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Abstract. We present existence and controllability results for mild solutions to the Atangana—
Baleanu fractional evolution equations. We prove our results by applying bounded integral
contractors and a sequencing technique. In contrast to the papers available in the literature, in order
to establish our controllability results, we need not define the induced inverse of the controllability
operator, and the pertinent nonlinear function need not necessarily satisfy a Lipschitz condition.
In addition, we also establish trajectory controllability results. Finally, we discuss an application,
which illustrates our results.
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contractor.

1 Introduction

The notion of fractional calculus first appeared back in 1695 in the correspondence be-
tween I’Hopital and Leibniz. Since then, many mathematicians, such as Euler, Abel,
Fourier, Riemann, and Liouville, have enriched the study of fractional calculus and exhib-
ited its applications to many real world problems [22,25]. Since the definition of a frac-
tional derivative includes an integral term, it is called a nonlocal derivative. It provides
an important tool for studying memory in materials and hereditary characteristics of phe-
nomena. Many real world problems, such as the tautochrone problem, wave propagation
in viscoelastic horns, edge detection in image processing, and propagation of sound waves
in rigid porous materials, can be modeled more precisely by using a fractional operator
rather than a classical operator [19]. Over time, various forms of fractional operators
have been introduced by several authors, such as the Griinwald-Letnikov, Riemann—
Liouville, Caputo, Weyl, Marchaud, and the Hadamard fractional derivatives [22, 25].
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Of these operators, the Riemann-Liouville derivative and the Caputo derivative are the
most frequently applied to model many real world problems. But these operators have
a singular kernel, which limits their application to some physical problems. To address
this issue, Atangana and Baleanu suggested a new definition of the fractional derivative
that uses the Mittag-Leffler function (ML for short) as a nonsingular kernel. Later, many
researchers studied the Atangana—Baleanu (AB, for short) fractional derivative [18,20,26]
and proved that this nonlocal derivative with a nonsingular kernel plays an important role
in many real world applications [4,8, 17].

In 1976, Altman [2] introduced the notion of a bounded integral contractor. This tech-
nique proved to be very useful for solving problems in which nonlinear functions do not
satisfy the Lipschitz condition. George [14] applied this technique to show the approxi-
mate controllability of semilinear systems. Kumar and Sukavanam [23] extended this con-
cept to fractional-order systems. Later, Zhu et al. [30] applied this concept to Riemann—
Liouville fractional evolution equations. Recently, in [12], we have discussed existence
and controllability results for Hilfer fractional evolution equations via integral contractors.

Controllability is an important property of a dynamical system, which plays a signif-
icant role in its analysis and design [7, 13]. The notion of controllability was introduced
in 1963 by Kalman [21]. It led to some important questions concerning the possibility
of deciding whether a given linear dynamical control system can be controlled or not
and if it is controllable, then what would be the best control so that one can achieve the
desired result. Later, several authors extended this idea to nonlinear dynamical systems
in infinite dimensional spaces and provided many applications in the fields of aerospace
engineering, electrical engineering, biological science, and economics. See, for example,
[10,15,23,28]. In some cases, trajectory planning is essential in the process of designing
a system so that the system only moves along a prescribed trajectory. This happens, for
example, in the cases of industrial robots, launching satellites by rockets and hitting
targets by missiles flying in a particular path. In trajectory controllability problems, we
intend to find a control using which the system moves along a defined trajectory starting
from the initial state to the desired final state. The concept of trajectory controllability is
stronger than other controllability concepts. It is also useful for optimizing some of the
factors involved in the operation of a system. For more details, see [11,15,16].

Recently, controllability results for the AB fractional derivative have been obtained
by several authors [1, 5, 6]. In these works, the authors assume that the controllability
operator has a bounded inverse operator, which is a very strong assumption. Moreover,
given the complexity of the AB fractional derivative, computing the inverse controllability
operator can be quite difficult. To address this issue, in this paper, we apply the notion of
a bounded integral contractor and investigate existence and controllability of the following
AB fractional evolution equations in a Banach space (Y, ||-||):

ABDE, p(t) = Gp(t) + Qu(t) + h(t,p(t)), t € (0,T],

1
p(0) = po, M

where ABDéJr represents the AB Caputo fractional derivative of order ¢ € (0,1). The
linear operator G : D(G) C Y — Y is the infinitesimal generator of an {-resolvent family
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(Te(t)) 0. (Se(t))i>0 denotes the solution operator defined on Y, W is the Banach space
of admissible control functions such that the control function w(-) € L%([0,T], W), @Q:
L3([0,T], W) — L%([0,T],Y) denotes a bounded linear operator, and & : [0, T]xY —Y
denotes a nonlinear function.

The novelty and major contributions of this paper are as follows:

1. The concept of an integral contractor with a sequencing technique is employed to
prove the existence and controllability of the AB fractional evolution equation (1),
a topic which has not yet been treated in the literature.

2. The results proved in this paper are valid for systems with Lipschitz, as well as
non-Lipschitz, nonlinear functions.

3. To obtain our controllability results, we do not need to define the inverse of the
controllability operator.

4. Trajectory controllability (which is a stronger concept than other controllability
concepts) results are also established.

5. An application of our results is presented.

2 Auxiliary definitions and results
Definition 1. (See [3].) The AB fractional integral of order ¢ € (0,1) of a function
p:(0,T] — Ris defined by

¢

ABI50) = )+ i [ ) nle) ds.
0

where E(¢) = (1 —¢)+¢/T'(¢) denotes a normalization function with £(0) = E(1) = 1,
and I denotes the gamma function.

The one-parameter family of ML functions is given by
P
(p) := Z Tk T 1) Re? > 0, p € C (the set of complex numbers),
and the two-parameter family is given by

M (p

M

EkJr , Rel,Re¢ >0, peC.

Clearly, M, 1(p) = M(p).

Definition 2. (See [3].) Let p € H'(0,T), T > 0. The AB fractional derivative of
a function p of order £ € (0, 1) in the Caputo sense is defined by

t
ABDL p %/p YM(—n(t —s)")ds, 0<t<T,

where M, denotes the ML function, and n = £/(1 — ).

https://www.journals.vu.lt/nonlinear-analysis
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Definition 3. (See [24].) For a linear operator G, the set p(G) := {u € C: (uI — G)
is invertible} is called the resolvent set, and the family R (i, G) := (ul — G)~ ! is called
the resolvent of G.

Definition 4. (See [24].) A closed linear operator G is called a sectorial operator if for
some o € R and 6 € [w/2, 7], there exists A > 0 such that

() p(G) C X, ={ne€Ct n#o, |arg(p—o)| <0}
(i) R G < A lp—ol, €3,
Remark 1. For the resolvent operator R(u, G) of the generator G of a Cp-semigroup,

we have the following result, which shows that the resolvent operator is just the Laplace
transform of the semigroup operator.

Lemma 1. (See [24].) Let S(t) be a Cy-semigroup with infinitesimal generator G. Then
for u € p(G) and for all y € Y, the following results hold:

@) R(u, Gy = (I = G) "ty = [~ e " S(t)y dt;
(i) Forally € Y, limg_,o(BI — G) "'y =y, where j3 is constrained to be real.

Definition 5. (See [1].) For a given sectorial operator G, the mild solution p(¢) of Eq. (1)
is defined by
t

p(t) :== RSy(t)po + ——> RV 1 —_ / (t— )" [Qu(s) + (s, p(s))] ds

0

R2
/n w(s) + h(s,p(s)] ds ¥t € 0,T),

where R and V are linear operators given by

R=o0(cl-G)™', V=nGlol -G)! witha:f—g,

1

1 _
Si(t) = My(-Vt*) = %/e“sf L(s'T V) ds

and

Te(t) = te_lMe,é(—Vtg) = ﬁ /est (sel - V)_1 ds,

where c denotes a certain path lying in Ee,a'

Definition 6. (See [9].) The solution operator Sp(t) of Eq. (1) is called analytic if Sp(t)
admits an analytic extension to a sector ), := {u € C/{0}: |argu| < o} for some
09 € (0,7/2]. An analytic solution operator is said to be of analyticity type (6, o¢) if
for each 6 < 6y and o > oy, there is an M = M (6, o) such that ||Sy(t)|| < Me?" for
ted ,:={teC/{0}: |argt| < O}.
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Lemma 2. (See [27].) If G generates analytic solution operators Sy(t) of type (6o, 00),
then ||Se(t)|| < Me“t and || To(t)|| < Ce?t (1 +t°71) for every t > 0, o > oy.

Let Ds := sup; ||Se(t)|| and D7 := sup,~, Ce?* (1 + t*~1). Then ||S¢(t)|| < Ds
and || To(t)|| < Dyt L.

Consider the reachable set K1 (h, w) := {p(T, po,w): w(-) € L*([0,T], W)} of (1).
It is the collection of all final states p at terminal time 7" with initial state py and control w.

Definition 7. Equation (1) is said to be exactly controllable on [0, T'] if K7 (f,w) =Y.

Definition 8. (See [14].) A bounded linear operator 1" : [0,7] x Y — B(Y) is called
a bounded integral contractor of the function % with respect to the operator 7Ty (t) if

h(t, )+ 00+ i) [0 T sae)ate) ds
0

+

2}(%; 0/ Talt = )T (5. () a(s) ds) = h(tp(0) =T (1p(0)a(?)

<7lla®)
forall ¢t € (0,7T) and p, ¢ € Y with constant 7 > 0.

It follows from the boundedness of the operator 1" that ||Y'(¢, p(¢))q(t)|| < v||q(¥)]]
forevery t € (0,7) and p, ¢ € Y with constant v > 0.

Definition 9. If for any p, 2 € Y, the integral equation

- RV(1—10) | )
2(t) = q(t) + BEOT(0) O/(t — )17 (s,p(s))q(s) ds

+

(R |
B0 / Ti(t = 97 (5,p())a(s) ds

admits a solution ¢ € Y, then 7" is called a regular integral contractor.

Remark 2. For the case 7 = 0, the nonlinear function (¢, p(t)) has to satisfy the
following Lipschitz-type condition:

11t p(&) + a(t)) = h(t; () || < 7la@)]]

If A satisfies this condition, then it has the regular integral contractor 7 = 0. Thus, the
results obtained in the present paper are also valid for those functions, which satisfy this
Lipschitz-type condition.

https://www.journals.vu.lt/nonlinear-analysis
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Lemma 3 [Generalized Gronwall’s inequality]. (See [29].) Let p(t) and c(t), t €
[0,T), be two nonnegative locally integrable functions, which satisfy

t

p(t) < c(t) + h/(t —5)271p(s)ds
0

for some h > 0 and ¢ > 0. Then

plt) < cft) + /

t
0

— (hF<Q))n — s ng—lc s s
> St s )] ds.

n=1

3 Existence and uniqueness results

In order to establish the existence of solutions, we consider the following assumptions:

(H;) G is a sectorial operator.

(Hs) The linear bounded operators R and V satisfy || R|| < k1 and |V|| < ks, where
k1 and ko are positive constants.

(Hs3) The nonlinear function i : [0, 7] x Y — Y satisfies the following conditions:

(i) h has aregular integral contractor 1°;
@) A(-,p):[0,T] = Y is measurable for each p € Y;
(iii) A(t,-): Y — Y is continuous for almost every ¢ € [0, 7).

Theorem 1. If assumptions (H1)—(Hs) hold true, then the fractional evolution equa-
tion (1) has a unique mild solution.

Proof. Consider the two sequences {p,, } and {g, } in Y defined as follows:
RV(1—0) |
- — _ \f-1
po(t) = RSe(t)po + BT /(t $)" " Quw(s) ds
0

(R? p
+ W 0/72(15 — $5)Quw(s)ds,

t

_RV(1L-0)

0 = pult) = e [(E= 9 hspa () ds
0

(R2 i
- 55 / Tolt — $)h(s, pu(s)) ds — po(0), @)
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LB /%(t = 8)Y(5,pn(5)) qn(5) dS]- 3)
0

(R? /
E(@)O/ Ta(t = )7 (5.7 (5))ga(s) ds
(R? /

+ 50 0/7}(75— s)h(s,pn( )) ds + po(t)

Again, from Eq. (2) it follows that

Qn-l—l(t) pn-‘rl

t
/ e 1h 5 sPnt1(s )) ds
0

ERQ
/72 (8, Pnt1(s)) ds — po(t)

:RV 4/ §) X (5, Pu(9)) @n(s) + h(5,pa(s))] ds
0

E(0)
_ ]z‘v(f /(t— )¢ "n(s,pnti(s)) d
0

https://www.journals.vu.lt/nonlinear-analysis
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which implies that

Gns1(t 5 / (5,2n(5))qn(s) + (s, pn(s))] ds
0

t

(t =) [T (5,pn(5))an(s) + (s, pn(s))] ds

0
0 ! ) RV(1—20)
P 0 /(t — S)Z ﬁ|ﬁ, Pn(8) — qn(s) — E(OL(¢)
0
x /(s—r)e_lT(T Pu(r))an(r) dr
€R2 /72 (r, (1)) g (7) dr‘| ds
£R2 RV(]. —6)
/72 [s Pn(s 7qn(s)7W

x/<sf P (v, (1)) () dr

2
ER /72 7" , P (1)) Gn (1) dr} ds.

Using Definition 8 with p = p,, and ¢ = —¢q,,, we get

523

g1
LR PR dL
7[la(s)|| ds + I7e(t = 9)l7]lan(5)]| ds
0 fies :
<P [0 ol s+ TEET [ 9 an(s)as
0 0
klk'gT(l*E T / [ 1
<|“sora ]/ Jen(e o
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Using induction, we obtain

T(k1kor(1—0)+T(14+£)7(k1)? D7) ]n+1

E(

gn1ll < @
C(1+ (n+1)0)

llqol- “4)

It follows from the definition of the ML function of order £ at the point

T(k‘lk‘gT(l - f) + F(l + E)T(k‘l)2D7*)
E(0) ’

that is,

M, (T(klk‘QT(l—f) -;(g()l—i‘f) ( ) Z

(T(klkzr(u)w(w)r(kl)%:)ﬂ )
E(0)

T'(1+nt) ’

n=0

that {¢,} - 0asn — ocoinY.

Our next step is to show that {p,,} converges to the mild solution of (1). Using (3)
and (4), we have

Hpn+1(t) - pn(t)H

/ YT (5,9 (3)) 4 (5) s

0

(R?
0] / ot~ (5. pn9)a(5)

t

IR V
an ’|+| Il HV / z—luqn(s)uds

0

ARI2Ds | 1
P WAEDE [y et s
0

R|||V|Iv(1 (RIZDT | .
< ()] + [II v (4) H 4 || T]/ &) |gn(s)]| ds
0

< lan(8)]| +

BE(OT(

< llga®)] + [’“k?”“ 0, k) DT} [t auo)las
0

E(OT(0) E(0)

[ kleV(l —é)TZ Tz(kl)gDT [T(klsz(l—Z)'i'Er(‘g-‘rZ)"'(kl) DT)]nH ”
S E(OT(1 +0) E(0) T(1 + nl) ol)-

https://www.journals.vu.lt/nonlinear-analysis
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Furthermore, for n > m > 0, we have

Ipn =l < prs1 — il

klkgl/(l —K)Tg Te(kl)zDT
< |1 ol

E(OT(1+0) E(0)
n=1 [Lluker(1=0+D04+07(k1)* D7) 1n
E(0)

8 Z I'(1+4nt)

k=m

Thus, {p,} is a Cauchy sequence in Y, which converges to a point p* in Y as
n — oo. Using (2), assumption (H;), and Lebesgue’s dominated convergence theorem,
we arrive at

0
_ é}é) nh_>rro10 Te(t — s)h(s,pn(s)) ds — po(t)
0
0=p"(t) — RV 1_€ /t—se "n(s,p*(s)) ds

0

(R? *
“ 50 O/ﬁ(t — s)h(s,p*(s)) ds — po(t),

which implies that

p*(t) = RS¢(t)po + —————= RV 1 ) / (t—s) e 1 Qw( )+ ﬁ(s,p*(s))] ds

0

v /7; w(s) + h(s,p*(s))] ds.

This proves that p* is a mild solution of Eq. (1).

Our next aim is to prove the uniqueness of the solution by utilizing the regularity
property of the integral contractor. To this end, for a fixed control w € L?([0,T], W), let

Nonlinear Anal. Model. Control, 28(3):516-537, 2023
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p1 and ps be two solutions of Eq. (1). Then we have

)= p1(8) = T / (t = )~ [h{s p2(5)) — h(5,1(5))] s

ERQ
/ To(t — )[A(s, pa(s)) — A(s, pr(s))] ds. )

According to Definition 9 with p = p; and z = ps — p1, the equation
t
RV(1-0) o
_ - A S _ 08
pa(®) = pa(8) = a(t) + e [ (6= (1 (9)a(s) ds
0

[2
R/T T (s,p1(s))q(s) ds ©)

admits a solution ¢ € Y. Combining Eq. (5) with (6), we obtain

p2(t) — pi(t)

CRV(I-0) | ) —
~ E(OT(0) O/(t‘s)e 1[71(3, pi(s) +als) +

S

X /(8 — O (&,p1(9)a(€) df) — n(s,p1(s))

0

=7 (s,p1(s))q(s)| ds

m /72 l (s pa(s )+Q<S)+REV(§)1F_(6§)

X /(S =9 (& p())a(€) df) — (s, p1(s))

0

https://www.journals.vu.lt/nonlinear-analysis
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Hence

X /(5 — O (& p1(9)a(©) df) — (s, p1(s))

0

—T(s,pa(s))a(s)| ds

2 _
gR /72 [ <s pi(s) +aq(s) + ngé)lr(é?

X /(3—5)2 1T(§,p1(§))q(£)d§> — N(s,p1(s))

0

- T(s,pl(s))q(s)l ds.
Using Definition 8, we have
/ g afs RV(1-0)
‘ 0/ [( pi(s) + 4(9) + “prr

X /(8 =T (E,pi(8))al€) d§> — h(s,p1(s))

0

— T(&pl(s))q(s)

2 _
R /72 l (s pi(s) +4q(s) + RE‘;é)lF(Z;)

X /(8 =& T (&pi(€))a(€) d€> — (s, p1(s))

0

la@®)|| =

ds

- r(s,m(s))q(s)] ds

LRIV =0 |
<t e

0

R

Nonlinear Anal. Model. Control, 28(3):516-537, 2023
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S

X /(S — ) (€,p1(8))a(©) d§> — h(s,p1(s))

0

- T(s,pl (s))q(s)

+ A / 7t - o) |

S

X /(S =T (& () al€) d£> —Ti(s,p1(s))

0

ds

RV(1—0)

(s, p1(s) +q(s) + BT

7 (s,m(s))als)| s

_akar(1-0) fie=ortacoa

E(OT(0)

2
KTDT kil /t—S)e_luq(S)HdS

0

¢
< [k‘lsz(l—ﬁ) ETDT k1 ]/t—s)e_lHq(s)Hds.
0

E@T(0)

Lemma 3 now implies that ||¢(¢)|| = 0 for all ¢ € [0,T], that is, ||¢|| = 0. Moreover,
from (6) we obtain that ||p2(t) — p1(t)|] = 0, which shows that py = po. Hence the
solution to Eq. (1) is unique as claimed. O

4 Controllability results

To establish exact controllability results, we use the following assumptions:

(H4) The linear equation corresponding to Eq. (1)
AEDgep(t) = Gp(t) + Qr(t), t € (0,7,
p(0) = po

is exactly controllable with control r.
(Hs) R(h) € R(Q).

Theorem 2. If assumptions (H1)—(Hs) hold true, then the fractional evolution equa-
tion (1) is exactly controllable.

https://www.journals.vu.lt/nonlinear-analysis


https://www.journals.vu.lt/nonlinear-analysis

On the solvability of the Atangana—Baleanu fractional evolution equations

Proof. Consider the linear AB fractional evolution equation
APDGq(t) = Pq(t) + Qr(t), t€(0,T],
q(0) = qo = .

Using Definition 5, we obtain

q(t) = RS(t

Also, consider the perturbed equation

ABDE.p(t) = Gp(t) + Qr(t) + h(t,p(t))
—h<t q(t é)lr 5 / $)" 1 (s,p(s)) (g — p)(s) ds
0
”RZ /n $))(q - p)(s)ds ) te (0,71,
p(0) =po=¢

with the mild solution

p(t) = RS,(t)¢

529

(7

t ¢
/2
O/t $)71Qr(s)ds + (€>0/72(t—5)627'(3)d5. 8)

s /t—sf [ )+ h(s. p(s >)—h<s,q<s>+RV“‘”

0
s

x / (s — & 17(,p(©)) (g — p) (€) de

0

2 S
i 2}(2) /72(8 —OT(&,p(6)(a—p)(E) dg)] ds
0

2
ER /72

« [iam e rene)a- mierae

(R [
TED / Te(s — T (&,0(6)) (g — p)(€) dgﬂ ds

Nonlinear Anal. Model. Control, 28(3):516-537, 2023
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Equations (1) and (9) imply that

Qu(t) = Qr(t) — (

RZ/% )(g— p><>d>,

which holds due to assumption (Hy).
Also, subtracting Eq. (9) from (8), we find that

/ )17 (s,p(s)) (¢ — p)(s) ds
0

q(t) —

https://www.journals.vu.lt/nonlinear-analysis
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Hence
la(t) = p(@)||
Fiko(1—0) | ) RV(1—10)
< “tgrar ¢ h( ) o

S

x / (s — O T (E.p(6)) (q — p)(€) de
0

2 El
T ﬁffm / Tils — OT(€.0(6)) (q — p)(E) d§>
0

— h(s,p(s)) = T (s,p(5)) (g — p)(s)

RV(1—0)
x / (s — O (E,p(6)) (q — p)(€) de
0

(R? |
50 / Tols — T (6.0(6) (4 — D)(©) dg)

— h(s,p(s) =T (s,p(s)) (g — p)(s)

ds

ds

k1k2 01
(t =) 7T (s.0()) (g = p)(5)|| ds
/
(s,p(5)) (g — p)(s)|| ds
kleT(l—é) /
<E<e>r<e>0/<”“”q Pl de
(1D (k1)?

e /(tfs“H(qu)(s)Hds

kk 1—€
/t = P as

0
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t
E D k 2
L [ 9 - pio) as
0

Feyko(1— 0 f 1
gE&()lI‘(K))(T—FV)/(t—S[ H )(S)Hds
0
+ wgéff)(””)/( s)' 7 (a = p)(s)|| ds,
0

which implies that

Jo(t) - w0 < (r-+0) [ 200 P Je= o= po)as
0

A direct application of Lemma 3 implies that ||¢(t) — p(t)|| = 0, thatis, ||¢ — p|| = 0.
Hence ¢(t) = p(t) for all t € Z'. Hence every mild solution of the linear equation (7)
is also a mild solution of the semilinear equation (9). Thus, K1 (0,r) C Kr(hw).
Moreover, it follows from assumption (Hy) that K7 (0,7) = Y. Hence Kr(h,w) =Y,
which ensures that Eq. (1) is exactly controllable over [0, T'. O

Next, we discuss trajectory controllability results for the following AB fractional
evolution equation:

ABDE, p(t) = Gp(t) + w(t) + h(t,p(t)), te€(0,T], (10)
p(0) = po,

where the linear operator G satisfies assumption (Hy ), the control w belongs to the control
space L2([0,T], W), and

(T¢) his a Lipschitz continuous function, that is, for 7 > 0 and p,q € Y,
[7(t, () = h(t, q(®)) || < 7][p(t) = q()]]-

It is clear by Remark 2 that if the function % is Lipschitz continuous, then (Hs) holds
with 7 = 0. Therefore, using Theorem 1, we may conclude that the control system (10)
has a unique mild solution in Y.

Let

U={qeC([0,T],Y): *BDf, q(t) exists V¢ € (0,1)
with ¢(0) = po and ¢(T) = py},

where p; denotes the desired final state. System (10) is called trajectory controllable if for
any g € U, there exists w € L*([0, 7], W) such that p(t) = ¢(t) for almost all ¢ € [0, T].

https://www.journals.vu.lt/nonlinear-analysis
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Consider a feedback control w(t) given by
w(t) = *FDg. q(t) = Gu(t) = h(t, q(1)). (1n)

Theorem 3. If (Hy), (Hs), and (T¢) hold true, then the fractional evolution equation (10)
is trajectory controllable.

Proof. Using the feedback control w given by (11), it follows from (10) that
APDGs [p(t) — a(®)] = Gp(t) — ()] + [A(t, p(1)) = A(t,q(1))],
p(0) = po.
Setting y(t) = p(t) — q(t) for all ¢ € [0, T], we obtain
ADGvy(t) = Gy(t) + [a(t,p(1)) — At q(t))], € (0,T],
y(0) = 0.

Using Definition 5, the mild solution is given by

_ <—e>t_sg_1 o 9(5)) — (s, a(s))] ds
W) = e O/<t ) [, p(s) — (s, a(s)]

IRIIVII(L-0) |
S RO /

t

|R|?
+HD / 756 — )15, p(s)) — (s, ()] s
Hence
oo < Bt / = o ote) - o) s

2D7— —1
: Ew)o/ ) 0

kikar(1—0)  r(k)?Dr] [ s
<[ “Sora 5w ]/ G- el 2

An application of Lemma 3 now yields ||y(¢)|| = 0. In other words, p(t) = ¢(¢) for almost
all t € [0, T, which confirms the trajectory controllability of Eq. (10). O
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S An application

Consider the following AB fractional evolution equation:

2
ABDngv(t’e) - iv(t,e) +w(t,€e) + Sin(l + v(t,e)), t € (0,1], e € [0, 7], (12)

v(0, €) = vy, v(t,0) =v(t,m) =0, te]l0,1],

where ¢ € (0,1). Let the space Y = W = L?|0, 7] and define the operator G : D(G) C
Y = Y by
82 12
Gv = wv(t,e) =", veDG),
with D(G) := {v € Y: v,v’ are absolutely continuous, v € Y, v(0) = v(1) = 0}.
Then -
Gv = Z m*(V, Uy )Um, v € D(G),

m=1

where v,,(s) = (v2/7)sin(ms), m € N, is the orthogonal set of eigenvectors of G.
Using [24], we see that G generates an analytic semigroup (S(t)):>0 in Y given by

Sty = Z e*m%(v,vm)vm7 veY, t>0.

m=1

Hence (S(t)):>0 is a uniformly bounded compact semigroup. In other words, R(u, G) :=
(uI — G)~! is a compact operator for all 1 € p(G), that is, G' generates an analytic
solution operator (S;(t)):>o with ||S¢(t)|| < Ds for t € [0, 1].

Let

p(t)(€) = v(t,e),
h(t,p(t))(e) = h(t, v(t,€))

and define the control operator Quw : [0, 1] — R by
(Quw)(t)(e) = w(t,e), €€ 0,7
Hence (1) is an abstract formulation of (12) given by
ABDE p(t) = Gu(t) + Qu(t) + h(t,p(t)), te (0,1],
p(0) = po-

Here the function 7(t, p(t)) = sin(1 + p(t)) is such that R(%) C R(Q), and the function
h has a regular integral contractor 77 = 0. Hence, using Theorem 1, we conclude that
Eq. (12) has a unique integral solution. If the linear equation corresponding to Eq. (12) is
exactly controllable, then, using Theorem 2, we see that Eq. (12) is exactly controllable
on [0, 1]. Moreover, from Theorem 3 it follows that Eq. (12) is trajectory controllable.

https://www.journals.vu.lt/nonlinear-analysis
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6 Conclusions

In this paper, we have successfully established sufficient conditions for the existence
of a unique solution, exact controllability, and trajectory controllability results for AB
fractional evolution equations. The results are established by applying a sequencing tech-
nique combined with a bounded integral contractor, the theory of fractional calculus,
and the generalized Gronwall inequality. An application is also presented to illustrate
the applicability of our results. By making some appropriate assumptions and using the
ideas presented in this paper, one can also establish existence and controllability results
for Atangana—Baleanu fractional stochastic differential equations.

Acknowledgment. Both authors are grateful to the anonymous referees and to the editor
for their useful comments and suggestions, which allowed them to improve the original
version of the manuscript.
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