal-model-based optimization protocol is
proposed:

ẇi(t) = k
∑
j∈Ni

aij
(
xi
(
t− τ(t)

)
− xj

(
t− τ(t)

))
,

η̇i(t) = (In ⊗H)ηi(t) + (In ⊗ P )ui(t),

ui(t) = −α∇fi
(
xi(t)

)
− wi(t)− (In ⊗ Ψ)ηi(t)

− β
∑
j∈Ni

(
xi(t− τ(t)

)
− xj

(
t− τ(t)

))
,

(7)

where k, α, β are positive parameters,wi(t) ∈ Rn is an auxiliary state of agent i, τ(t) > 0
is the communication delay.

Remark 3. A new distributed optimization algorithm ui(t) is proposed with external
disturbances and communication delays. Obviously, the proposed optimization protocol
consists of four partsṪhe gradient-based term −α∇fi(xi(t)) is used to drive the agents
to the optimization point. The term wi(t) is introduced to eliminate error caused by the
gradient differences. The internal model term −(In ⊗ Ψ)ηi(t) is employed to compen-
sate the external disturbances asymptotically, and the term −β

∑
j∈Ni

(xi(t − τ(t)) −
xj(t− τ(t)) can make all agents achieve consensus.
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Substituting equations (6) and (7) into (3), the following dynamic system is given:

ẋi(t) = −α∇fi
(
xi(t)

)
− wi(t) + (In ⊗ Ψ)

(
qi(t)− ηi(t)

)
− β

∑
j∈Ni

aij
(
xi
(
t− τ(t)

)
− xj

(
t− τ(t)

))
,

ẇi(t) = k
∑
j∈Ni

aij
(
xi
(
t− τ(t)

)
− xj

(
t− τ(t)

))
,

η̇i(t) = (In ⊗H)ηi(t) + (In ⊗ P )

{
−α∇fi

(
xi(t)

)
− wi(t)− (In ⊗ Ψ)ηi(t)

− β
∑
j∈Ni

aij
(
xi(t− τ(t)

)
− xj

(
t− τ(t)

))}
.

(8)

Let γi(t) = ηi(t)− qi(t), then system (8) is rewritten as follows:

ẋi(t) = −α∇fi
(
xi(t)

)
− wi(t)− (In ⊗ Ψ)γi(t)

− β
∑
j∈Ni

aij
(
xi
(
t− τ(t)

)
− xj

(
t− τ(t)

))
,

ẇi(t) = k
∑
j∈Ni

aij
(
xi
(
t− τ(t)

)
− xj

(
t− τ(t)

))
,

γ̇i(t) = (In ⊗H)γi(t) + (In ⊗ P )

{
−α∇fi

(
xi(t)

)
− wi(t)− (In ⊗ Ψ)γi(t)

− β
∑
j∈Ni

aij
(
xi
(
t− τ(t)

)
− xj

(
t− τ(t)

))}
.

(9)

Let w(t) = col(w1(t), w2(t), . . . , wN (t)), γ(t) = col(γ1(t), γ2(t), . . . , γN (t)), and
∇f(x(t)) = col(∇f1(x1(t)),∇f2(x2(t)), . . . ,∇fN (xN (t))). Based on the definition of
Laplacian matrix L, system (9) can be expressed in the following compact form:

ẋ(t) = −α∇f
(
x(t)

)
− w(t)− (INn ⊗ Ψ)γ(t)− β(L⊗ In)x

(
t− τ(t)

)
,

ẇ(t) = k(L⊗ In)x
(
t− τ(t)

)
,

γ̇(t) = (INn ⊗H)γ(t) + (INn ⊗ P )
{
−α∇f

(
x(t)

)
− w(t)

− (INn ⊗ Ψ)γ(t)− β(L⊗ In)x
(
t− τ(t)

)}
.

(10)

The following theorem indicates the relationship between the equilibrium point of
system (10) and the optimal solution of optimization problem (5).

Theorem 1. Suppose that Assumptions 1–3 are satisfied, then the following two state-
ments hold:

(i) Ω(ε) = {(x,w, γ)|(1N ⊗ In)Tw = ε} is a positive invariant set for any ε ∈ Rn.
(ii) If (x∗,−α∇f̃(x∗), γ∗) ∈ Ω(0n) is an equilibrium point of system (10), then x∗

is an optimal solution of (5).
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Proof. (i) Since the directed graph G is weighted-balanced, we have

(1N ⊗ In)T(L⊗ In) = (0N ⊗ In)T.

Therefore,

(1N ⊗ In)Tẇ(t) = k(1N ⊗ In)T(L⊗ In)x
(
t− τ(t)

)
≡ 0n,

which implies (1N ⊗ In)Tw(t) is a constant. That means the set Ω(ε) is invariant for
any ε. Furthermore,

(1N ⊗ In)Tw(t) = (1N ⊗ In)Tw(0),

which implies ε = (1N ⊗ In)Tw(0).
(ii) Let (x∗,−α∇f̃(x∗), γ∗) ∈ Ω(0n) be the equilibrium point of system (10), then

we have
−α∇f(x∗)− w∗ − (INn ⊗ Ψ)γ∗ − β(L⊗ In)x∗ = 0,

k(L⊗ In)x∗ = 0,

(INn ⊗H)γ∗ + (INn ⊗ P )
{
−α∇f(x∗)

− w∗ − (INn ⊗ Ψ)γ∗ − β(L⊗ In)x∗
}

= 0.

(11)

From the first equation and the third equation in (11) it yields (INn ⊗ H)γ∗ = 0,
which implies γ∗ = 0. According to Lemma 1, one has

(1N ⊗ In)T(L⊗ In) = 1T
NL⊗ In = 0.

Since the directed graph G is strongly connected, it has x∗ = 1N ⊗ z, where z ∈ Rn
is a constant vector. Based on γ∗ = 0 and (x∗,−α∇f(x∗), γ∗) ∈ Ω(0n), so multi-
plying from the left by (1N⊗In)T the first equation in (11), one can obtain α(1N⊗In)T×
∇f(z) = 0. Thus, the optimal condition ∇F (z) = 0 is satisfied, which implies that x∗

is the optional solution of (5). Substituting x∗ into the first equation in (11), one obtains
w∗ = −α∇f(x∗).

Remark 4. We can see that the optimal solution of (5) is located in the invariant setΩ(0n)
from Theorem 1, so the initial value w(0) ∈ Ω(0n) is a necessary condition for solving
the optimization problem. If the initial value is not in Ω(0n), i.e., (1N ⊗ In)Tw(0) 6=
0n, then α(1N ⊗ In)T∇f(z) 6= 0n, which implies that the optimal solution cannot be
obtained.

Theorem 2. Suppose that Assumptions 1–3 hold, then all states of agents in the multi-
agent system (3) can reach consensus and converge to the optimal solution of the optimiza-
tion problem (5) under the protocol (7) for any initial values x(0), w(0), γ(0) satisfying
(1N ⊗ In)Tw(0) = 0 and τ(t) ∈ [0, τ̄) if the following conditions are satisfied:

4σαm̌− a22σ − 4α2 l̂2 − 4σ − 8a22 − a3a4 − λ
′ > 0,

β >
2

λ
+ k, (12)

τ̄ <
λ′

2σ(β − k)[(β + k)λ̄+ β3λ̄′] + pζ(µ+ 1)
, (13)
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where σ > 0, ζ = 3σ + a3λ + (4σδ + 2δa3λ)(α2 l̂2 + a21 + a22), µ = λmax(D1),
λ = λmax(U), λ = λmin(JT + J), λ̄ = λmax(JJT), λ′ = λmin(Λ − 2I2N−2), λ̄′ =
λmax(J2(J2)T), and

Λ =

(
2(β − k)(JT + J) 2IN−1

2IN−1 4IN−1

)
⊗ In.

Proof. Let x̄(t) = x(t)−x∗, w̄(t) = w(t)−w∗, and γ̄(t) = γ(t)− (INn⊗P )x̄(t), then
system (10) can be transformed into the following form:

˙̄x(t) = −αh
(
x̄(t)

)
− w̄(t)− (INn ⊗ Ψ)

(
γ̄(t) + (INn ⊗ P )x̄(t)

)
− β(L⊗ In)x̄

(
t− τ(t)

)
,

˙̄w(t) = k(L⊗ In)x̄
(
t− τ(t)

)
,

˙̄γ(t) = (INn ⊗H)γ̄(t) + (INn ⊗HP )x̄(t),

where h(x̄(t)) = ∇f(x(t) + x∗)−∇f(x∗).
Let e(t) = (QT ⊗ In)x̄(t), ξ(t) = (QT ⊗ In)w̄(t), Q = [1N/

√
N,Q2]. Denote

e(t) = col(e1(t), e2(t)) with eT1 (t) ∈ Rn, eT2 (t) ∈ R(N−1)n, ξ(t) = col(ξ1(t), ξ2(t))
with ξT1 (t) ∈ Rn and ξT2 (t) ∈ R(N−1)n. By the structure of Q and Remark 1 the above
system can be transformed as follows:

ė1(t) = −α
(

1T
N√
N
⊗ In

)
h
(
x̄(t)

)
−
(

1T
N√
N
⊗ In

)
Γ (t),

ė2(t) = −α
(
QT

2 ⊗ In
)
h
(
x̄(t)

)
− ξ2(t)− β(J ⊗ In)e2

(
t− τ(t)

)
−
(
QT

2 ⊗ In
)
Γ (t),

ξ̇1(t) = 0, ξ̇2(t) = k(J ⊗ In)e2
(
t− τ(t)

)
,

˙̄γ(t) = (INn ⊗H)γ̄(t) + (INn ⊗HP )x̄(t),

(14)

where Γ (t) = (INn⊗Ψ)(γ̄(t) + (INn⊗P )(QT⊗ In)x̄(t)). According to the properties
of matrix norm, there is ‖Γ (t)‖ 6 a1‖γ̄(t)‖+a2‖x̄(t)‖ with a1 = ‖Ψ‖ and a2 = ‖ΨP‖.

There exists a positive definite matrix U such that UHT +HTU + 2Is 6 0 due to H
is Hurwitz stable. Let ε(t) = col(e(t), ξ(t), γ̄(t)) = col(e1(t), e2(t), ξ1(t), ξ2(t), γ̄(t)).
We construct the Lyapunov–Razumikhin function as

V
(
ε(t)

)
= εT(t)(D ⊗ In)ε(t)

with

D =


2σ 0 2 0 0
0 2σIN−1 0 2IN−1 0

2 0 2β
k 0 0

0 2IN−1 0 2β
k IN−1 0

0 0 0 0 a3(IN ⊗ U)

 ,

where σ > 1, and there is a fact that D is positive definite since β > k.
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The derivation of V (ε(t)) along with system (14) is given by

V̇
(
ε(t)

)
= 2εT(t)(D ⊗ In)ε̇(t)

= 4
(
σe1(t) + ξ1(t)

)T
ė1(t) + 4

(
σe2(t) + ξ2(t)

)T
ė2(t)

+ 4

(
e1(t) +

β

k
ξ1(t)

)T

ξ̇1(t) + 4

(
e2(t) +

β

k
ξ2(t)

)T

ξ̇2(t)

+ a3γ̄(t)
(
(INn ⊗ U) + (INn ⊗ UT)

)
˙̄γ(t).

Due to ξ̇1(t) = 0 and w(0) ∈ Ω(0), one has ξ1(t) = 0 for all t > 0, then

V̇
(
ε(t)

)
= a3γ̄(t)

(
(INn ⊗ U) + (INn ⊗ UT)

)
˙̄γ(t)

+ 4σeT1 (t)ė1(t) + 2εT2 (t)D1ε̇2(t), (15)

where ε2(t) = col(e2(t), ξ2(t)),

D1 =

(
2σIN−1 2IN−1
2IN−1 (2β/k)IN−1

)
⊗ In.

From the second and fourth equations of system (14) we have

ε̇2(t) = Eε2(t) + Fε2
(
t− τ(t)

)
+O(t), (16)

where

O(t) =

(
−α(QT

2 ⊗ In)h(x̄(t))− (QT
2 ⊗ In)Γ (t)

0

)
,

E =

(
0 −IN−1
0 0

)
⊗ In, and F =

(
−βJ 0
kJ 0

)
⊗ In.

Utilizing the Leibniz–Newton formula, it follows that

ε2
(
t− τ(t)

)
= ε2(t)−

t∫
t−τ(t)

ε̇2(s) ds

= ε2(t)− E
0∫

−τ(t)

ε2(t+ s) ds− F
−τ(t)∫
−2τ(t)

ε(t+ s) ds

−
0∫

−τ(t)

O(t+ s) ds.
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Therefore, equation (16) can be rewritten as

ε̇2(t) = Ōε2(t)− FE
0∫

−τ(t)

ε2(t+ s) ds

− F 2

−τ(t)∫
−2τ(t)

ε2(t+ s) ds− F
0∫

−τ(t)

O(t+ s) ds+O(t),

where Ō = E + F .
Furthermore, one has

2εT2 (t)D1ε̇2(t) = 2εT2 (t)D1Ōε2(t)− 2εT2 (t)D1FE

0∫
−τ(t)

ε2(t+ s) ds

− 2εT2 (t)D1F
2

−τ(t)∫
−2τ(t)

ε2(t+ s) ds+ 2εT2 (t)D1O(t)

− 2ε2(t)D1F

0∫
−τ(t)

O(t+ s) ds. (17)

Combined with (16) and (17), equation (15) is written as

V̇ (ε(t)) = 2εT2 (t)D1Ōε2(t)− 2εT2 (t)D1FE

0∫
−τ(t)

ε2(t+ s) ds

− 2εT2 (t)D1F
2

−τ(t)∫
−2τ(t)

ε2(t+ s) ds− 2ε2(t)D1F

0∫
−τ(t)

O(t+ s) ds

+ 2εT2 (t)D1O(t) + 4σeT1 (t)ė1(t)

+ a3γ̄(t)
(
(INn ⊗ U) + (INn ⊗ UT)

)
˙̄γ(t).

By Lemma 3 one can obtain

−2εT2 (t)D1EF

0∫
−τ(t)

ε2(t+ s) ds

6 τ̄ εT2 (t)D1EFD
−1
1 (D1EF )Tε2(t) +

0∫
−τ(t)

εT2 (t+ s)D1ε2(t+ s) ds. (18)
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Similarly, we have

−2εT2 (t)D1F
2

−τ(t)∫
−2τ(t)

ε2(t+ s) ds

6 τ̄ εT2 (t)D1F
2D−11 (D1F

2)Tε2(t) +

−τ(t)∫
−2τ(t)

εT2 (t+ s)D1ε2(t+ s) ds

and

−2εT2 (t)D1F

0∫
−τ(t)

O(t+ s) ds

6 τ̄ εT2 (t)D1FD
−1
1 (D1F )Tε2(t) +

0∫
−τ(t)

OT(t+ s)D1O(t+ s) ds. (19)

Since

O(t) =

(
−α(QT

2 ⊗ In)h(x̄(t))− (QT
2 ⊗ In)Γ (t)

0

)
,

then ∥∥O(t)
∥∥2 =

∥∥−α(QT
2 ⊗ In

)
h
(
x̄(t)

)
−
(
QT

2 ⊗ In
)
Γ (t)

∥∥2
6 2α2

∥∥(QT
2 ⊗ In

)
h
(
x̄(t)

)∥∥2 + 2
(
QT

2 ⊗ In
)
Γ (t)

∥∥2
6 2
(
α2 l̂2 + a21 + a22

)∥∥ε(t)∥∥2,
where l̂ = max{l1, l2, . . . , lN}. From the transformation e(t) = (QT⊗In)x̄(t) it follows
that

4σeT1 (t)ė1(t) = −4σeT1 (t)

[
α

(
1TN√
N
⊗ In

)
h(x̄(t)) +

(
1TN√
N
⊗ In

)
Γ (t)

]
= −4σαx̄T(t)h(x̄(t)) + 4σαeT2 (t)(Q2 ⊗ In)h(x̄(t))

− 4σx̄(t)TΓ (t) + 4σeT2 (t)(Q2 ⊗ In)Γ (t).

Therefore, according to Assumption 1, one has

2εT2 (t)D1O(t) + 4σeT1 (t)ė1(t)

= −4αξT2 (t)(Q2 ⊗ In)h
(
x̄(t)

)
− 4σαx̄T(t)h

(
x̄(t)

)
− 4σx̄T(t)Γ (t)

− 4ξT2 (t)(Q2 ⊗ In)Γ (t)

6
∥∥ξ2(t)

∥∥2 + 4α2 l̂2
∥∥x̄(t)

∥∥2 − 4σαm̌
∥∥x̄(t)

∥∥2 + a21σ
∥∥γ̄(t)

∥∥2
+ 4σ

∥∥x̄(t)
∥∥2 + a22σ

∥∥x̄(t)
∥∥2 +

∥∥ξ2(t)
∥∥2 + 8a21

∥∥γ̄(t)
∥∥2 + 8a22

∥∥x̄(t)
∥∥2
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6 2εT2 (t)ε2(t) +
(
8a21 + a21σ

)∥∥γ̄(t)
∥∥2

−
(
4σαm̌− a22σ − 4α2 l̂2 − 4σ − 8a22

)∥∥x̄(t)
∥∥2,

where m̌ = min{m1,m2, . . . ,mN}.
Based on Lemma 2, take Π(t) = pt for some constant p > 1. In case if

V
(
ε(t+ θ)

)
< pV

(
ε(t)

)
, θ ∈ [−2τ, 0],

then
εT2 (t+ s)D1ε2(t+ s) 6 εT(t+ s)Dε(t+ s) < pεT(t)Dε(t). (20)

Next, considering the integral term in (19), we can obtain

0∫
−τ(t)

OT(t+ s)D1O(t+ s) ds

6 2λmax(D1)(α2 l̂2 + a21 + a22)

0∫
−τ(t)

εT(t+ s)ε(t+ s) ds

6 2δ
(
α2 l̂2 + a21 + a22

)
pτ̄
(
2σeT1 (t)e1(t) + εT2 (t)D1ε2(t) + a3γ̄

T(t)(INn ⊗ U)γ̄(t)
)

6 4σδ
(
α2 l̂2 + a21 + a22

)
pτ̄εT(t)ε(t) + 2δ

(
α2 l̂2 + a21 + a22

)
pτ̄εT2 (t)D1ε2(t)

+ 2δa3(α2 l̂2 + a21 + a22)pτ̄ γ̄T(t)(INn ⊗ U)γ̄(t),

where δ = λmax(D1)/λmin(D).
In addition, we substitute (20) into the integral term (18), and it can be obtained that

0∫
−τ(t)

εT2 (t+ s)D1ε2(t+ s) ds

< 2σpτ̄εT(t)ε(t) + pτ̄εT2 (t)D1ε2(t) + a3pτ̄ γ̄
T(t)(INn ⊗ U)γ̄(t).

Similarly,

−τ(t)∫
−2τ(t)

εT2 (t+ s)D1ε2(t+ s)

< σpτ̄εT(t)ε(t) + pτ̄εT2 (t)D1ε2(t) + a3pτ̄ γ̄
T(t)(INn ⊗ U)γ̄(t).

Note that H is Hurwitz stable, and then there is

V̇
(
ε(t)

)
6 −εT2 (t)(Λ− 2I2N−2)ε2(t)

+ τ̄ εT2 (t)
[
D1EFD

−1
1 (D1EF )T +D1F

2D−11 (D1F
2)T

+D1FD
−1
1 (D1F )T + 2

(
p+ δpα2 l̂2 + δpa21 + δpa22

)
D1

]
ε2(t)
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+ pτ̄
[
(3σ + 2a3λ) + (4σδ + 2δa3λ)

(
α2 l̂2 + a21+ a22

)]
εT(t)ε(t)

− (λ′ + 1)γ̄T(t)γ̄(t)−
(
4σαm̌−a22σ−4α2 l̂2 − 4σ−8a22−a3a4

)∥∥x̄(t)
∥∥2,

where a4 = (8 + σ)a21 + λ′ + 1 and

D1EFD
−1
1 (D1EF )T +D1F

2D−11

(
D1F

2
)T

+D1FD
−1
1 (D1F )T

=

(
2σ(β − k)[(β + k)JJT + β3J2(J2)T] 0

0 0

)
⊗ In.

If β satisfies condition (12), Λ− 2I2N−2 is positive definite, one has

εT2 (t)(Λ− 2I2N−2)ε2(t) > λ′εT2 (t)ε2(t)

> λ′εT(t)ε(t)− λ′
∥∥x̄(t)

∥∥2 − λ′γ̄T(t)γ̄(t),

and then

V̇
(
ε(t)

)
6 −λ′εT(t)ε(t) + τ̄ εT2 (t)

{
2σ(β − k)

[
(β + k)λ̄+ β3λ̄′

]
+ 2
(
p+ δpα2 l̂2 + δpa21 + δpa22

)
µ
}
ε2(t)

+ pτ̄
[
(3σ + a3λ) + (4σδ + 2δa3λ)(α2 l̂2 + a21 + a22)

]
εT(t)ε(t)

−
∥∥γ̄(t)

∥∥2 − (4σαm̌− a22σ − 4α2 l̂2 − 4σ − 8a22 − a3a4 − λ
′)∥∥x̄(t)

∥∥2
6 −λ′εT(t)ε(t) + τ̄ εT(t)

{
2σ(β − k)

[
(β + k)λ̄+ β3λ̄′

]
+ p
[
(3σ + a3λ) + (4σδ + 2δa3λ)

(
α2 l̂2 + a21 + a22

)]
(µ+ 1)

}
εT(t).

Since τ̄ satisfies condition (13), then V̇ (ε(t)) 6 0. By the Lyapunov–Razumikhin
theory we have limt→∞ ε(t) = 0, i.e.,

lim
t→∞

x̄(t) = lim
t→∞

w̄(t) = lim
t→∞

γ̄(t) = 0.

Hence
lim
t→∞

x(t) = x∗, lim
t→∞

w(t) = w∗,

which means that the optimization problem (5) can be solved by system (3) under the
distributed optional algorithm (7).

3.2 Optimization protocol with sampled-data communication

In this section, we consider the distributed optimization problem of aperiodic sampling
control systems with external disturbances, and a sampled-data communication scheme is
formulated.

Given a strictly increasing time sequence {tk}, k ∈ N, such that limk→∞ tk = ∞.
The state xi(t) of system (2) is assumed to be sampled at time instants tk and available at
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Figure 1. The graphic of τ(t) and corresponding graphic of t− τ(t).

tk + τ(t) and τ(t) > 0, that is, the sampled-data xi(tk) is available with a time-varying
delay τ(t). The sampling interval [tk, tk+1) satisfies

0 < Tmin 6 tk+1 − tk = Tk+1 6 Tmax ∀k ∈ N,

where Tk is the length of the kth sampling interval, Tmin = min{Tk} and Tmax =
max{Tk}. We use the following sampled-data-based communication scheme to solve the
optimization problem (5):

ẇi(t) = k
∑
j∈Ni

aij
(
xi(tk)− xj(tk)

)
,

η̇i(t) = (In ⊗H)ηi(t) + (In ⊗ P )ui(t),

ui(t) = −α∇fi
(
xi(t)

)
− wi(t)− (In ⊗ Ψ)ηi(t)− β

∑
j∈Ni

(
xi(tk)− xj(tk)

)
.

(21)

Suppose that τ̄ is the upper bound of τ(t), that is, τ(t) 6 τ̄ and τ̄ 6 Tmin. When
sampled at time instants tk be set as

tk = t− τ(t) ∀t ∈ [tk, tk+1), (22)

it is obvious from Fig. 1 that the τ(t) and t − τ(t) are piecewise and discontinuous.
In addition, the sampled-data-based communication algorithms (21) can be transformed
into communication protocol (7) with time delay input by utilizing (22). Therefore, the
theoretical analysis of distributed optimization problems for aperiodic sampling control
systems with external disturbances can be obtained as follows by Theorem 2.

Corollary 1. Suppose that Assumptions 1–3 hold, then all states of agents in a multi-
agent system (3) can reach consensus and converge to the optimal solution of the opti-
mization problem (5) under protocol (21) for any initial values x(0), w(0), γ(0) satisfying
(1N ⊗ In)Tw(0) = 0 and τ(t) ∈ [0, τ̄) if the conditions of Theorem 2 hold.

Remark 5. The distributed optimization protocol with time-delay input proposed in
this paper can be used in both time-delay and aperiodic sampling control systems, giv-
ing it a broad application background. Furthermore, the sampled-data communication
technique requires all agents to communicate only during sampling instants, which can
significantly reduce the amount of communication data.
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4 Numerical example

Considers a multi-agent system consisting of five agents in which directed topology with
all weights being 0−1 is shown in Fig. 2.

The optimization problem is given by

minimize F
(
x(t)

)
=

10∑
i=1

fi
(
xi(t)

)
, xi(t) ∈ R,

where the local cost function is designed as follows:

f1(x) =
3

2
(x− 1)2 + 10, f2(x) = (x− 2)2 + 11, f3(x) =

1

2
x2 − 8x,

f4(x) = x2 − 7x+ 17, f5(x) = 0.6x2 − 2.4x+ 9, f6(x) =
3

2
(x− 1)2 + 1,

f7(x) = (x− 2)2, f8(x) =
1

2
x2 + 3x, f9(x) = x2 − 7x+ 9,

f10(x) = 0.6x2 − 8x+ 12.

Obviously, the local cost function fi(x) (i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) satisfies Assump-
tions 2 and 3 in which l̂ = 2 and m̌ = 1. The diagrams of local objective functions and
global objective functions are shown in Figs. 3–4, respectively.

The disturbances are expressed by di(t) = Ai cos(ωit+zi) in agent dynamics, which
can be generated by system (4) with

B =

(
0 ς
−ς 0

)
, C = (1, 0), ωi(0) =

(
Ai cos zi
Ai sin zi

)
.

Supposing that ς = 1, (A1, A2, A3, A4, A5, A6, A7, A8, A9, A10) = (
√

2/2,
√

2, 2
√

2,
2
√

2, 3
√

3,
√

2/2,
√

2, 2
√

2, 2
√

2, 3
√

3) and zi=π/4 (i=1, 2, 3, 4, 5, 6, 7, 8, 9, 10), then

Φ =

(
0 1
−1 0

)
, Ψ =

(
1, 0

)
.

Furthermore, we select P = (−1/8, −1/16) such that the matrixH = Φ+PΨ is Hurwitz
stable.

Figure 2. The directed topology.
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Figure 3. The diagrams of local functions fi(x). Figure 4. The diagrams of global function F (x).

Figure 5. State trajectories of xi(t). Figure 6. State trajectories of wi(t).

Figure 7. The diagrams optimization function.

In the proposed protocol (7), we choose k = 2, α = 18, β = 2.5. In addition, p = 2
and σ = 10 that satisfy the hypothesis are selected. By calculating one can be obtained
that

H =

(
−1/8 1
−17/16 0

)
, U =

(
33/2 −1
−1 266/17

)
,

a1 = 1, a2 = 1, a3 = 5.377, a4 = 19. Obviously, all conditions of Theorem 2 are satis-
fied. Let the initial values x(0) = [1.3, 2.4, 7.1, 3.5, 5.6, 1.2, 2.4, 7, 3.2, 5.4]T, w(0) =
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T, under algorithm (7), the simulation results are shown in
Figs. 5–7. It is easy to observe that all agents’ states gradually reach consensus and
converge to optimization state x∗ = 3.52 in Fig. 5. In addition, the evolution processes
of the global optimization function and local objective functions are shown in Fig. 7, the
value of global optimization function F (x(t)) is 15.25.

In control protocol (7), if we conduct data simulation on the result without considering
the internal model term, it can be found that the states of all agents cannot converge to the
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same state in Fig. 6, thus the optimization problem (5) cannot be solved. This also fully
shows that the internal mode principle can effectively offset the external interference of
the system and can make the states of the system achieve the same.

5 Conclusion

In this paper, the distributed optimization problem is solved for multi-agent systems
with communication delays and external disturbances in a directed network. Firstly, a
continuous distributed optimization algorithm is proposed based on the internal model
principle. To ensure the states of all agents converge to the optimal value of systems, some
sufficient conditions are derived based on Lyapunov–Razumikhin theory and graph theory
in which the upper bound of communication delays τ(t) can be effectively estimated.
Finally, the effectiveness of the optimization algorithm can be illustrated by an example.
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