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Abstract. The changes of seasons cause that the transmission of dengue fever is characterized by
periodicity. We develop a dengue fever transmission model incorporating seasonal periodicity and
spatial heterogeneity. Based on the well-posedness of solution for this model, we propose its basic
reproduction number R0, and we discuss the properties of this number including its limiting form
when the diffusion coefficients change. Moreover, the dynamical behavior of this model infers that
if R0 6 1, then the disease-free periodic solution is globally asymptotically stable, and if R0 > 1,
then the model possesses a positive periodic solution, which is globally asymptotically stable. These
theoretical findings are further illustrated by the final numerical simulations. Additionally, we add
that the similar problem has been investigated by M. Zhu and Y. Xu [A time-periodic dengue fever
model in a heterogeneous environment, Math. Comput. Simul., 155:115–129, 2019] in which some
dynamical results have been studied only on the cases R0 < 1 and R0 > 1. Our results not only
include the scenario on the case R0 = 1, but also involve the more succinct conditions on the cases
R0 < 1 and R0 > 1.

Keywords: dengue fever model, diffusion-reaction system, periodicity, global stability.

1 Introduction and model descripition

With the deterioration of global climate, the frequency of human activities, the aggra-
vation of environment pollution and the emergence of virus resistance, not only new
infectious diseases such as AIDS, SARS, Ebola and COVID-19 have emerged, but also the

*Research is supported in part by the NNSF of China (grant No. 11801009) and the NSF of Anhui Provence
(grant No. 2208085MA08).

© 2023 The Author(s). Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

https://orcid.org/0000-0002-2388-0771
https://orcid.org/0000-0003-3133-7119
mailto:min_zhuly@163.com
mailto:ftting1279129686@126.com
mailto:yxull@ahnu.edu.cn
mailto:jdcao@seu.edu.cn
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/


Global dynamics of a dengue fever model 555

original contagions such as malaria and dengue fever have appeared repeatedly. Dengue
fever (DF) is one of the most destructive mosquito-borne diseases globally. In 2014, the
World Health Organization (WHO) called it the fastest spreading insect-borne infectious
disease around the world [34]. Dengue is a kind of cute contagion in which mosquitoes,
especially, Aedes albopictus and Aedes aegypti form an intermediate step, as well as
dengue virus (DENV) is transmitted [37]. After being infected by DENV, mosquitoes
cannot only carry and transmit the virus for life, but also transmit the virus to their
offspring through their own eggs, this makes dengue fever erupt over and over again. The
World Health Report published by WHO has shown that the epidemic areas contaminated
by dengue expanded from original nine countries before 1970 to more than 100 countries
at present [35, 37]. America, Africa, Southeast Asia, the Western Pacific and the Eastern
Mediterranean are all high-risk areas. Therefore, human health is still seriously threatened
by infectious diseases including dengue fever, and the task of fighting against contagion
is even more arduous.

Mathematical modeling of infections diseases, as we know, has progressed dramati-
cally over the past 3 decades and continues to flourish at the relationship of epidemiol-
ogy, infectious diseases and mathematics research [12]. Take again DF example, some
mathematical epidemiology studies for dengue transmission were proposed. As far as
we know, Fischer and Halstead [10] first developed the mathematical model of DF in
1970. Next, a competitive exclusion principle in a two-strain dengue model was explored
by Feng and Velasco-Hernández [9]. Moreover, a classical SIR-SI dengue model was
also proposed by Esteva and Vargas in [8] in which the global stability of the endemic
equilibrium was investigated through the stability of periodic orbits. Except for the above
ordinary differential dengue models and others [6, 23, 27], there appear many models
described by partial differential equations. Wang and Zhao [21] considered a nonlocal
reaction-diffusion model of dengue transmission with time-delay and proved that for
spatially heterogeneous infections, if the basic reproduction number is computed through
the spatially averaged parameters, then the infection risk may be underestimated. In [18],
the authors explored a mathematical model, incorporating the spatially heterogeneous
temperature, and revealed that temperature heterogeneity could place a crucial impact on
transmission of dengue epidemics. The authors of [30] incorporated the media coverage
parameter and free boundary on the dengue transmission model, and investigated the
impact of media coverage and the virus expanding capability on the spreading of dengue.

Inspired by the modeling idea in [8], we first evolve a dengue fever model, which
characterizes the transmission mechanism of DF. Let Nh be the human population size,
and let Nv be the mosquito one in which Nh is assumed as a constant. According to [8],
the quantity change of mosquito population is described by the differential equation

N ′v = A− µvNv,

where A represents a constant recruitment, and µv is the per capita mortality rate of
mosquitoes. Obviously, the solutions Nv of this equation approach the equilibrium A/µv
as t→∞.

Since mosquitoes never recover once infected, we divide the mosquito population into
two subpopulations, that is, susceptible (Sv) and infectious (Iv). On the other hand, the
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research in [33] shows that dengue infection caused by one serotype will be permanently
immune to this virus, but to the other three viruses, it is only of short-time immunity,
even of no immunity. Therefore, recovery persons can very easily become the susceptible
again, and subsequent infection caused by the different serotype increases the risk of se-
vere syndrome. Based on this fact, human population is also divided into two subclasses,
that is, susceptible (Sh) and infectious (Ih). According to some related introduction in [8],
we know that the contagion rates of per susceptible mosquito and susceptible person are
embodied by

βvb
Nh

Nh +m

Ih
Nh

=
βvb

Nh +m
Ih and βhb

Nv
Nh

Nh
Nh +m

Iv
Nv

=
βhb

Nh +m
Iv,

respectively, where βv represents the infection probability from human to mosquito, βh
is the infection probability from mosquito to human, b is the average number of bites
per mosquito per day, in simple terms, the biting of mosquitoes, m means the number of
alternative hosts available as blood sources. Finally, motivated by the SIS compartment
model, we suppose that get treated or infected humans recover at a rate γh, and death rate
of human is µH , then preliminarily construct an ordinary differential dengue model as
follows:

S′h(t) = µhNh −
βhb

Nh +m
ShIv + γhIh − µHSh,

I ′h(t) =
βhb

Nh +m
ShIv − γhIh − µHIh,

S′v(t) = A− βvb

Nh +m
SvIh − µvSv,

I ′v(t) =
βvb

Nh +m
SvIh − µvIv,

Sh(0) > 0, Ih(0) > 0, Sv(0) > 0, Iv(0) > 0.

(1)

In epidemic models, the basic reproduction number encapsulates the contagiousness
of an infectious agent circulating in a host population and reflects the contagion risk of
infectious disease. Utilizing the method of next generation matrix [20], we can directly
calculate out the basic reproduction number of system (1)

R0 =

√
βhb

Nh+m
µhNh

µH
· βvb
Nh+m

A
µv

(γh + µH)µv
. (2)

Admittedly, ordinary differential system (1) describes the transmission process of DF,
but it does not embody the time periodicity and spatial heterogeneity of transmission for
infectious diseases. In [29], the authors stress that variations in climate and weather can
influence the Aedes mosquitoes and dengue virus through multiple mechanism. For exam-
ple, precipitation provides habits for the aquatic stages of the Aedes mosquito life cycle
and strongly affects mosquito distribution. The effects of precipitation and evaporation
on available water sources can regulate the size, population and behavior of Aedes. On
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the other hand, DF cases also present significant characteristics of spatial aggregation.
According to the China Notifiable Disease Surveillance System, the authors in [29] point
out that 49,290 local DF cases occurred in China between 2010 and 2014, with those in
the Pearl River Delta (PRD) and the Border of Yunnan and Myanmar (BYM) accounting
for 97.06%. Especially, the authors further indicate that the DF epidemic of the PRD was
highly aggregated, while that of the BYM was relatively decentralized. These informa-
tion claims that geographic heterogeneity is a significant factor in the spreading of DF.
Motivated by [13,19,24], we introduce the spatial heterogeneity and temporal periodicity
into the dengue model and extend model (1) as follows:

∂Sh
∂t

= ∇ ·
(
dh(x, t)∇Sh

)
+ µh

(
x,Nh(x, t)

)
Nh(x, t)− βh(x, t)b(x, t)

Nh(x, t) +m(x, t)
ShIv

+ γh(x, t)Ih − µH(x, t)Sh, (x, t) ∈ Ω × (0,∞),

∂Ih
∂t

= ∇ ·
(
dh(x, t)∇Ih

)
+

βh(x, t)b(x, t)

Nh(x, t) +m(x, t)
ShIv − γh(x, t)Ih − µH(x, t)Ih,

(x, t) ∈ Ω × (0,∞),

∂Sv
∂t

= ∇ ·
(
dv(x, t)∇Sv

)
+A(x, t)− βv(x, t)b(x, t)

Nh(x, t) +m(x, t)
SvIh − µv(x, t)Sv,

(x, t) ∈ Ω × (0,∞),

∂Iv
∂t

= ∇ ·
(
dv(x, t)∇Iv

)
+

βv(x, t)b(x, t)

Nh(x, t) +m(x, t)
SvIh − µv(x, t)Iv,

(x, t) ∈ Ω × (0,∞),

∂Sh
∂ν

=
∂Ih
∂ν

=
∂Sv
∂ν

=
∂Iv
∂ν

= 0, (x, t) ∈ ∂Ω × (0,∞).

(3)

Here Ω is the spatial habitat with smooth boundary ∂Ω, and ν is the outward unit normal
vector on ∂Ω. Motivated by the idea in [4], we assume that µh, representing the birth
rate of human, is a nonnegative function. Two prototypical birth rate functions in the
biological literature are µh(x, u) = bhe−u/K(x) and

µh(x, u) =

{
bh[1− u

K(x) ], 0 6 u 6 K(x), x ∈ Ω̄,
0, u > K(x), x ∈ Ω̄,

where bh > 0 is the maximal individual birth rate of human, as well as K(x) stands for
the local carrying capacity and is supposed to be a positive function of location x.

Concurrently we raise the following basic assumption.

(A1) Functions βh(x, t), b(x, t), βv(t, x),m(x, t) 6≡ 0, γh(x, t), µH(x, t) and
µv(x, t) are all positive nontrivial, and all of which are Hölder-continuous on
Ω̄ × R and T -periodic in t; diffusion coefficients dh(x, t) and dv(x, t) are
positive and Hölder-continuous on Ω̄ × R and T -periodic in t.
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Since Nh = Sh + Ih, it follows from the first two equations in (3) that

∂Nh(x, t)

∂t
= ∇ ·

(
dh(x, t) · ∇Nh(x, t)

)
+ µh

(
x,Nh(x, t)

)
Nh(x, t)

− µH(x, t)Nh(x, t), x ∈ Ω, t > 0,

∂Nh(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0.

(4)

According to Theorems 3.1.5 and 3.1.6 in [28], system (4) admits a unique positive
T -periodic steady state H∗(x, t) in C(Ω̄,R+) \ {0}, which is globally attractive under
appropriate assumptions, that is,

lim
t→∞

Nh(x, t) = H∗(x, t)

uniformly in x ∈ Ω̄ for t > 0.
Furthermore, we set V = Sv + Iv and deduce by (3) that

∂V (x, t)

∂t
= ∇ ·

(
dv(x, t) · ∇V (x, t)

)
+A(x, t)

− µv(x, t)V (x, t), x ∈ Ω, t > 0,

∂V (x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0.

(5)

Through [25, Lemma 2.1], system (5) also admit the unique positive T -periodic steady
state V ∗(x, t), which is globally asymptotically stable in C(Ω̄,R+) \ {0}, so one has

lim
t→∞

V (x, t) = V ∗(x, t)

uniformly in x ∈ Ω̄ for t > 0. Putting (u1, u2) := (Ih, Iv), one derives that the limiting
system for (3) takes the form

∂u1

∂t
= ∇ ·

(
dh(x, t) · ∇u1

)
+ β1(x, t)

(
H∗(x, t)− u1

)
u2

− γh(x, t)u1 − µH(x, t)u1, x ∈ Ω, t > 0,

∂u2

∂t
= ∇ ·

(
dv(x, t) · ∇u2

)
+ β2(x, t)

(
V ∗(x, t)− u2

)
u1

− µv(x, t)u2, x ∈ Ω, t > 0,

∂u1

∂ν
=
∂u2

∂ν
= 0, x ∈ ∂Ω, t > 0,

(6)

with the initial function

(u1, u2)(0, x) =
(
φ1(x), φ2(x)

)
, x ∈ Ω̄.

Here we denote

β1(x, t) :=
βh(x, t)b(x, t)

H∗(x, t) +m(x, t)
, β2(x, t) :=

βv(x, t)b(x, t)

H∗(x, t) +m(x, t)
(7)

for the convenience of writing.
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In this paper, we will be interested primarily in the effects of the time periodicity and
space heterogeneity in the distribution of human and mosquito populations on the dengue
spreading dynamics. The forthcoming content of the paper is described briefly below.
Section 2 is concerned with the well-posedness of system (6). The basic reproduction
numberR0 of model (6) and its relevant properties are exhibited in Section 3. In Section 4,
we establish the threshold-type conclusion on the global stability with respect to R0.
Finally, some numerical simulations and brief discussion further reveal the influence of
temporal periodicity on the dengue virus in the heterogeneous environment.

2 The well-posedness for system (6)(6)(6)

Facing system (6), we endeavor to solve the existence, uniqueness and boundedness of
its solutions in this section. First, for any t > 0, let X := C(Ω̄,R) and W := C(Ω̄,R2)
be Banach spaces with the supremum norms ‖·‖X and ‖·‖W, respectively. Further, define
X+ := C(Ω̄,R+), W+ := C(Ω̄,R2

+) and

W (t) :=
{

(ϕ1, ϕ2) ∈W+: 0 6 ϕ1(x) 6 H∗(x, t),

0 6 ϕ2(x) 6 V ∗(x, t) ∀x ∈ Ω̄
}

(8)

for each t > 0. We have the following statement.

Theorem 1. Let (A1) holds. For any φ = (φ1, φ2) ∈ W (0), system (6) possesses a
unique solution u(·, t, φ) = (u1(·, t, φ), u2(·, t, φ)) ∈W (t) with u(·, 0, φ) = φ for t > 0,
and this solution is uniformly bounded and ultimately bounded.

Proof. Set E1(t, s), E2(t, s) : X → X, t > s, to be the linear evolution operator caused
by

∂v1

∂t
= ∇ ·

(
dh(x, t)∇v1

)
− γh(x, t)v1 − µH(x, t)v1 (9)

and
∂v2

∂t
= ∇ ·

(
dv(x, t)∇v2

)
− µv(x, t)v2 (10)

for (x, t) ∈ Ω × (0,∞) and associated with the Neumann boundary condition, respec-
tively. Noting that γh(x, t), µH(x, t) and µv(x, t) are all T -periodic in t, one can conclude
that Ei(t + T, s + T ) = Ei(t, s) for any (t, s) ∈ R2, i = 1, 2, with t > s, as well as
Ei(t, s) is compact and strongly positive.

For any η = (η1, η2) ∈W and t > 0, we further define

F1(η, t) = F1(η1, η2, t) := β1(·, t)
(
H∗(·, t)− η1(·)

)
η2(·),

F2(η, t) = F2(η1, η2, t) := β2(·, t)
(
V ∗(·, t)− η2(·)

)
η1(·)

and

E(t, s) = diag
(
E1(t, s), E2(t, s)

)
, F = (F1, F2) : W× [0,∞)→W. (11)
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Thus, system (6) can be written as

u1(·, t, φ) = E1(t, 0)φ1(·) +

t∫
0

E1(t, s)F1

(
u(s), s

)
ds,

u2(·, t, φ) = E2(t, 0)φ2(·) +

t∫
0

E2(t, s)F2

(
u(s), s

)
ds.

In this way, system (6) can be translated into an abstract integral equation

u(t, φ) = E(t, 0)φ+

t∫
0

E(t, s)F
(
u(s), s

)
ds ∀t > 0, φ ∈W.

In what follows, we claim that F is quasimonotone onW := {(ϕ, t) ∈W+×[0,∞), ϕ ∈
W (t)}, in other words,

lim
h→0+

1

h
dist

(
(ϕ− ψ) + h

[
F (ϕ, t)− F (ψ, t)

]
, W+

)
= 0 (12)

holds for all (ϕ, t), (ψ, t) ∈W with ϕ > ψ.
Actually, for any given (ϕ, t), (ψ, t) ∈W , the precondition ϕ > ψ can lead to

ϕ− ψ + h
[
F (ϕ, t)− F (ψ, t)

]
=

(
ϕ1(·)− ψ1(·) + h

[
β1(·, t)(H∗(·, t)− ϕ1(·))ϕ2(·)− β1(·, t)(H∗(·, t)− ψ1(·))ψ2(·)

]
ϕ2(·)− ψ2(·) + h

[
β2(·, t)(V ∗(·, t)− ϕ2(·))ϕ1(·)− β2(·, t)(V ∗(·, t)− ψ2(·))ψ1(·)

])
=

(
(1− hβ1(·, t)ψ2(·))(ϕ1(·)− ψ1(·)) + hβ1(·, t)(H∗(·, t)− ϕ1(·))(ϕ2(·)− ψ2(·))
(1− hβ2(·, t)ψ1(·))(ϕ2(·)− ψ2(·)) + hβ2(·, t)(V ∗(·, t)− ϕ2(·))(ϕ1(·)− ψ1(·))

)
>

(
(1− hβM

1 ψ2(·))(ϕ1(·)− ψ1(·)) + hβm
1 (H∗(·, t)− ϕ1(·))(ϕ2(·)− ψ2(·))

(1− hβM
2 ψ1(·))(ϕ2(·)− ψ2(·)) + hβm

2 (V ∗(·, t)− ϕ2(·))(ϕ1(·)− ψ1(·))

)
,

where βmi = minx∈Ω̄,t∈[0,T ] βi(x, t), βMi = maxx∈Ω̄, t∈[0,T ] βi(x, t), i = 1, 2. The
above inequality set shows (ϕ − ψ) + h[F (ϕ, t) − F (ψ, t)] ∈ W+ for all sufficiently
small h > 0, hence, (12) is valid.

Meanwhile, we know that H∗(x, t) and V ∗(x, t) meet with (4), (5), respectively,
which combined with assumption (A1) can result in the following inequalities:

∂H∗(x, t)

∂t
> ∇ ·

(
dh(x, t) · ∇H∗(x, t)

)
− µH(x, t)H∗(x, t) (13)

and
∂V ∗(x, t)

∂t
> ∇ ·

(
dv(x, t) · ∇V ∗(x, t)

)
− µv(x, t)V ∗(x, t). (14)

Therefore, we choose u+(t) = (H∗(·, t), V ∗(·, t)), u−(t) = (0, 0), and we set S+ =
S− = S = ∅, B+ = B− = F , which can verify assumptions (C1)–(C6) in [16]. So
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it follows form Corollary 5 in [16] that for any φ ∈ W (0), system (6) has a unique
solution u(·, t, φ) with u(·, 0, φ) = φ such that u(·, t, φ) ∈W (t), where t is in its maximal
existence interval [0, tφ), and tφ 6∞. Additionally, in terms of the analyticity of E(t, s)
with (t, s) ∈ R2, t > s, we know that u(·, t, φ) with initial value φ ∈ W (0) is a classical
solution and exists globally on [0,+∞).

Besides, it is obvious that u+(t) = (H∗(·, t), V ∗(·, t)) is an upper solution of (6)
through (13) and (14) again, and W (t) is a bounded domain with respect to (ϕ1, ϕ2) for
any t > 0, so one can directly conclude that the solutions of (6) are uniformly bounded
and ultimately bounded, which means that the proof is completed.

3 Basic reproduction number and its properties

The basic reproduction number R0 of ODE system (1) has been exhibited in (2) through
the next generation matrix method. In this section, the one of PDE systems (3) and (6)
will be introduced by the spectral radius of next infection operator [28]. Then we will
exhibit a threshold-type result and some relevant properties about this number.

LetCT (R,W) be the Banach space consisting of continuous and T -periodic functions
from R to W for which ‖ϕ‖CT (R,W) = maxζ∈[0,T ] ‖ϕ(ζ)‖W for any ϕ ∈ CT (R,W).
Now, we linearize system (6) at the disease-free equilibrium, that is, periodic null-solution
(0, 0), and acquire

∂u1

∂t
= ∇ ·

(
dh(x, t)∇u1

)
+ β1(x, t)H∗(x, t)u2

− γh(x, t)u1 − µH(x, t)u1, (x, t) ∈ Ω × (0,∞),

∂u2

∂t
= ∇ ·

(
dv(x, t)∇u2

)
+ β2(x, t)V ∗(x, t)u1 − µv(x, t)u2,

(x, t) ∈ Ω × (0,∞),

∂u1

∂ν
=
∂u2

∂ν
= 0, (x, t) ∈ ∂Ω × (0,∞).

(15)

Define the function vector v(x, t) = (u1(x, t), u2(x, t))T and matrixes

J(x, t) =

(
0 β1(x, t)H∗(x, t)

β2(x, t)V ∗(x, t) 0

)
,

Γ (x, t) =

(
γh(x, t) + µH(x, t) 0

0 µv(x, t)

)
,

(16)

as well as the operator
D(·, t)v = ∇ ·

(
d(·, t)∇v

)
,

where d(·, t) = diag(dh(·, t), dv(·, t)). Then system (15) can be simplified as

∂v

∂t
= D(x, t)v + J(x, t)v − Γ (x, t)v, x ∈ Ω̄, t > 0.
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According to the definitions (9), (10) and (11), we know that E(t, s) is the evolution
family on W caused by the linear system

∂v

∂t
= D(x, t)v − Γ (x, t)v, (x, t) ∈ Ω × (0,∞),

∂v

∂ν
= 0, (x, t) ∈ ∂Ω × (0,∞).

Following [14], we further define a linear operator on CT (R,W) by

[Lv](t) :=

∞∫
0

E(t, t− s)J(·, t− s)v(·, t− s) ds ∀v ∈ CT (R,W), t ∈ R.

Thus, we obtain the basic reproduction number of systems (6), which is the spectral radius
of L,

R0 := ρ(L). (17)

Naturally, this number R0 is just the basic reproduction number of system (3).
For any given t > 0, set Q(t) to be the solution map of system (15) on W, that is,

Q(t)φ = v(t, φ), where v(t, φ)(x) = v(x, t, φ) is the unique solution of system (15) with
v(x, 0, φ) = φ(x). Then Q := Q(T ) is the Poincaré map encountered with problem
(15). Let ρ(Q) be the spectral radius of Q, then we have the following result through [14,
Theorem 3.7] with τ = 0.

Lemma 1. sign(R0 − 1) = sign(ρ(Q)− 1), that is, both of which have the same sign.

Additionally, if we set τ = 0, X = W, and F (t)(x) = J(x, t), then one can verify
that (H1), (H2) and (H6) in [14] hold, so that it follows from Proposition 3.9 and Theorem
3.8 in [14] that the forthcoming results hold.

Lemma 2. The basic reproduction number R0 = µ0, where µ0 is the unique principal
eigenvalue of the periodic parabolic eigenvalue problem

∂φ

∂t
= ∇ ·

(
dh(x, t) · φ

)
+

1

µ
β1(x, t)H∗(x, t)ψ − γh(x, t)φ

− µH(x, t)φ, (x, t) ∈ Ω × (0,∞),

∂ψ

∂t
= ∇ ·

(
dv(x, t) · ψ

)
+

1

µ
β2(x, t)V ∗(x, t)φ− µv(x, t)ψ,

(x, t) ∈ Ω × (0,∞),

∂φ

∂ν
=
∂ψ

∂ν
= 0, (x, t) ∈ ∂Ω × (0,∞),

φ(x, 0) = φ(x, T ), ψ(x, 0) = ψ(x, T ), x ∈ Ω,

(18)

and the eigenfunction pair (φ, ψ) ∈ CT (R,W)×CT (R,W), and φ, ψ > 0 in Ω̄× [0,∞).
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In fact, if the relevant coefficients are all constants, then we can give the explicit
expression about R0.

Theorem 2. Suppose that g(x, t) ≡ g when g = β1, β2, H∗, V ∗, γh, µH , µv are all
positive constants in (6), that is, suppose that

βh(x, t)b(x, t)

H∗(x, t) +m(x, t)
≡ βhb

H∗ +m
,

βv(x, t)b(x, t)

H∗(x, t) +m(x, t)
≡ βvb

H∗ +m

hold in (6) and (7). Then R0 is expressed by

R0 =

√
β1H∗ · β2V ∗

(γh + µH)µv
.

Proof. Choose φ∗(x, t) ≡ 1 in Ω × (0,∞), and

C =

√
(γh + µH) · β2V ∗

µv · β1H∗
, R =

√
β1H∗ · β2V ∗

(γh + µH)µv
.

We can directly check that (φ, ψ;µ) = (φ∗, Cφ∗;R) is one positive solution of prob-
lem (18). So one can obtain R0 = µ0 = R in terms of the uniqueness of the principal
eigenpair for (18).

Denote
gm = min

Ω̄×[0,T ]
g(x, t), gM = max

Ω̄×[0,T ]
g(x, t).

It is straightforward to obtain the following estimate through Theorem 2 and the mono-
tonicity of the eigenvalue on some relevant coefficients [1, 3].

Corollary 1. Under the assumptions of Theorem 2, the basic reproduction number R0

for problem (6) satisfies√
βm1 H

∗ · βm2 V ∗
(γMh + µH)µv

6 R0 6

√
βM1 H∗ · βM2 V ∗

(γmh + µH)µv
. (19)

We now assume that the diffusion coefficients in system (6) satisfy

dh(x, t) = d1δh(x, t), dv(x, t) = d2δv(x, t),

where both d1 and d2 are positive constants. Then R0 defined in (17) can be also writ-
ten as R0(d1, d2). Subsequently, we discuss the asymptotic behavior of R0(d1, d2) as
max(d1, d2)→ 0 and min(d1, d2)→ +∞. For this, we first define the space

Z :=
{
z ∈ C

(
R,R2

)
: z(t) = z(t+ T ), t ∈ R

}
and denote

¯̄h(t) =
1

|Ω|

∫
Ω

h(x, t) dx.
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For any x ∈ Ω̄, let {Ex,0(t, s): t > s} be the evolution family on R2 of

∂u1

∂t
= −γh(x, t)u1 − µH(x, t)u1, x ∈ Ω̄, t > 0

∂u2

∂t
= −µv(x, t)u2, x ∈ Ω̄, t > 0,

that is,

Ex,0(t, s)φ(·) =
(
φ1(·)e−

∫ t
s

(γh(·,τ)+µH(·,τ)) dτ , φ2(·)e−
∫ t
s
µv(·,τ) dτ

)
, φ ∈W.

Using the definition of J(x, t) in (16) again, we define a positive bounded linear operator
Lx,0 : Z→ Z by

[Lx,0z](t) :=

∞∫
0

Ex,0(t, t− s)J(x, t− s)z(t− s) ds ∀z ∈ Z, t ∈ R.

Furthermore, we set {E∞(t, s): t > s} to be the evolution family on R2 of

∂u1

∂t
= −¯̄γh(t)u1 − ¯̄µH(t)u1, x ∈ Ω̄, t > 0,

∂u2

∂t
= − ¯̄µv(t)u2, x ∈ Ω̄, t > 0,

that is,

E∞(t, s)φ(·) =
(
φ1(·)e−

∫ t
s

(¯̄γH(τ)+¯̄µH(τ)) dτ , φ2(·)e−
∫ t
s
µv(τ) dτ

)
, φ ∈W,

and define
¯̄J(t) =

(
0 ¯̄hβH(t)

¯̄hβV (t) 0

)
, t ∈ R,

where

¯̄hβH(t) :=
1

|Ω|

∫
Ω

β1(x, t)H∗(x, t) dx, ¯̄hβV (t) :=
1

|Ω|

∫
Ω

β2(x, t)V ∗(x, t) dx.

Now, we introduce another bounded linear positive operator L∞ : Y→ Y by

[L∞z](t) :=

∞∫
0

E∞(t, t− s) ¯̄J(t− s)z(t− s) ds ∀z ∈ Z, t ∈ R.

Finally, we define R0(0, x) := ρ(L0,x), x ∈ Ω̄, and R0(∞) := ρ(L∞). According to
Theorem 4.1 in [26], one can acquire the trends of threshold value R0(d1, d2).

Lemma 3. R0(d1, d2) admits the following properties:

lim
max(d1,d2)→0

R0(d1, d2) = max
x∈Ω̄
R0(0, x)

and

lim
min(d1,d2)→+∞

R0(d1, d2) = R0(∞).
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4 The global dynamics of solution to system (6)(6)(6)

According to Theorem 1, we still let u(x, t, φ) = (u1(x, t, φ1), u2(x, t, φ2)) be the unique
solution of (6) with u(x, 0, φ) = (u1(x, 0, φ1), u2(x, 0, φ2)) = (φ1, φ2). For any given
t > 0, we define an operator G(t) : W (0)→W (t) by

G(t)(φ)(x) = u(x, t, φ) ∀φ ∈W (0), x ∈ Ω̄,

where W (t) has been defined by (8), so G(t) is a T -periodic semiflow, and

G := G(T ) : W (0)→W (T ) = W (0)

is the Poincaré map associated with system (6). The following theorem presents a char-
acteristic of map G(t).

Lemma 4. For each t > 0, the mapG(t) : W (0)→W (t) is strongly monotone. In other
words, for any ψ and φ in W (0) with ψ > φ (that is, ψ > φ but ψ 6≡ φ), the solution
ū(·, t, ψ) and u(·, t, φ) of system (6) with ū(·, 0, ψ) = ψ, u(·, 0, φ) = φ, respectively,
meet with ū(·, t, ψ)� u(·, t, φ) for all t > 0.

Proof. From the comparison principle for cooperative parabolic system, obviously, one
has ūi(·, t, ψ) > ui(·, t, φ) for all t > 0, i = 1, 2. Let ψ, φ ∈ W (0) satisfy ψ > φ, and
define

ū(·, t) = ū(·, t, ψ) =
(
ū1(·, t, ψ1), ū2(·, t, ψ2)

)
,

u(·, t) = u(·, t, φ) =
(
u1(·, t, φ1), u2(·, t, φ2)

)
.

Without loss of generality, we suppose ψ1(·) > φ1(·). Clearly, it follows from (6) that

∂(ū1 − u1)

∂t
= ∇ ·

(
dh(x, t)∇(ū1 − u1)

)
+ β1(x, t)H∗(x, t)(ū2 − u2)

− β1(x, t)ū1ū2 + β1(x, t)u1u2 −
(
γh(x, t) + µH(x, t)

)
(ū1 − u1)

= ∇ ·
(
dh(x, t)∇(ū1 − u1)

)
+ β1(x, t)

(
H∗(x, t)− ū1

)
(ū2 − u2)

− β1(x, t)u2(ū1 − u1)−
(
γh(x, t) + µH(x, t)

)
(ū1 − u1)

> ∇ ·
(
dh(x, t)∇(ū1 − u1)

)
− β1(x, t)u2(ū1 − u1)

−
(
γh(x, t) + µH(x, t)

)
(ū1 − u1)

for x ∈ Ω̄, t > 0, and

∂(ū1 − u1)

∂ν
= 0, x ∈ ∂Ω, t > 0,

ū1(x, 0)− u1(x, 0) = ψ1(x)− φ1(x) > 0, x ∈ Ω̄.

As an application of the maximal principle and parabolic comparison theorem, it turns
out that ū1(x, t) > u1(x, t) for t > 0, x ∈ Ω̄, that is, ū1(·, t) � u1(·, t), t > 0. With
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the same manner as ū1 and u1, we can also obtain ū2(·, t) � u2(·, t) for each t > 0,
provided with ψ2(·) > φ2(·). Afterwards, it suffices to prove that ū2(·, t) � u2(·, t) for
t > 0 on the case ψ1(·) > φ1(·), ψ2(·) ≡ φ2(·).

First, we claim that ū2(·, t) > u2(·, t) for all t > 0. In fact, were the stated result false,
there would exist some t0 > 0 such that ū2(t0, ·) = u2(t0, ·). Naturally, the maximum
principle guarantees ū2(·, t) = u2(·, t) for all t ∈ [0, t0], which leads to

∂ū2(x, t)

∂t
=
∂u2(x, t)

∂t
∀x ∈ Ω̄, t ∈ [0, t0].

Recalling the second equation in (6) again, hence, one acquires

β2(·, t)
(
V ∗(·, t)− u2(·, t)

)(
ū1(·, t)− u1(·, t)

)
= 0 ∀t ∈ [0, t0].

Noting that ū1(·, t)� u1(·, t) for all t > 0, the above equality leads to V ∗(·, t) = u2(·, t)
for all t ∈ (0, t0]. Therefore, the second equation in (6) implies that

∂V ∗(x, t)

∂t
= ∇ ·

(
dv(x, t)∇V ∗(x, t)

)
− µv(x, t)V ∗(x, t) ∀t ∈ (0, t0],

which contradicts with (14). So the claim is valid.
In what follows, we denote

f(x, t, w) = ∇ ·
(
dv(x, t)∇w

)
+ β2(x, t)

(
V ∗(x, t)− w

)
u1(x, t)

− µv(x, t)w x ∈ Ω̄, t > 0,

and then acquire

∂ū2

∂t
= ∇ · (dv(x, t)∇ū2) + β2(x, t)

(
V ∗(x, t)− ū2

)
ū1 − µv(x, t)ū2

> ∇ ·
(
dv(x, t)∇ū2

)
+ β2(x, t)

(
V ∗(x, t)− ū2

)
u1 − µv(x, t)ū2 = f(x, t, ū2),

which results in

∂ū2

∂t
− f(x, t, ū2) >

∂u2

∂t
− f(x, t, u2), x ∈ Ω, t > 0,

with ∂ū2/∂ν = ∂u2/∂ν = 0, x ∈ ∂Ω, t > 0. Meanwhile, the above claim shows that
ū2(t1, ·) > u2(t1, ·) for any given t1 > 0. Therefore, it follows that ū2(·, t) � u2(·, t)
for all t > t1 by using the parabolic maximum principle. Since t1 is arbitrary, one has
ū2(·, t) � u2(·, t) for all t > t1, which means that ū2(·, t, φ) � u2(·, t, ψ) holds for all
t > 0 by the arbitrariness of t1. Hence, ū(·, t, φ)� u(·, t, ψ) for all t > 0.

Below we exhibit the main results of this section in detail.

Theorem 3. The following statements holds:

(i) IfR0 > 1, then system (6) admits a unique positive T -periodic solution (u∗1(x, t),
u∗2(x, t)), which is globally asymptotically stable for system (6) inE(0)\{(0, 0)}.

(ii) IfR0 6 1, then the disease-free periodic solution (0, 0) is globally asymptotically
stable for system (6) in W (0).
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Proof. Our arguments are inspired by those of [13, Thm. 1]. For any given φ ∈ W (0),
λ ∈ [0, 1], we suppose u(x, t, φ) and u(x, t, λφ) be the solutions of system (6) associated
with u(x, 0, φ) = φ(x) and u(x, 0, λφ) = λφ(x), x ∈ Ω̄, respectively.

Define
w(x, t) := λu(x, t, φ) =

(
w1(x, t), w2(x, t)

)
,

then one has

∂w1

∂t
= λ

∂u1

∂t

= ∇·
(
dh(x, t)∇(λu1)

)
+β1(x, t)

(
H∗(x, t)−u1

)
λu2−

(
γh(x, t)+µH(x, t)

)
λu1

6 ∇·
(
dh(x, t)∇(λu1)

)
+β1(x, t)

(
H∗(x, t)−λu1

)
λu2−

(
γh(x, t)+µH(x, t)

)
λu1

= ∇·
(
dh(x, t)∇w1

)
+β1(x, t)

(
H∗(x, t)−w1

)
w2−

(
γh(x, t)+µH(x, t)

)
w1.

Similarly,

∂w2

∂t
6 ∇ ·

(
dv(x, t)∇w2

)
+ β2(x, t)

(
V ∗(x, t)− w2

)
w1 − µv(x, t)w2.

Therefore, w(x, t) is a lower solution of system (6) with w(x, 0) = λu(x, 0, φ) = λφ,
which means that λu(x, t, φ) 6 u(x, t, λφ) for all t > 0, x ∈ Ω̄. Thus, the solution map
G(t) : W (0)→W (t) is subhomogeneous.

In what follows, we claim that G(t) : W (0) → W (t) is strictly subhomogeneous for
each t > 0, that is, for all λ ∈ (0, 1), φ ∈ W (0) with φ � 0, there holds G(t)(λφ) >
λG(t)φ, which is equivalent to u(·, t, λφ) > λu(·, t, φ).

Actually, for any φ ∈W (0) with φ 6≡ 0, λ ∈ (0, 1), we set

z(x, t) = u(x, t, λφ)− λu(x, t, φ).

Then z(x, 0) = 0, z(x, t) > 0 for (x, t) ∈ Ω̄ × [0,∞). We further indicate z(x, t) > 0
for all (x, t) ∈ Ω̄ × (0,∞).

Because one can calculate out

∂z1

∂t
=
∂u1(x, t, λφ)

∂t
− λ∂u1(x, t, φ)

∂t

= ∇·
(
dh(x, t)∇u1(x, t, λφ)

)
+ β1(x, t)

(
H∗(x, t)− u1(x, t, λφ)

)
u2(x, t, λφ)

−
(
γh(x, t) + µH(x, t)

)
u1(x, t, λφ)

− λ
[
∇ ·
(
dh(x, t)∇u1(x, t, φ)

)
+ β1(x, t)

(
H∗(x, t)− u1(x, t, φ)

)
u2(x, t, φ)

−
(
γh(x, t) + µH(x, t)

)
u1(x, t, φ)

]
= ∇·

(
dh(x, t)∇z1) + β1(x, t)

(
H∗(x, t)− u1(x, t, λφ)

)
u2(x, t, λφ)

− λβ1(x, t)
(
H∗(x, t)− u1(x, t, φ)

)
u2(x, t, φ)−

(
γh(x, t) + µH(x, t)

)
z1

= ∇·
(
dh(x, t)∇z1

)
−β1(x, t)u2(x, t, λφ)z1+β1(x, t)

(
H∗(x, t)−λu1(x, t, φ)

)
z2

−
(
γh(x, t) + µH(x, t)

)
z1 + g(x, t)

> ∇·
(
dh(x, t)∇z1

)
− β1(x, t)u2(x, t, λφ)z1 −

(
γh(x, t)+µH(x, t)

)
z1 + h(x, t),
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where h(x, t) = λβ1(x, t)u2(x, t, φ)[u1(x, t, φ) − λu1(x, t, φ)], one can acquire that
h(x, t) > 0 from the fact u2(x, t, φ) > 0 created by Theorem 1.

Owing to the boundedness of u2(x, t, λφ), there exists a positive constantK such that

∂z1

∂t
> ∇ · (dh(x, t)∇z1)−Kz1 + h(x, t).

Put Ê(t, s) : X→ X, 0 6 s 6 t, be the evolution operator of

∂U

∂t
= ∇ ·

(
dh(x, t)∇U

)
−K · U, x ∈ Ω, t > 0,

∂U

∂ν
= 0, x ∈ ∂Ω, t > 0.

Then the solution of problem

∂U

∂t
= ∇ ·

(
dh(x, t)∇U

)
−K · U + h(x, t), x ∈ Ω, t > 0,

∂U

∂ν
= 0, x ∈ ∂Ω, t > 0, U(x, 0) = ϕ ∈ X, x ∈ Ω̄,

(20)

can be expressed by

U(x, t, ϕ) = Ê(t, 0)(ϕ)(x) +

t∫
0

Ê(t, s)h(x, s) ds, x ∈ Ω̄, t > 0, ϕ ∈ X. (21)

In view of h(x, t) > 0 for (x, t) ∈ Ω̄× (0,∞), it follows that the solution of (20) satisfies
U(x, t, ϕ) > 0 for any ϕ > 0 with ϕ 6≡ 0 from equation (21) and the properties of Ê(t, s).
Hence, we acquire z1(x, t) > 0. Similarly, z2(x, t) > 0. Then u(·, t, λφ) > λu(·, t, φ),
which means that G(t)(λφ) > λG(t)(φ) for all t > 0. So the map G(t) is strictly
subhomogeneous.

Considering the continuity and differentiability of solutions about the initial value,
furthermore, we know that G := G(T ) is differentiable at zero and its Fréchet derivate
is DG(0) = Q. By analyzed above and Theorem 4, one can yield that G is a strictly
subhomogeneous and strongly monotone map on W (0). Because G(t) is compact for
any t > 0, G is asymptotically smooth on W (0). Meanwhile, Q is also compact and
strongly positive. According to [28, Thm. 2.3.4] and [22, Lemma2.1], for G, we come to
the following threshold-type result:

(i) If ρ(Q) > 1, then system (6) possesses a unique positive T -periodic solution
(u∗1(x, t), u∗2(x, t)), which is globally asymptotically stable for system (6) in
W (0) \ {(0, 0)}.

(ii) If ρ(Q) 6 1, then (0, 0) is globally asymptotically stable for system (6) in W (0).

Combining with Lemma 1, we directly obtain the desired result in terms of R0.
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5 Numerical Simulations and discussion

To further understand the seasonal periodicity on the transmission of dengue fever, we
carry out some numerical simulations in this section. Specifically, we apply system (6) to
Guangzhou, which is one of cities that breaks out dengue fever most easily in China.

In Guangzhou, it is largely Ae.albopictus that transmits dengue fever [5]. The litera-
ture [17] emphasis that all mosquito traits relevant to transmissionbiting, egg-to-adult sur-
vival and development, fecundityrespond strongly to temperature and peak between 23 ◦C
and 34 ◦C for Ae.aegypti and Ae.albopictus. This literature further shows that Ae.albo-
pictus transmission peaked at 26.4 ◦C and declined to zero below 16.2 ◦C and above
31.6 ◦C. Based on these information, we can assume that the biting rate and transmission
probability are significantly affected by temperature. In Guangzhou, additionally, the
relevant data [32] shows that permanent resident population density is 2521 per square
kilometer, and human mortality rate is 6.39% in 2020. We list some functions influenced
by temperature and some values irrelevant to temperature in Table 1 by employing the
above data and other published data.

In Table 2, meanwhile, we present the monthly mean temperatures for Guangzhou,
China, in 2020 [36], which are viewed as some references in simulation process.

Combining the aforementioned information with Tables 1 and 2, we assume that
the biting rate b(C), transmission probabilities βh(C) and βv(C) satisfy the following

Table 1. Constant parameters and temperature C -dependent functions (in ◦C)

Parameters Description Value or formula Ref.
H∗ human population density 2521 [32]

µH death rate of human 6.39% · 1
12

Month−1 [32]

m population density of other alternative hosts 0 [8]

γh recovery rate of human 1
6
· 1
12

Month−1 [2]

A recruitment density of mosquito 1 6 A
Nh

6 10 [7]

µv per capita mortality of mosquito 1
14.49

· 30.4 Month−1 [2]

b̂(C) biting rate of mosquito 2.02C(C − 13.35)(40.08− C)1/2

×10−4 · 30.4 Month−1 [13, 17]

β̂H(C) transmission probability from infectious 8.49C(C − 17.05)(35.83− C)1/2

mosquitoes to susceptible humans ×10−4 [13, 17]

β̂V (C) transmission probability from susceptible 4.91C(C − 12.22)(37.46− C)1/2

mosquitoes to infectious humans ×10−4 [13, 17]

dh human diffusion coefficient 1 · 30.4km2/Month [13, 15]

dv mosquito diffusion coefficient 1.25 · 10−2 · 30.4km2/Month [13, 15]

Table 2. Monthly mean temperatures for Guangzhou in 2020 (◦C).

Month Jan. Feb. Mar. Apr. May Jun.
Temperature 13.3 14.4 17.9 21.9 25.6 27.2
Month Jul. Aug. Sep. Oct. Nov. Dec.
Temperature 28.4 28.1 26.9 23.7 19.4 15.2
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Table 3. Monthly transmission probabilities βh, βv and biting rate b
for Guangzhou in 2020.

Month Jan. Feb. Mar. Apr. May Jun.
βh 0 0 0.0547 0.3366 0.5944 0.6886
βv 0 0 0.2208 0.4106 0.5792 0.6408
b 0 0 2.3554 4.9027 7.3280 8.3024
Month Jul. Aug. Sep. Oct. Nov. Dec.
βh 0.7460 0.7330 0.6722 0.4660 0.1569 0
βv 0.6791 0.6703 0.6301 0.4955 0.2906 0
b 8.9702 8.8095 8.1260 6.0964 3.2776 0

functions, respectively, for Guangzhou in 2020:

b(C) =

{
0, 0 < C < 16.2 or C > 31.6,

b̂(C) in Table 1, 16.2 6 C 6 31.6,
(22)

βh(C) =

{
0, 0 < C < 16.2 or C > 31.6,

β̂h(C) in Table 1, 16.2 6 C 6 31.6,
(23)

and

βv(C) =

{
0, 0 < C < 16.2 or C > 31.6,

β̂v(C) in Table 1, 16.2 6 C 6 31.6,
(24)

Putting the data into formulaes (22)–(24), respectively, we obtain all values of βh, βv and
b from January to December, as well as three scatter diagrams associated with month-
axis form 0 to 12, both of which are exhibited in Table 3 and Figs. 1–3 (Figs. 1–3
represent the data points in Table 3 and fitted curves of βh(t), βv(t) and b(t), respectively).
Furthermore, we adopt the curve fitting tool by using the scatter values in Fig. 1 and fit the
following relevant time-periodic functions (set the period T = 12), whose approximate
image are also exhibited in Fig. 1.

βh(t) = 0.3737

− 0.3359 cos
πt

6
− 0.2531 sin

πt

6
− 0.009587 cos

2πt

6
− 0.01082 sin

2πt

6

− 0.01418 cos
3πt

6
+ 0.05151 sin

3πt

6
− 0.01681 cos

4πt

6
+ 0.00929 sin

4πt

6

+ 0.005763 cos
5πt

6
− 0.004155 sin

5πt

6
,

βv(t) = 0.3848

− 0.2953 cos
πt

6
− 0.2098 sin

πt

6
− 0.0373 cos

2πt

6
− 0.06157 sin

2πt

6

− 0.009244 cos
3πt

6
+0.00312 sin

3πt

6
−0.01184 cos

4πt

6
+0.006509 sin

4πt

6

− 0.001591 cos
5πt

6
+ 0.00825 sin

5πt

6
,
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Figure 1. Data points in Table 3 and fitted curves of βh(t), βv(t) and b(t), respectively.

b(t) = 4.847

− 3.898 cos
πt

6
− 2.816 sin

πt

6
− 0.3826 cos

2πt

6
− 0.5521 sin

2πt

6

− 0.1144 cos
3πt

6
+ 0.1418 sin

3πt

6
− 0.1514 cos

4πt

6
+ 0.07998 sin

4πt

6

− 0.139 cos
5πt

6
+ 0.0721 sin

5πt

6
.

We now simulate the following system, which is simplified by (6) and (7):

∂Ih
∂t

= dh∆Ih +
βh(t)b(t)

H∗ +m

(
H∗ − Ih

)
Iv − γhIh − µHIh, x ∈ Ω̄, t > 0,

∂Iv
∂t

= dv∆Iv +
βv(t)b(t)

H∗ +m

(
A

µv
− Iv

)
Ih − µvIv, x ∈ Ω̄, t > 0,

∂Ih
∂ν

=
∂Iv
∂ν

= 0, x ∈ ∂Ω, t > 0,

(25)

with the initial function

(Ih, Iv)(x, 0) =
(
φ1(x), φ2(x)

)
.

Nonlinear Anal. Model. Control, 28(3):554–577, 2023

https://doi.org/10.15388/namc.2023.28.31958


572 M. Zhu et al.

In system (25), we set Ω = (0, π) and

Ih(x, 0) = φ1(x) = 2000 + 20 cos(4x),

Iv(x, 0) = φ2(x) = 20 + 8 cos(4x).

Meanwhile, a noteworthy fact is that dengue fever usually occurs from April to Novem-
ber in Guangzhou [5]. Therefore, according to the values in Table 3, we assume that

βmh = βh(11) ≈ 0.1569, βMh = βh(7) ≈ 0.7460,

βmv = βv(11) ≈ 0.2906, βMv = βv(7) ≈ 0.6791,

bm = b(11) ≈ 3.2776, bM = b(7) ≈ 8.9702.

In what follows, we choose the different recruitment density of mosquito A and then
observe the asymptotic behavior of solutions for system (25).

Example 1. Select A = 0.0008H∗. Combining with the values in Table 1 and recalling
formula (19), we can obtain

R0 6

√√√√ βM
h bM

H∗+mH
∗ · β

M
v bM

Nh+m
A
µv

(γh + µH)µv
=

√√√√ 0.7460·8.9702
2521 · 2521 · 0.6791·8.9702

2521 · 0.008·2521
(1/14.49)·30.4

( 1
6 ·

1
12 + 6.39% · 1

12 ) · 1
14.49 · 30.4

6

√
0.00018

0.00045
≈ 0.6325 < 1.

With the help of Theorem 3, the above result infers that the variables Ih and Iv in
system (25) will decay to zero little by little as time evolves. Figures 2(a) and 2(b) also
exhibit the long-time behavior of Ih and Iv in which both Ih and Iv is vanishing on the
case R0 6 1.

Example 2. Select A = 2.40H∗. It follows from formula (19) that

R0 >

√√√√ βm
h b

m

H∗+mH
∗ · β

m
v b

m

H∗+m
A
µv

(γh + µH)µv
=

√√√√ 0.1569·3.2776
2521 · 2521 · 0.2906·3.2776

2521 · 2.40·2521
(1/14.49)·30.4

( 1
6 ·

1
12 + 6.39% · 1

12 ) · 1
14.49 · 30.4

>

√
0.00625

0.000451
≈ 3.6858 > 1,

which means that the solution (Ih, Iv) of system (24) finally converges to a positive
periodic solution. In Figs. 3(a) and 3(b), we also observe that the infectious individuals
(Ih) and Iv gradually approach the periodic steady-state and exhibit periodic fluctuation
as time increases when R0 > 1.

The authors in [11] stress that climate change influences the epidemiology of vector-
borne disease by influencing the ecology or biology of either the reservoir host or the
insect vector. Further, they state that many mosquito-borne diseases are sensitive to cli-
mate variables such as temperature and rainfall. It is well known that climate characterizes
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(a) (b)

Figure 2. The vanishing of dengue virus on the case R0∗ 6 1. Graphs (a) and (b) suggest that the solution
(Ih, Iv) of system (25) goes to zero as time evolves, which implies that dengue fever gradually disappears.

(a) (b)

Figure 3. The spreading of dengue fever on the case R∗
0 > 1. Through graphs (a) and (b), we can observe

that the solution (Ih, Iv) gradually stabilizes to an positive periodical solution, which means that the virus is in
a state of propagation.

seasonality and periodicity upon most occasions. In this paper, we have built and studied
a dengue fever model in the heterogeneous environment associated with time periodicity.
For the dynamics of this model, we have acquired its basic reproduction number R0

through the method of next infection operator [28], as well as discussed some limiting
forms when the diffusion coefficients increase or decrease infinitely. By means of the
theories of monotone dynamical systems, furthermore, we have obtained some global
stability results decided by the threshold R0. Our findings demonstrate that dengue fever
will be controlled and gradually vanish if R0 6 1, while the virus will stabilize to
a positive periodic steady state if R0 > 1.

Actually, the similar periodic dengue model has been investigated in [31]. For the
preceding model (1.5) appeared in [31], the novelties of our paper lie in the following
two aspects. Firstly, model (1.5) in [31] only considered the time periodicity and space
heterogeneity of transmission rates βh and βv , as well as biting rate b, but the values
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related with the population quantity, such as NH , A, m, µh, µH and µv , are all assumed
as constants, whose kind of hypothesis offers convenience for the upper-lower solutions
method adopted in the analysis of dynamics. In the present paper, we have assumed that
these valuesNH ,A and so on are also periodic in time and spatially heterogeneous, which
would be more in line with the transmission mechanism of dengue in reality. In brief,
contrasting with model (1.5) in [31], our limiting system (6) possesses the more general
forms. Secondly, the dynamical results in [31] involved two aspects only on either the
condition R0 < 1 or R0 > 1 associating with other conditions. However, our discussions
on system (6) have specified the relevant results on the case either R0 6 1 or R0 > 1
with no need for other additional conditions, except the fundamental assumptions (A1).
Meanwhile, it should be added that we can further use the theory of chain transitive sets
(see [28, Chap. 1]) to lift the global stability results on system (6) on model (3). That is,
model (3) admits the same dynamical behavior as the ones in Theorem 3. Therefore, our
conclusions are more complete than ones in [31].

Through the detailed analysis in the present paper and [31], we are fully aware of the
profound influence of seasons changing on the transmission of dengue fever. In order to
effectively control the virus, the human should make some preparations, such as mosquito
eradication in large-scale and vaccine injection, before high-incidence season of dengue
virus approach.
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Memorial University of Newfoundland of Canada for many useful discussions and for
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