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Abstract. Distributed cooperative control of multi-agent systems is broadly applied in artificial
intelligence in which time delay is of great concern because of its ubiquitous. This paper considers
the controllability of leader-follower multi-agent systems with input and communication delays.
For the first-order systems with input delay, neighbor-based protocol is adopted to realize the
interactions among agents, yielding a system with delay existed in state and control input. New
notions of interval controllability and interval structural controllability for the system are defined.
Algebraic criterion is established for interval controllability, and graph-theoretic interpretation is put
forward for the interval structural controllability. Results imply that input delay of the multi-agent
systems has significant influence on the interval controllability and interval structural controllability.
Corresponding conclusions are generalized to the first-order systems and the high-order ones with
communication delays, respectively. Example is attached to illustrate the work.

Keywords: multi-agent systems, interval structural controllability, time delay, linear parameteriza-
tion, maximum matching.

1 Introduction

The multi-agent systems are in fact a number of individual agents with independent
dynamics acting together to achieve a goal by using their neighbors to realize information
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interactions. In recent decades, the distributed cooperative control of multi-agent systems
has been a hot topic [2, 18] because of the extensive applications in military, industrial
and society, etc.

Controllability of multi-agent systems, which concerns the ability of leaders educating
followers and is put forward by Tanner [26], is a fundamental issue in this field. Abundant
literature is committed to the research of this topic (see [7, 19, 28] etc.), and numerous
conclusions are deduced from the perspectives of the graph theory [7,19], the eigenvalues
of matrix [28], the invariant subspace [10], etc.

The weights in an interaction topology are of paramount importance for the con-
trollability of multi-agent systems. For instance, an unweighted complete graph in [26]
is proved to be uncontrollable with a leader selected; however, a group of weights is
specified to the weighted complete graph, rendering such a graph to be controllable for an
assigned leader (see [31]). Thus, for the controllability of multi-agent systems, it usually
assumed that the interaction topology is directed/undirected, and the link edges among
agents are prespecified some weights (see more in [18, 25]).

However, it is no picnic to obtain the precise measurement of weights because of
the measurement error and other uncertainties in real world, except for some values
identically equaling to zeros, which are caused by no edge existence between some two
agents. Thus, it is a significant work to consider the structural controllability of multi-
agent systems. For structural controllability, Lin [9] makes a pathbreaking work and deals
with the case of single-input from the graph theoretic perspective. Shields et al. [22]
extend Lin’s work from single-input systems to multi-input ones with a pure algebraic ap-
proach utilized. Subsequently, the graph theoretic interpretations about Shields’ result are
analysed in [13]. Other conclusions about structural controllability can be found in [3] etc.

Structural controllability of the multi-agent systems with first-order integrator is con-
sidered by Zamani [31]. Partovi [17] extends above results to the high-order multi-agent
systems, respectively. However, relative protocol is widely adopted to realize interactions
among agents (see [4, 12, 17, 31]), rendering the independence among the elements of
structured matrices fails to hold (the structured matrices of the structured system are
the block matrices of Laplacian matrix). In addition, symmetric network is a typical
instance with absence of independent elements of structured matrix (see [15]). Thus, the
conclusions of Lin [9] and Shields [22] might not be matched to deal with such parameter-
dependent problems. To avoid the parameter dependence of structured matrix, Guan et
al. [5] propose the absolute protocol to establish the interaction network among agents.

In the information transmitting of multi-agent systems, there exist communication
delays because the bandwidth constraints of the communication channels or burn-in of
sensors. In addition, connecting and processing the data packets from the neighbors may
case input delay for agents [27]. Thus, copious literature is paid close attention to the
multi-agent systems with delays (see [20, 23, 27]). In fact, information transmission has
timeliness, such as earthquake early warning network system [16], it is apparently crucial
for the time cost of information transmission. For delay multi-agent network systems,
what we concern is not only whether the predetermined goal be achieved, but also whether
the delay contributes to the time cost when we arrived at the goal, such as finite-time
synchronization [32], and consensus on finite [20].
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Whereas, almost the existed literature concerning structural controllability of the
structured systems ignores the time delay although it is a very common phenomenon in
mechanical engineering, information technology, economics, etc. (see more in [21, 24]).
In fact, from [23, 30] we know that for a system with delay, controllability on some
time interval does not imply that on any time interval. It consequently renders that for
a structured system with delay, structural controllability on some time interval is not
equivalent to that on any interval [8, 9]. Thus, how time delay influencing structural
controllability of a delay structured system is an worthwhile topic [21], especially, for
delay multi-agent systems.

In this paper, we consider the (structural) controllability of multi-agent systems with
input and communication delays. The notions of interval controllability and interval struc-
tural controllability are defined. Criteria on interval controllability and interval structural
controllability are established, respectively, and the delay influence on controllability is
illustrated. Contributions of this paper are below. Firstly, we establish algebraic criteria
for interval controllability of the systems with delay existed in states and control inputs
in which we point out how time delay influences on the interval controllability. Secondly,
we generalize structural controllability of the nondelay structured system to the delay
one, and we propose a new notion of interval structural controllability. Thirdly, we reveal
the relationship between interval structural controllability and the topology structure of
multi-agent systems, and we figure out how time delay influences on the interval structural
controllability. Fourthly, a new protocol is designed for the interactions among agents of
higher-order multi-agent systems.

This paper is organized as follows. In Section 2, the knowledge of some basic graph
theory and structured theory are presented. Interval controllability and interval structural
controllability of the first-order multi-agent systems with input delay are considered in
Section 3. In Section 4, we consider the interval controllability and interval structural con-
trollability of first-order systems with communication delay. In Section 5, corresponding
conclusions are generalized to the higher-order systems with communication delay.

2 Preliminaries

2.1 Elements of graph theory

Denote by G = (V, E) a directed graph with V = {v1, . . . , vn} the vertex set and E =
{eij = (vj , vi), vi, vj ∈ V} ⊂ V × V the edge set. For an edge eij = (vj , vi) ∈ E
with vj called tail and vi called head, it implies that there exists an information flow from
vertex vj to vi, but might not inversely. For a special case eii = (vi, vi), it implies that
there exists a self-loop edge from vi to itself. We denote the neighbor set of vertex vi by
Ni = {vj ∈ V: (vj , vi) ∈ E , i 6= j}.

Let V1 and V2 be two nonempty subsets of vertex set V . We say there exists a path
from V1 to V2 if there is a sequence of finite vertices v1, v2, v3, . . . , vk−1, vk, where
v1 ∈ V1 and vk ∈ V2 with corresponding edges (v1, v2), (v2, v3), . . . , (vk−1, vk) in E . We
call v1 the beginning vertex and vk the ending vertex of the path, respectively. Further,
if every vertex on the path occurs only once, then we call the path a simple one. Two
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paths from V1 to V2 are said to be disjoint if they share no common vertices. The set
of mutually disjoint paths with beginning vertices in a vertex set U is called a U -rooted
path family. A simple path with beginning and ending vertices sharing a common one is
called a cycle. Similarly, two cycles without common vertices are said to be disjoint, and
the set of disjoint cycles are called a cycle family. A union graph of a set of subgraphs
is the unions of vertex sets and edge sets of each subgraph, respectively (see more in
[3]).

A matching of a graph is a set of edges in which no two edges share a common tail
or head. A vertex is matched if it is a head of an edge in the matching, otherwise, it is
unmatched. A matching of maximum cardinality is called a maximum matching of the
graph.

2.2 Structured system

With referring to [9, 13], a structured matrix is a matrix with elements either fixed zeros
in some certain locations or indeterminate entries in the remaining locations, which are
assumed to be independent of one another. A system

ẋ(t) = Ax(t) +Bu(t) (1)

where x ∈ Rn, is called structured system and denoted by (A,B) if A and B are
structured matrices. A structured system (A,B) is called structurally controllable if there
exists an admissible numerical realization (Ã, B̃) by fixing all indeterminate entries at
some particular values such that it is controllable in the usual sense. There are two main
methods dealing with the structural controllability of structured system (A,B) (see [9,13]
for the graph-theoretic approach and [22] for the algebraic one).

For a structured system (A,B) with A ∈ Rn×n and B ∈ Rn×l, we define the
corresponding flow structure Gs(A,B) = (Vs, Es) with n+l vertices, where the ijth entry
of structured matrix [A,B] corresponds to the edge (j, i). If the ijth entry is nonzero,
then there exists an edge from the jth vertex to the ith one; otherwise, there is no edge
between the two vertices. The vertex corresponding to the elements of A is called state
vertex, and the set of state vertices is denoted by in VA = {v1, . . . , vn}. Similarly, the
vertex corresponding to the elements of B is called input vertices, and the set of input
vertices is denoted by VB = {vn+1, . . . , vn+l}. If for each state vertex, there is a path
beginning with one of the input vertex and ending with it, then we say the flow structure
is input reachable. A state vertex vi ∈ VA is said to be unaccessible if there exists no
path beginning with the vertex in VB and ending with it. For l = 1, we say the flow
structure Gs(A,B) has a spanning tree if Gs(A,B) is input reachable; we call the input
vertex vn+1 the root of the tree. For l > 1, the flow structure Gs(A,B) has a spanning
forest if it contains a spanning subgraph consisted of multiple disjoint trees with roots
at VB . Denote by |E| the number of vertices in E ⊂ Vs and T (E) the set of vertices
vjs with the property that there is an edge (j, i) ∈ Es for any vi ∈ E. We say the
flow structure Gs(A,B) contains a dilation if there exists a subset E ⊂ VA such that
|T (E)| < |E|.
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2.3 Notation

In what follows, we denote by n the set of integers {1, . . . , n}, L2([0, tf ];Rl) the space
consisted of all the functions, which are square integrable on [0, tf ] and take value in Rl,
θ the zero vector, I the identity matrix, and Θ the zero matrix of appropriate dimensions.

3 Controllability of the first-order systems with input delay

In this section, we consider the first-order multi-agent systems consisting of n+ l agents
with each agent i suffering from input delay. The interaction topology of the multi-agent
systems is assumed to be modeled by a simple weighted digraph G = (V, E ,W), where V
is the set of n+ l vertices, E is the set of edges, andW is the associated weighted matrix.
The vertices in V are indexed from v1 to vn+l. Suppose the last l vertices are assigned as
leaders, and the others are followers. Dynamics of each agent obeys the following rule:

ẋi(t) = ui(t− τ), i ∈ n+ l, (2)

where xi ∈ R is the state variable, ui ∈ R is control input, and τ > 0 is time delay.
With referring to [20], introduce the following neighbor-based protocol to realize the

interactions among agents:

ui(t) =
∑
vj∈Ni

wij
(
xj(t)− xi(t)

)
, i ∈ n, (3)

whereNi represents the neighbor set of vi. If vj is a neighbor of vi, then wij is a nonzero
indeterminate parameter. Otherwise, wij is zero.

Denote the Laplacian matrix by L = [lij ], where

lij =

{∑
vr∈Ni

wir, i = j,

−wij , i 6= j, vj ∈ Ni,

and assume that it can be partitioned as

L =

[
Lff Lfl
Llf Lll

]
,

where Lff ∈ Rn×n, Lfl ∈ Rn×l, Llf ∈ Rl×n, and Lll ∈ Rl×l. Under (3), the multi-
agent systems modeled by (2) become

ẋ(t) = Ax(t− τ) +Bu(t− τ), (4)

where x = [x1, . . . , xn]
T, u = [xn+1, . . . , xn+l]

T, A = −Lff , and B = −Lfl.
System (4) has two characteristics. Firstly, A and B are submatrices of the Laplacian

matrix L. Thus, the elements of A and B are in fact linear dependent. Secondly, delay
exists in state and control input, rendering that both initial function and initial control
input have impact on the state of (4).

If (4) is controllable, then we say the multi-agent systems modeled by (2) with proto-
col (3) is controllable. Next, we establish the controllability criterion of system (4).
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3.1 Interval controllability with input delay

With referring to [30], the notion of interval controllability is defined below.

Definition 1. System (4) is called controllable on [0, tf ] if for any terminal state xf ,
differentiable initial function ϕ(t), and initial control input u0(t) on [−τ, 0], there exists
a bounded measurable control function u∗(·) ∈ L2([0, tf ];Rl) such that corresponding
response of (4) satisfies x∗(tf ) = xf and x∗(t) ≡ ϕ(t) for t ∈ [−τ, 0].

Introduce the delayed matrix function [8] for some positive integer k as follows:

eAtτ =


Θ, −∞ < t < −τ,
I, −τ 6 t < 0,

I +At+ · · ·+Ak (t−(k−1)τ)k
k! , (k − 1)τ 6 t < kτ,

(5)

where A is the matrix in (4). Solution of (4) with any differentiable initial function ϕ(t)
and initial control input u0(t), t ∈ [−τ, 0], gives

x(t) = eAtτ ϕ(−τ) +
0∫
−τ

eA(t−s−τ)
τ ϕ′(s) ds

+

0∫
−τ

eA(t−s−2τ)
τ Bu0(s) ds+

t−τ∫
0

eA(t−s−2τ)
τ Bu(s) ds. (6)

For the interval controllability of (4), we have below theorem.

Theorem 1. System (4) is controllable on [0, tf ] if and only if tf > nτ and rankQ = n,
where Q is the controllability matrix defined by

Q ,
[
B,AB, . . . , An−1B

]
.

Proof. Necessity. Assume that (4) is controllable on [0, tf ]. Then for arbitrary terminal
state xf , differentiable initial function ϕ(t), and initial control input u0(t), t ∈ [−τ, 0],
there exists a bounded measurable control function u∗(·) ∈ L2([0, tf ];Rl) such that
corresponding response of (4) satisfies x∗(tf ) = xf . From (6) we have

x∗(tf ) = e
Atf
τ ϕ(−τ) +

0∫
−τ

e
A(tf−s−τ)
τ ϕ′(s) ds

+

0∫
−τ

e
A(tf−s−2τ)
τ Bu0(s) ds+

tf−τ∫
0

e
A(tf−s−2τ)
τ Bu∗(s) ds

= xf .
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Assume there is a positive integer k ∈ N such that (k − 1)τ 6 tf < kτ . Then from (5)
and [8] we arrive at

tf−τ∫
0

e
A(tf−s−2τ)
τ Bu∗(s) ds

= B

tf−2τ∫
−τ

u∗(tf − s− 2τ) ds+AB

tf−2τ∫
0

su∗(tf − s− 2τ) ds+ · · ·

+Ak−2B

tf−2τ∫
(k−3)τ

(s− (k − 3)τ)k−2

(k − 2)!
u∗(tf − s− 2τ) ds.

Denote that u∗ = [ũ∗1, . . . , ũ
∗
l ]

T,

η = xf − e
Atf
τ ϕ(−τ)−

0∫
−τ

e
A(tf−s−τ)
τ ϕ′(s) ds−

0∫
−τ

e
A(tf−s−2τ)
τ Bu0(s) ds,

and Φj(tf ) = [Φj,1(tf ), . . . , Φj,l(tf )]
T, where

Φj,r(tf ) =

tf−2τ∫
(j−2)τ

(s− (j − 2)τ)j−1

(j − 1)!
ũ∗r(tf − s− 2τ) ds

with j ∈ k − 1, r ∈ l. Thus, we obtain

η =

k−2∑
j=0

AjBΦj+1(tf ) =

k−2∑
j=0

AjB
[
Φj+1,1(tf ), . . . , Φj+1,l(tf )

]T
. (7)

Rewrite (7) to yield [
B,AB, . . . , Ak−2B

]
Φ(tf ) = η, (8)

where

Φ(tf ) =
[
Φ1,1(tf ), . . . , Φ1,l(tf ), . . . , Φk−1,1(tf ), . . . , Φk−1,l(tf )

]T
.

Namely, (8) is n equations with (k− 1)l variables. The controllability of (4) is equivalent
to that (8) always has a solution for any η. Thus, [B, . . . , Ak−2B] must be row full rank.
If k − 1 < n, [B, . . . , Ak−2B] is not row full rank, then (8) might have no solution for
some η. Thus, it must be k−1 > n. If tf = (k−1)τ = nτ , it follows from Φk−1(tf ) = θ
that [B, . . . , Ak−3B] is not row full rank. Thus, we need tf > (k − 1)τ > nτ . Based on
Cayley–Hamilton theorem, (8) can be further simplified as

BΦ̂1(tf ) +ABΦ̂2(tf ) + · · ·+An−1BΦ̂n(tf ) = η,

Nonlinear Anal. Model. Control, 28(3):447–467, 2023
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where Φ̂j(tf ), j ∈ n, is some function obtained by transforming the terms with Ai,
i > n − 1, in (8) to the linear combination of the ones with I, A, . . . , An−1. Thus, we
obtain that rankQ = n.

The sufficiency is analogous to [8], thus we omit it.

Remark 1. The system in [8] is the one with delay in state variable and with scale control
input. The result in [8] implies that system is controllable on [0, tf ] if and only if the
controllability matrix is full rank and terminal time satisfies tf > (n − 1)τ . (In fact, the
terminal time should satisfy tf > (n − 1)τ . If tf = (n − 1)τ , then the controllability
matrix is rank deficient for that Ψk−1(t1) = 0 in (18) of [8].)

System (4) generalizes [8] to the case with multiple inputs and with delay in both state
and control input. From the proof of Theorem 1 we know that if tf 6 nτ , there could
exist a terminal state that cannot be reached accurately at tf for any control input. Namely,
the multi-agent systems modeled by (2) with relative protocol (3) are not controllable on
[0, tf ] for the existence of input delay.

3.2 Interval structural controllability with input delay

To explore the relationship between interval controllability and the topology structure
of multi-agent systems, in what follows, we consider the structural controllability of the
multi-agent systems with input delay. For structural controllability of the system with
commensurate delay in state and input, Sename [21] transforms corresponding system
into a compact form (A(∇),B(∇)) leaning on the delay operator ∇. Whereas, Sename
does not consider the case that the parameters of system matrices are dependent on one
another.

Systems (4) is with delay in both state and control input in which the matrices A and
B are inherited from the graph Laplacian matrix L, rendering parameters of A and B
are dependent on one another. For (4), the notion of interval structural controllability is
defined below.

Definition 2. System (4) is called structurally controllable on [0, tf ] if there is a numerical
realization such that (4) is controllable on [0, tf ].

For the interval structural controllability of (4), we will establish the graph-theoretic
criterion and figure out the influence of delay on it. The parameterization technique is
adopted to tackle the interval structural controllability for the parameters of A and B
dependent on one another. We assume that A and B in (4) have p nonzero independent
parameters, which are mapped to ξ1, . . . , ξp by a bijective mapping. Also, the following
linear parameterizations are assumed to hold (see more in [11]):

A =

p∑
j=1

ρjξjφj , B =

p∑
j=1

ρjξjϕj ,

where ρj ∈ Rn, φj ∈ R1×n and ϕj ∈ R1×l are the parameterized vectors, j ∈ p.
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Denote by GF the flow structure of matrix pair (A,B), A and B the matrices in (4),
with node set VF = {f1, . . . , fn+l} and edge set EF , where there is an edge from node
fj to fi if and only if the ijth entry of matrix [A,B] is nonzero.

Lemma 1. (See [11].) The pair (A,B) is irreducible if and only if the associated flow
structure GF has a spanning forest rooted at fn+1, . . . , fn+l.

Denote the transfer matrix by Ω = [ηij ], where

ηij =

{
φiρj , i, j ∈ p,
ϕi, i ∈ p, j = p+ 1.

Further, define the associated transfer graph, an unweighted digraph, which is denoted by
GΩ , with node set VΩ = {ω1, . . . , ωp+1} and edge set EΩ , where there is an edge from
node ωj to ωi if and only if ηij is nonzero.

Next, we establish an equivalence relation between the irreducibility of (A,B) and the
transfer graph. In [11], it requires that the linearly parameterized pair (A,B) satisfies the
binary assumption, namely, just 0 and 1 are allowed to appear in the parameterized vectors
ρj , φj , and ϕj . Mehrabadi et al. [14] extend this result to the case that A is a symmetric
one.

In our work, for the interaction topology of the multi-agent systems, a weighted
directed graph symmetric property of the associated Laplacian matrix L is no longer
maintained, rendering A no longer maintains symmetry, and each nonzero parameter of
A appears in two different places of [A,B] simultaneously. We will generalize the result
of [14] to the case when A is a asymmetric one.

Lemma 2. If the pair (A,B) is irreducible, then the associated transfer graph GΩ has
a spanning tree rooted at ωp+1.

Proof. Denote the line graph of the flow structure GF by GL with node set VL and edge
set EL. If the flow structure GF has an edge (fi, fj) with weighted parameter ξk, then
there exists a corresponding node, denoted by ijk, in the line graph GL. If there exist an
edge (fi, fj) with weighted parameter ξr and an edge (fj , fk) with weighted parameter
ξs in GF , simultaneously, then there is an edge from node ijr to node jks in GL. Next,
we introduce a partition D about the nodes in GL as follows. If the edges in GF share
a common weighted parameter, then the associated nodes in GL are collected into a cell
of the partition. Introduce the quotient graph GL/D induced by the partition D with node
set VD = {d1, . . . , dp} and edge set ED. The edge of the quotient graph is formed as
follows. Denote that D = {D1, . . . , Dp}. Assume that di ∈ VD corresponds to the cell
Di, and dj ∈ VD corresponds to Dj . If there exists at least one edge from a node in Di to
a node inDj in the line graph GL, then there is an edge from di to dj in the quotient graph
GL/D. This implies that there exists a node fk such that an edge with weight ξi arrives at
fk, and an edge with weight ξj leaves fk in the flow structure GF .

Based on the structure of A and B, we have that

ρ
(r)
j = 1, φ

(j)
j = 1, φ

(s)
j = −1,

Nonlinear Anal. Model. Control, 28(3):447–467, 2023
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where ρ(r)j = 1 implies that there is an edge with weight ξj arriving at fr, φ
(s)
j = −1

implies that there is an edge with weight ξj leaving fs in the flow structure GF , and
φ
(j)
j = 1 implies that the same parameter ξj appears in the main diagonal of A. Thus, if

there is an edge from ωi to ωj in the transfer graph GΩ , we have

ηji = φjρi =

n∑
k=1

φ
(k)
j ρ

(k)
i 6= 0.

Thus, there must exist a k ∈ n such that there are an edge with weight ξi arriving at fk
and an edge with weight ξj leaving fk in the flow structure GF . Denote by G̃Ω the induced
subgraph by {ω1, . . . , ωp} in GΩ . Thus, G̃Ω is isomorphic with the quotient graph GL/D
because there exists a bijective between di and ωi, i ∈ p.

If the linearly parameterized pair (A,B) is irreducible, from Lemma 1 we know that
the flow structure GF has a spanning forest rooted at fn+1, . . . , fn+l. Thus, the quotient
graph GL/D has a spanning forest rooted at {dj , ϕj 6= 0}. Further, we obtain that G̃Ω
has a spanning forest rooted at ωjs because of the isomorphism between G̃Ω and GL/D,
where js are the indices of the roots of the spanning forest in GL/D. For ϕj 6= 0, there
exist edges from ωp+1 to ωj . Thus, there is spanning tree rooted at ωp+1. This ends the
proof.

For positive integers r and j1, . . . , jr, we assume that j1 < j2 < · · · < jr, and we
define the matrices as follows:

Λr = [ρj1 , . . . , ρjr
]
, Ξr =

φTj1 , φTj2 , · · · , φTjr
ϕT
j1
, ϕT

j2
, · · · , ϕT

jr

T

.

For the structural controllability of (A,B), we have the following lemma.

Lemma 3. (See [11].) A linearly parameterized pair (A,B) is structurally controllable
if and only if

min
r⊂p

(rankΛr + rankΞp−r) = n

and the transfer graph GΩ has a spanning tree rooted at ωp+1.

For the interval structural controllability of (4), we have the following theorem.

Theorem 2. System (4) is structurally controllable on [0, tf ] if and only if tf > nτ and
GF is input reachable.

Proof. Sufficiency. Assume that GF is input reachable, then there exist at least n edges
consisting multiple paths such that for every state vertex, there is a corresponding path
beginning with one of vn+1, . . . , vn+l and ending with it. Assume that there exist exactly
n edges. Then from [14] we have that ρjs, j ∈ p, are independent on one another because
each state vertex has one and only one ingoing edge. Denote that χj = [φj , ϕj ], then
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χ
(k)
j = −1 implies that there is an edge with weighted parameter ξj leaving vertex fk in
GF , and χ(j)

j = 1 implies that the same parameter ξj appearing in the main diagonal ofA.
Thus, χjs, j ∈ p, are independent on one another. If we assume that rankΛr = q, then
rankΞp−r = n − q, where q is the cardinality of the set r. Namely, minr⊂p(rankΛr +
rankΞp−r) = n. If there are more than n edges, then we can find a subgraph, which is
consisted of exactly n edges and keeps input reachability.

On the other hand, the input reachability implies that the pair (A,B) is irreducible.
Then from Lemma 1 we know the transfer graph GΩ has a spanning tree rooted at ωp+1.
It finally follows from Lemma 3 that system (A,B) is structurally controllable. Thus,
there is a numerical realization (Ã, B̃) such that

rank
[
B̃, ÃB̃, . . . , Ãn−1B̃

]
= n.

From Theorem 1 we obtain that if terminal time satisfies tf > nτ , (4) is controllable on
[0, tf ]. Namely, system (4) is structurally controllable on [0, tf ].

Necessity. Suppose that (4) is structurally controllable on [0, tf ], whereas GF is input
unreachable. Then it follows from [9] that (A,B) is reducible. Thus, there is a permuta-
tion P such that

PAP−1 =

[
A11 Θ
A21 A22

]
, PB =

[
Θ
B22

]
, (9)

where A11 ∈ Rs×s, A21 ∈ R(n−s)×s, A22 ∈ R(n−s)×(n−s), and B22 ∈ R(n−s)×l. Thus,
we have

rank
[
B,AB, . . . , An−1B

]
= rank

[
PB,PAB, . . . , (PAP−1)n−1PB

]
= rank

[
Θ Θ Θ · · · Θ
B22 A22B22 ∗ · · · ∗

]
< n,

where ∗ represents zero or nonzero block matrix. From Theorem 1 we know that sys-
tem (4) cannot be structurally controllable on [0, tf ]. This contradicts with the assump-
tion, and we complete the proof.

In [14], for structural controllability of the multi-agent systems without delay, it
requires that the interaction topology modeled by an undirected graph is connected. In
our work, the interaction topology is modeled by a directed graph and suffers from time
delay. Thus, for the structural controllability of (4) on [0, tf ], it requires that the leaders
have directed paths arriving at all followers, and the terminal time satisfies tf > nτ .

Example 1. Consider the multi-agent systems consisted of 4 agents with interaction topol-
ogy in Fig. 1 (without cycles), where each node is indexed from v1 to v4. The agent v4
is selected as leader, which is manipulated by some external input, and the others are
followers. Assume that the delay τ = 1 exists in the control input of agent, and the
dynamics of each agent is (2).
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Figure 1. The flow structure GF of (10).

Under relative protocol (3), we obtain

ẋ1(t) = w12

(
x2(t− 1)− x1(t− 1)

)
,

ẋ2(t) = w21

(
x1(t− 1)− x2(t− 1)

)
+ w24

(
x4(t− 1)− x2(t− 1)

)
,

ẋ3(t) = w32

(
x2(t− 1)− x3(t− 1)

)
+ w34

(
x4(t− 1)− x3(t− 1)

)
.

(10)

As shown in Fig. 1, GF is input reachable. From Theorem 2, if the terminal time satisfies
tf > 3τ , then (10) is structurally controllable on [0, tf ]. The flow structure of system (10)
is shown in Fig. 1. In what follows, we illustrate the difference between interval structural
controllability and structural controllability.

Denote by the initial function ϕ(t) = [ϕ1(t), ϕ2(t), ϕ3(t)]
T and terminal state xf =

[xf1 , xf2 , xf3 ]
T, where ϕj(t) is a scale function, and xfj ∈ R, j = 1, 2, 3. Choose that

w12 = 2, w21 = 5, w24 = 3, w32 = 1, w34 = 4, then we have

A =

−2 2 0
5 −8 0
0 1 −5

 , B =

03
4,

 , (11)

and
rank

[
B,AB,A2B

]
= 3. (12)

If we select the terminal time tf 6 3τ , for instance, tf = 2τ , then from (6) we can choose
xf such that

θ 6= ξ = [ξ̃1, ξ̃2, ξ̃3]
T,

where

ξ̃1 = 6ϕ2(−1)− 4ϕ1(−1)−
0∫
−1

(
−1 + 2s+ 7s2

)
ϕ′1(s) ds

+ xf1 −
0∫
−1

(
2− s− 10s2

)
ϕ′2(s) ds+ 6

0∫
−1

su0(s) ds,
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ξ̃2 = xf2 + 15ϕ1(−1)−
0∫
−1

(
5− 5s− 25s2

)
ϕ′1(s) ds

− 22ϕ2(−1)−
0∫
−1

(
−7 + 8s+ 37s2

)
ϕ′2(s) ds−

0∫
−1

(3 + 24s)u0(s) ds,

and

ξ̃3 = xf3 − 2.5ϕ1(−1) + 4.5ϕ2(−1)− 2.5

0∫
−1

s2ϕ′1(s) ds

− 3.5ϕ3(−1)−
0∫
−1

(
1− s− 6.5s2

)
ϕ′2(s) ds

−
0∫
−1

(
−4 + 5s+ 12.5s2

)
ϕ′3(s) ds−

0∫
−1

(4 + 17s)u0(s) ds,

whereas

tf−τ∫
0

e
A(tf−s−2τ)
τ Bu(s) ds =

1∫
0

e−Asτ Bu(s) ds =

03
4

 1∫
0

u(s) ds.

Thus, whatever the control input u(t) is selected, the first component ξ̃1 of ξ cannot be
controlled. Namely, system (10) is not structurally controllable on [0, tf ] with tf = 2τ .
However, it follows from (12) that (A,B) is structurally controllable on [0, tf ], thus, it is
structurally controllable on any time interval.

If fact, if we select tf = 4τ , then from

G(tf ) =

tf−τ∫
0

e
A(tf−s−2τ)
τ BBTe

AT(tf−s−2τ)
τ ds

=

0∫
−1

BBT ds+

1∫
0

(I +As)BBT(I +As)T ds

+

2∫
1

(
I +As+ 0.5A2(s− τ)2

)
BBT

(
I +As+ 0.5A2(s− τ)2

)T
ds

=

 66 −471/2 −171/4
−471/2 4266/5 3157/20
−171/4 3157/20 3137/15


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we have rank(G(tf )) = 3. Construct the control input as

u(t) = BTe
AT(tf−s−2τ)
τ

(
G(tf )

)−1
ξ,

Thus, for the system (10) with values taken in (11), any given terminal state xf can
be arrived at tf = 4τ . Namely, system (10) is structurally controllable on [0, tf ] with
tf = 4τ .

4 Controllability of the first-order systems with communication
delay

Next, we suppose that the dynamics of each agent follows

ẋi(t) = ui(t), i ∈ n+ l, (13)

and the communications among agents suffer from time delay τ > 0. Communication
network among agents is established by the following neighbor-based protocol:

ui(t) = γixi(t) +
∑
vj∈Ni

wijxj(t− τ), i ∈ n, (14)

where γi is an indeterminate constant, and wij is the same definition with the one in
Section 3.1. Denote that A = [aij ] ∈ Rn×n, where aij = wij for i ∈ n, j ∈ n, and
vj ∈ Ni or zero otherwise. Similarly, B = [bij ] ∈ Rn×l with bij = wi, j+n for i ∈ n,
j ∈ l, and vj+n ∈ Ni or zero otherwise. The matrices A and B are inherited from the
adjacent matrix of digraph G, where A captures the information flows among followers,
and B captures information flows from leaders to followers, respectively.

Under (14), the multi-agent systems modeled by (13) are converted into

ẋ(t) = Dx(t) +Ax(t− τ) +Bu(t− τ), (15)

where D = diag{γ1, . . . , γn}.
We denote (15) by (D,A,B). If (15) is controllable, we say the multi-agent systems

modeled by (13) with protocol (14) are controllable.

4.1 Interval controllability with communication delay

In what follows, we present the interval controllability of (15) in the sense of Definition 1.
For the solution of (15), we have the following lemma.

Lemma 4. For any initial function ϕ(t) and initial control input u0(t), t ∈ [−τ, 0],
solution of (15) has the following form:

x(t) =φ(t, 0, ϕ, u0) +

0∫
−τ

R(s+ τ, t)Bu0(s) ds+

t−τ∫
0

R(s+ τ, t)Bu(s) ds,
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where φ(t, 0, ϕ, u0) is the solution of force-free equation corresponding to (15) with initial
function ϕ(t) on [−τ, 0], and R(s, t) is the solution of the following matrix equation:

∂R(s, t)

∂s
=

{
−R(s, t)D −R(s+ τ, t)A, 0 6 s 6 t− τ,
−R(s, t)D, t− τ 6 s 6 t,

R(s, t) =

{
I, s = t,

Θ, s > t.

(16)

Proof. The proof is similar to that of [1, Thm. 10.3], thus we omit it.

For the interval controllability of (15), we have the following lemma.

Lemma 5. System (15) is controllable on [0, tf ] if and only if rank Q̃ = n, where

Q̃ =

tf−τ∫
0

R(s+ τ, tf )BB
TRT(s+ τ, tf ) ds.

Proof. From Lemma 4 and an analogous process of [29] we obtain the result.

With referring to [6], introduce the following matrix sequence:

Q1
1 = B,

Qk+1
j = DQkj +AQkj−1, j ∈ k, k ∈ n,

(17)

and Qkj = Θ for j = 0 or j > k.
From (16) we know that for t− τ 6 s 6 t, it holds

∂q−1R(s, t)

∂sq−1
B = (−1)q−1R(s, t)Qq1,

and for 0 6 s 6 t− τ , it has

∂q−1R(s, t)

∂sq−1
B = (−1)q−1

q∑
j=1

R(s+ (j − 1)τ, t)Qqj ,

where q ∈ N+. From [6] introduce the following matrix:

Q̂ =
[
Q1

1, . . . , Q
n
1 , Q

2
2, . . . , Q

n
2 , . . . , Q

n
n

]
.

For the interval controllability of (15), we have the following lemma.

Theorem 3. If tf > nτ and rank Q̂ = n, then (15) is controllable on [0, tf ].

Proof. The proof is analogous to [29]. Thus we omit it.

Remark 2. From [30] we know that for system (1) with control input taking value in Rl,
controllability on some time interval is equivalent to that on any time interval. Whereas,
from Theorems 1 and 3 we know that for the system with delay in both state and control
input, it is different for the controllability on some time interval and on any one.
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4.2 Interval structural controllability with communication delay

Next, we present the interval structural controllability of (15) in the sense of Definition 2.
Denote the flow structure of matrix D + A by G(D + A) = (Vs, Es), where Vs =
{s1, . . . , sn} is the state vertex set, and Es is the edge set with an edge eji = (si, sj)
in Es if and only if the jith entry of matrix D + A being nonzero. Further, denote
flow structure of the pair (D + A,B) by GA = G(D + A, B) = (Vc, Ec), where
Vc = Vs ∪ Vt with Vt = {c1, . . . , cl} the input vertex set, and Ec = Es ∪ Et with
Et = {eij = (cj , si): cj ∈ Vt, si ∈ Vs, bij 6= 0} the edge set.

For the interval structural controllability of (15), we have the following theorem.

Theorem 4. System (15) is structurally controllable on [0, tf ] if and only if tf > nτ and
GA is input reachable.

Proof. Sufficiency. Suppose GA is input reachable. From [13] we know that (D +A, B)
is irreducible. From the definition of G(D + A) we know that G(D + A) is in fact the
union of G(D) and G(A). Similarly, GA is the union of G(D) and G(A,B). Thus, there is
a maximum matching consisted of a disjoint cycle family in the digraph GA, which covers
all the vertices in GA. Thus, the cardinality of the maximum matching is n, and the matrix
[D +A, B] has generally full rank. From [22] we obtain that (D +A, B) is structurally
controllable. Namely, there exists a numerical realization (D̃ + Ã, B̃) such that

rank
[
B̃, (D̃ + Ã)B̃, . . . , (D̃ + Ã)n−1B̃

]
= n. (18)

From [6] we obtain that

rank
[
Q1

1, Q
2
1, . . . , Q

n
1 , Q

2
2, . . . , Q

n
2 , Q

3
3, . . . , Q

n
3 , . . . , Q

n
n

]
= rank

[
Q1

1, Q
2
1 +Q2

2, . . . , Q
n
1 +Qn2 + · · ·+Qnn,

Q2
2, . . . , Q

n
2 , Q

3
3, . . . , Q

n
3 , . . . , Q

n
n

]
= rank

[
B̃, (D̃ + Ã)B̃, . . . , (D̃ + Ã)n−1B̃,

Q2
2, . . . , Q

n
2 , Q

3
3, . . . , Q

n
3 , . . . , Q

n
n

]
= n.

It finally follows from tf > nτ and Theorem 3 that system (15) is controllable on [0, tf ].
Thus, system (15) is structurally controllable on [0, tf ].

Necessity. Suppose that (15) is structurally controllable on [0, tf ], whereas GA is input
unreachable, then there is a permutation P such that (9) and the following equation hold:

PDP−1 =

[
D11 Θ
Θ D22

]
,

where D11 ∈ Rs×s and D22 ∈ R(n−s)×(n−s). From (17) we have

PQ1
1 =

[
Θ
B22

]
, PQ2

1 =

[
Θ

D22B22

]
, . . . , PQn1 =

[
Θ

Dn−1
22 B22

]
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and

PQ2
2 =

[
Θ

A22B22

]
, PQ3

2 =

[
Θ

(D22A22 +A22D22)B22

]
, . . . ,

PQn2 =

[
Θ

(Dn−2
22 A22 +A22D

n−2
2 )B22

]
,

whereA11 ∈ Rs×s,A22 ∈ R(n−s)×(n−s), andB22 ∈ R(n−s)×l. Following the analogous
process, we can obtain that

PQ3
3 =

[
Θ

A2
22B22

]
, . . . , PQnn =

[
Θ

An−122 B22

]
.

Thus, we obtain that

rank
[
Q1

1, . . . , Q
n
1 , Q

2
2, . . . , Q

n
2 , . . . , Q

n
n

]
= rank

[
PQ1

1, . . . , PQ
n
1 , PQ

2
2, . . . , PQ

n
2 , . . . , PQ

n
n

]
= rank

[
Θ · · · Θ Θ · · · Θ
B22 · · · Dn−1

22 B22 A22B22 · · · An−122 B22

]
< n.

From Theorem 3 we know that system (15) cannot be structurally controllable on [0, tf ].
This contradicts with the assumption, and we complete the proof.

Remark 3. For system (1), if it is structurally controllable on some time interval, it
must be structurally controllable on any time interval. However, from Theorems 2 and
4 we know that for the systems with delay in both state and control input, structural
controllability on some time interval does not imply that on any time interval.

From Theorems 2 and 4 we know that the criterion for interval structural controlla-
bility with input delay and the one with communication delay are the same. Next, we
generalize the result to high-order multi-agent systems.

5 Controllability of high-order systems with communication delay

For high-order multi-agent systems without delay, Alireza [17] and Guan [4] deal with the
structural controllability with graph-theoretic approach, respectively. More information
can be found in [5]. In what follows, we will present the interval structural controllability
of high-order multi-agent systems with delay in the interaction topology. Assume that the
interaction topology, the indices of agents and the selection of leaders are the same with
the ones in Section 3. Dynamics of each agent obeys the following high-order rule:

ẋ
(1)
i (t) = x

(2)
i (t), ẋ

(2)
i (t) = x

(3)
i (t), . . . , ẋ

(m)
i (t) = ui(t), (19)
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where x(1)i ∈ R is the state of the ith agent, and x(j)i ∈ R is the (j − 1)th derivative of
x
(1)
i , i ∈ n+ l, j ∈ m− {1}. Construct the following neighbor-based protocol:

ui(t) =

m−1∑
k=0

βk

(
γix

k+1
i (t) +

∑
vj∈Ni

wijx
(k+1)
j (t− τ)

)
, (20)

where βk and γi are indeterminate parameters, and wij is the same definition with the one
in (3), i ∈ n, k ∈ {0}

⋃
m− 1. Under (20), system (19) is converted into the form

ẋ(t) = D̂x(t) + Âx(t− τ) + B̂u(t− τ), (21)

where x = [x[1], . . . , x[m]] with x[k] = [x
(k)
1 , . . . , x

(k)
n ], k ∈ m, u = [u[1], . . . , u[m]] with

u[r] = [x
(r)
n+1, . . . , x

(r)
n+l], r ∈ m,

D̂ =

[
θ(m−1)n×n, Im−1 ⊗ In

βT ⊗D

]
with β = [β0, . . . , βm−1], and

Â =

[
Θ(m−1)×m

βT

]
⊗A, B̂ =

[
Θ(m−1)×m

βT

]
⊗B,

D, A and B the same definition with the ones in (15).
For the interval controllability of (21), we have the following lemma.

Lemma 6. If tf > mnτ and (D + A, B) is controllable on [0, tf ], then (21) is control-
lable on [0, tf ].

Proof. The proof is analogous to [5]. Thus we omit it.

Next, we present the interval structural controllability of (21).

Theorem 5. System (21) is structurally controllable on [0, tf ] if and only if tf > mnτ
and GA is input reachable.

Proof. Sufficiency. Suppose that GA is input reachable, then it follows from the proof of
Theorem 4 that system (D + A, B) is structurally controllable. Namely, there exists a
numerical realization (D̃+Ã, B̃) of (D+A,B) such that (18) holds. Thus, if tf > mnτ ,
from Lemma 6 we know that system (21) is structurally controllable on [0, tf ].

The proof of necessity is analogous to that of Theorem 4, thus we omit it.

6 Conclusion

Controllability is considered for the multi-agent systems with input and communication
delays. For the first-order systems, interval controllability and structural controllability
are considered, respectively. Results imply that both interval controllability and structural
controllability of the delay systems have significant different with the ones of nondelay
systems. Corresponding conclusions are generalized to the high-order multi-agent sys-
tems.
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