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1 Introduction

In recent years, fractional calculus has improved mathematical modeling, with specific
results demonstrating that it is an excellent technique for conveying the recurring features
of various ideas. Because fractional systems have been proven to be important equipment
for displaying a range of highly detailed marvels in a huge variety of disciplines in physics
and engineering areas, this combination has recently got a huge amount of attention; one
can refer to books [19, 24, 28]. Furthermore, Sobolev-type differential systems appear in
the mathematical modelling of various physical experiences, such as fluid flow through
fissured rocks, the propagation of small amplitude long waves, thermodynamics, shear
in second-order fluids, and medicine, among others. For more details, readers can refer
to the recent research articles [2, 6, 20]. Hilfer [12] suggested a generalized Riemann–
Liouville fractional derivative, denoted as Hilfer fractional derivative, which incorporates
the Riemann–Liouville fractional derivative and the Caputo fractional derivative. This
operator was discovered through a theoretical simulation of dielectric relaxation in glass-
forming materials. After that, several researchers investigated fractional differential equa-
tions involving Hilfer fractional derivatives. In [11], the authors established the existence
of mild solution for evolution equations involving Hilfer fractional derivative. Recently,
the authors of [16] analyzed the controllability results of Hilfer fractional neutral dif-
ferential equations with infinite delay through the measures of noncompactness theory.
In the analysis and design of control systems, the concept of exact and approximate
controllability is an effective instrument.

The authors of [13] considered an initial-value problem comprising generalization and
analyzed the existence as well as the uniqueness of its solution. They first presented an
approximation sequence using a successive substitution approach, and then demonstrated
that the sequence uniformly converges to the unique solution of the regularised ψ-Hilfer
fractional differential equation. In [1], the authors studied the Lagrangian and derived
the classical equations of motion using the Euler–Lagrange equations of integer order.
Furthermore, the generalized Lagrangian is introduced by using noninteger, so-called
fractional, derivative operators. Then the resulting fractional Euler–Lagrangian equations
are generated and solved numerically.

A semigroup-theoretic development of theories for the analogs of deterministic evo-
lution equations is both powerful and beneficial within a unified context. In the case
of infinite dimensional systems, two basic concepts of exact controllability and approx-
imate controllability emerged in the applications. Exact controllability enables to steer
the system to an arbitrary final state, while approximate controllability means that the
system can be steered to an arbitrarily small neighbourhood of the final state. Approxi-
mate controllability is essentially a weaker notion than exact controllability, and it gives
the possibility of steering the system to states, which form the dense subspace in the
state space. However, in the case of infinite dimensional systems, exact controllability
appears rather exceptionally but in the case of finite dimensional systems, notions of
exact and approximate controllability coincide. The controllability of nonlinear deter-
ministic systems is well known in the literature. The idea of controllability has enormous
influence in mathematical control theory and engineering because it is closely related
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to pole assignment, structural decomposition, observer design, etc. In [21], the author
established sufficient conditions for the approximate controllability of certain classes of
abstract evolution equations with nonlocal initial conditions.

Following are our article’s significant contributions:

1. We establish a set of sufficient conditions for the approximate controllability re-
sults for Hilfer fractional delay differential equations of Sobolev type without
uniqueness under the assumption that the corresponding linear system is approxi-
mately controllable.

2. In [23], the authors commented on an error present in the recent and extensive
literature on the exact controllability of abstract control differential problems.
But, in our paper, we establish only sufficient conditions for the approximate
controllability results of fractional differential systems to avoid these kinds of
errors.

3. It is assumed that C0-semigroup S(t) is compact, and consequently, the associated
linear control system is not exactly controllable but only approximately control-
lable.

4. We show that our result has no analog for the concept of complete controllability.
To the best of our knowledge, the approximate controllability for Hilfer fractional
delay differential system of Sobolev type has not been studied in this connection
by using Gronwall’s inequality and Lipschitz’s nonlinearity condition.

5. In the end, we give an example of a system that is not completely controllable but
is approximately controllable.

6. We combine the ideas of the Hilfer fractional derivative with the mathematical
formulation of the Caputo derivative and Riemann–Liouville derivative.

7. “An analysis of approximate controllability for Hilfer fractional delay differential
systems of Sobolev type without uniqueness in Banach space” is a problem that,
as far as we know, has not been looked at before. It has not been combined with
any of the operators looked at in this article, so that will be one of the new things
we look at in this study.

Moreover, in [17], the author provided a detailed study on the approximate control-
lability for semilinear functional differential equations without uniqueness by using the
fixed point theory for multivalued maps with nonconvex values. The author proved that the
nonlinear problem is approximately controllable, provided that the corresponding linear
problem is approximately controllable. Additionally, the author obtained some results on
the continuity of the solution map and the topological structure of the solution set for the
considered problem. Further, the authors of [18] investigated the control systems governed
by abstract Volterra equations without uniqueness in a Banach space. Recently, in [26],
the author proved the approximate controllability of a class of second-order functional
evolution differential equations without uniqueness by using the fixed point theory for the
multivalued maps with nonconvex values. Motivated by the above consideration, we are
generalizing them to approximate controllability for Hilfer fractional delay differential
equations of Sobolev type without uniqueness by employing the fixed point theory for
multivalued maps with nonconvex values.
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Approximate controllability for Hilfer fractional delay differential equations 635

To this purpose,

(i) Section 2 presents the definitions of the Riemann–Liouville derivative, Caputo
derivative, Hilfer fractional derivative, measures of noncompactness, semigroups,
and control systems.

(ii) We discuss the topological structure in Section 3. This approach appears to be
valid in the sense that many applications of classical topological dynamics to the
study of differential equation solutions can now be carried out without the need
for the uniqueness assumption.

(iii) Further, we establish the outcomes of approximate controllability with delay by
utilizing ANR-space, and AR space in Section 4.

(iv) Finally, in Section 5, we provide an application to demonstrate our main argu-
ments, and some inferences are established in the end.

This method seems to work in the sense that many applications of classical topological
dynamics results to the study of differential equation solutions can now be carried out
without the need for the uniqueness assumption. So, we choose the Sobolev type of Hilfer
fractional delay differential systems, which has the following form:

Dν,µ
0+

[
Kx(t)

]
= Ax(t) +G

(
t, x(t), xt

)
+Bu(t), t ∈ J ′ := (0, b],

I
(1−ν)(1−µ)
0+ x(t) = p(t), t ∈ [−~, 0],

(1)

where Dν,µ
0+ is the Hilfer fractional derivative and whose order µ ∈ (1/2, 1) and type

ν ∈ [0, 1], x(t) takes values in a Hilbert space Z . Let J = [0, b] andA be an infinitesimal
generator of a C0-semigroup {S(t)}t>0. u(t) ∈ U , and the bounded linear operator B :
L2(J, U) → L2(J,Z ), where U is also a Hilbert space. The history xt is characterized
as xt(θ) := x(t+ θ) for θ ∈ [−~, 0].

2 Preliminaries

In this section, the essential basic preliminaries, definitions, notations, and lemmas of
fractional calculus and multivalued maps, which are needed to establish the main results,
are presented.

Throughout this paper, by C(J,Z ) and C(J ′,Z ) we denote the spaces of all contin-
uous functions from J to Z and J ′ to Z , respectively. Assume that γ = ν + µ − νµ,
then (1 − γ) = (1 − ν)(1 − µ). Now, characterize C1−γ(J,Z ) = {x ∈ C(J ′,Z ):
t1−γx(t) ∈ C(J,Z )}, ‖·‖C1−γ represented by ‖x‖C1−γ = sup{t1−γ‖x(t)‖, t ∈ J ′}.
Obviously, C1−γ(J,Z ) is a Banach space.

Definition 1. The fractional integral of order µ > 0 for a function G : [a,+∞) → R is
defined as

Iµa+G(t) =
1

Γ(µ)

t∫
a

G(s)

(t− s)1−µ
ds, t > a, µ > 0,

provided the right side is point-wise defined on [a,∞), where Γ(·) is the gamma function.
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Definition 2. The Riemann–Liouville derivative of order µ > 0 for a function G :
[a,+∞)→ R is defined as

LDµ
a+G(t) =

1

Γ(m− µ)

dm

dtm

t∫
a

G(s)

(t− s)µ+1−m ds, t > a, m− 1 < µ < m.

Definition 3. The Caputo derivative of order µ > 0 for a function G : [a,+∞) → R is
defined as

CDµ
a+ G(t) =

1

Γ(m− µ)

t∫
a

Gm(s)

(t− s)µ+1−m ds, t > a, m− 1 < µ < m.

Definition 4. The Hilfer fractional derivative of order 0 < µ < 1 and 0 6 ν 6 1 with the
lower limit b is defined as

Dν,µ
a+ G(t) =

(
I
ν(1−µ)
a+ D

(
I
(1−ν)(1−µ)
a+ G

))
(t), where D =

d

dt
.

Remark 1. (See [12].) The Hilfer fractional derivative corresponds to the classical
Riemann–Liouville fractional derivative and the classical Caputo fractional derivative:

Dν,µ
a+G(t) =

{
d
dtI

1−µ
0+ G(t) = LDµ

0+G(t), ν = 0, 0 < µ < 1, a = 0;

I1−µ0+
d
dtG(t) = CDµ

0+G(t), ν = 1, 0 < µ < 1, a = 0.

We introduce the following assumptions on the operators A : D(A) ⊂ Z → Z and
K : D(K) ⊂ Z → Z :

(i) D(K) ⊂ D(A) and K is bijective.
(ii) A and K are closed linear operators.

(iii) K−1 : Z → D(A) is continuous.

Furthermore, from (i) and (ii) we see that K−1 is closed. From (iii) and closed graph
theorem we have the boundedness of the linear operator AK−1 : Z → Z . Let ‖K−1‖ =

K̃1 and ‖K‖ = K̃2.
We introduce the Wright functionMµ, which is defined by

Mµ(%) =

∞∑
m=1

(−%)m−1

(m− 1)Γ(1−mµ)
, 0 < µ < 1, % ∈ C,

and satisfies
∞∫
0

%vMµ(%)d% =
Γ(1 + v)

Γ(1 + µv)
for % > 0.
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Lemma 1. (See [12,30].) The operators Tν,µ(t) andQµ(t) have the following properties.

(i) Qµ(t) is continuous in the uniform operator topology for t > 0, and {Qµ(t):
t > 0} is uniformly bounded, i.e., there exists M > 1 such that the following
holds: supt∈[0,∞) |S(t)| < M .

(ii) For any fixed t > 0, Tν,µ(t) and Qµ(t) are linear and bounded operators, and

∥∥Qµ(t)x
∥∥ 6

Mtµ−1‖x‖
Γ(µ)

,
∥∥Tν,µ(t)x

∥∥ 6
Mtγ−1‖x‖

Γ(ν(1− µ) + µ)
.

(iii) {Tν,µ(t): t > 0} and {Qµ(t): t > 0} are strongly continuous.

Let Z be a Banach space. Denote by B(Z) the collection of nonempty bounded
subsets of Z . We now see the well-known definition of measures of noncompactness.

Definition 5. (See [3].) Let (A,6) be a partially ordered set. A function α : B(Z)→ A
is called a measure of noncompactness in Z . If α(co Ψ) = α(Ψ) for Ψ ∈ P(Z), where
co Ψ is closure of the convex hull of Ψ .

The measure of noncompactness (MNC) function α is said to be

(i) Monotone if Ψ1, Ψ2 ∈P(Z), Ψ1 ⊂ Ψ2 imply α(Ψ1) 6 α(Ψ2);
(ii) Nonsingular if α({c} ∪ Ψ) = α(Ψ) for any c ∈ Z and Ψ ∈P(Z);

(iii) Invariant with respect to union with compact sets if α(L ∪Ψ) = α(Ψ) for every
relatively compact set L ⊂ Z and Ψ ∈P(Z);

(iv) If A is a cone in a normed space, we say that α is algebraically semiadditive.
Then α(Ψ1 + Ψ2) 6 α(Ψ1) + α(Ψ2) for any Ψ1, Ψ2 ∈P(Z);

(v) Regular if α(Ψ) = 0 is equivalent to the relative compactness of Ψ .

The Hausdorff measure of noncompactness R(·) is a significant illustration of mea-
sure of noncompactness and is defined as follows:

R(Ψ) = inf{ε: Ψ has a finite ε-net}.

Moreover, we can apply the measure of noncompactness. For any bounded set U ∈
C(J,Z), the modulus of fiber noncompactness of U is defined by

ωK(U) = sup
t∈J

e−KtR
(
U(t)

)
, (2)

where K denotes a positive constant. The modulus of equicontinuity of U is

℘C(U) = lim
φ→0

sup
y∈U

max
|t1−t2|<φ

∥∥y(t1)− y(t2)
∥∥
Z . (3)

From [15] these MNCs satisfy all properties stated in Definition 5 except regularity. Now,
consider the function R∗ : B(C(J,Z))→ R2

+,

R∗(Ψ) = max
U∈R(Ψ)

(
ωK(U), ℘C(U)

)
,
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where the measure of noncompactness ωK and ℘C are given in (2) and (3), respectively,
∆(Ψ) is the collection of all countable subsets of Ψ , the maximum is taken in the sense
of the partial order in the cone R2

+. Using the considerations in [15], R∗ is well defined,
that is, the maximum is achieved in ∆(Ψ), and R∗ is an measure of noncompactness in
the space C(J,Z), which satisfies all properties in Definition 5 (see [15]).

Definition 6. (See [15].) A continuous map G : Y ⊆ Z → Z is said to be condensing
with respect to an MNC α (α-condensing) if for any bounded set Ψ ⊂ Y , the relation
α(Ψ) 6 α(G(Ψ)) implies the relative compactness of Ψ .

Let α be a monotone nonsingular measure of noncompactness in Z . The application
of the topological degree theory for condensing maps (see, e.g., [15]) yields the following
fixed point principle.

Remark 2. Let (Z,6, ‖·‖) be a partially ordered complete normed linear space such that
the order relation 6 and the norm ‖·‖ are compatible. Suppose that G : Z → Z is a par-
tially continuous, nondecreasing, partially bounded, and partially condensing mapping.
If Z is regular and there exists an element x0 ∈ Z such that x0 6 Gx0 or x0 > Gx0,
then G has a fixed point x∗, and the sequence Gmx0 of successive iterations converges
monotonically to x∗.

Theorem 1. (See [15].) Let E be a bounded convex closed subset of Z , and let G :
E → E is an α-condensing map. Then the fixed point set of G, Fix(G) := {x = G(x)}, is
nonempty compact set.

Now, we consider the nonlinearity G : J × Z × C1−γ([−~, 0],Z ) → Z in (1).
Define

‖ψ‖~ = ‖ψ‖C1−γ([−~,0],Z ) := sup
t∈[−~,0]

{
t1−γ

∥∥ψ(t)
∥∥},

where ‖·‖ = ‖·‖Z .
Some of following hypotheses are:

(H1) The semigroup S(·) generated by A is compact, i.e., S(t) is a compact operator
for each t > 0.

(H2) G(t, ·, ·) is continuous for each t ∈ J , and G(·, η, ψ) is measurable for each
η ∈ Z , ψ ∈ C1−γ([−~, 0],Z ).

(H3) There exist e1, e2, e3 ∈ L1(J) such that∥∥G(t, η, ψ)
∥∥ 6 e1(t)‖η‖+ e2(t)‖ψ‖~ + e3(t)

for any (η, ψ) ∈ Z × C1−γ([−~, 0],Z ).
(H4) There exist ξ1, ξ2 : J×J → R such that ξ1(t, ·), ξ2(t, ·) ∈ L1(0, t) for all t > 0

and

R
(
Qµ(t− s)G(s, Ψ, Ψ ′)

)
6 ξ1(t, s)R(Ψ) + ξ2(t, s) sup

−~6θ60
R
(
Ψ ′(θ)

)
for all bounded subsets Ψ ⊂ Z , Ψ ′ ⊂ C1−γ([−~, 0],Z ) and for almost
everywhere t, s ∈ J .
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Remark 3. Note that (H4) can be deduced from (H3) when Z = Rm, that is, the locally
bounded property implies that the set Qµ(t − s)G(s, Ψ, Ψ ′) is bounded in Rm. Then for
every t, s ∈ J , Qµ(t − s)G(s, Ψ, Ψ ′) is precompact. Especially, if Qµ(t) is compact for
t > 0, then (H4) is testified obviously with ξ1 = ξ2 = 0.

Definition 7. (See [29].) A function x ∈ C([−~, b]; Z ) is a mild solution of (1) corre-
sponding to control u if

x(t) =


ϕ(t) for t ∈ [−~, 0],

K−1Tν,µ(t)Kp(0) +
∫ t
0
K−1Qµ(t− s)Bu(s) ds

+
∫ t
0
K−1Qµ(t− s)G(s, x(s), xs) ds for t ∈ J ′,

(4)

where

Tν,µ(t) = I
ν(1−µ)
0+ Qµ(t), Qµ(t) = tµ−1Vµ(t), Vµ(t) =

∞∫
0

µθMµ(θ)S(tµθ)dθ.

For the sake of convenience, we write (4) as

x(t) =


ϕ(t) for t ∈ [−~, 0],

K−1Tν,µ(t)Kp(0) +
∫ t
0
K−1(t− s)µ−1Vµ(t− s)Bu(s) ds

+
∫ t
0
K−1(t− s)µ−1Vµ(t− s)G(s, x(s), xs) ds for t ∈ J ′.

Assume that
Sp =

{
z ∈ C1−γ(J,Z ): z(0) = p(0)

}
.

For all z ∈ Sp, we set

z[p](t) =

{
p(t), t ∈ [−~, 0],

z(t), t ∈ J ′.

For any u ∈ L2(J, U), denote by Gu the operator acting on Sp such that

Gu(x)(t) = K−1Tν,µ(t)Kp(0) +

t∫
0

K−1Qµ(t− s)Bu(s) ds

+

t∫
0

K−1Qµ(t− s)G
(
s, x(s), x[p]s

)
ds. (5)

Define a mapping F : L1(J,Z )→ C1−γ(J,Z ) as

F (g)(t) =

t∫
0

K−1Qµ(t− s)g(s) ds. (6)
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Moreover, putting

VG(x)(t) = G
(
t, x(t), x[p]t

)
, (7)

we have

Gu(x) = Tν,µ(·)p(0) + F
(
Bu+ VG(x)

)
.

It is evident that x ∈ Sp is a fixed point of Gu if and only if x[p] is a mild solution of (1).

Lemma 2. Suppose (H2) and (H3) hold. Then Gu({zm}) is relatively compact for every
{zm} ⊂ Sp satisfying ωK({zm}) = 0. We note that ℘C(Gu({zm})) = 0.

Proof. We state as a fact that {gm} ⊂ L1(J,Z ) is a semicompact sequence, that is, there
exists r ∈ L1(J) such that ‖gm(t)‖ 6 r(t) for all m and for almost everywhere t ∈ J ;
R({gm(t)}) = 0 for almost everywhere t ∈ J . Then F (gm) is relatively compact in
C1−γ(J,Z ) (see [15]).

Now we consider {zm} ⊂ Sp to be bounded sequence such that ωK({zm}) = 0.
From (H3) we have that gm(t) = G(t, zm(t), zm[p]t) satisfies the estimate∥∥gm(t)

∥∥ 6 e1(t)
∥∥zm(t)

∥∥+ e2(t)
(

sup
s∈[0,t]

∥∥zm(s)
∥∥+ ‖p‖~

)
+ e3(t)

6 r(t) := M1

[
e1(t) + e2(t)

]
+ e2(t)‖p‖~ + e3(t),

where M1 is an upper bound for {zm} in C1−γ(J,Z ). As ωK({zm}) = 0, one has
R({zm(t)}) = 0 for all t ∈ J ; that is, {zm(t)} is relatively compact for any t ∈ J . Then
it is obvious that {zm[p]s} is a relatively compact set inC1−γ([−~, 0]; Z ). SinceG(t, ·, ·)
is continuous, we get that G(t, zm(t), zm[p]t) is relatively compact for a.e. t ∈ J . Thus
{gm} is a semicompact sequence, and then

Gu
(
{zm}

)
= F

(
{gm}

)
+ F (Bu) + Tν,µ(t)p(0)

is relatively compact in C1−γ(J,Z ). For instance, Gu({zm}) is an equicontinuous set,
or likewise, ℘C(Gu({zm})) = 0. This completes the proof of this lemma.

Note. (See [15].) Now choosing K the definition of ωK in (2) such that

Λ := 2 sup
t∈J

t∫
0

K−1e−K(t−s)[ξ1(t, s) + ξ2(t, s)
]

ds < 1. (8)

We will prove that Gu is R∗-condensing. To prove this, we must have the following
proposition.

Proposition 1. (See [27].) If {wm} ⊂ L1(J,Z ) such that ‖wm(t)‖ 6 ν(t) for a.e. t ∈ J
and for some ν ∈ L1(J), then R({

∫ t
0
wm(s) ds}) 6 2

∫ t
0

R({wm(s)}) ds for t ∈ J .

Lemma 3. Suppose (H2)–(H4) are satisfied, then Gu is R∗-condensing.

https://www.journals.vu.lt/nonlinear-analysis
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Proof. From (H2)–(H3) we conclude that Gu is a continuous mapping. Assume that Ψ ⊂
Sp is bounded set such that

R∗(Ψ) 6 R∗
(
Gu(Ψ)

)
. (9)

We will prove that Ψ is relatively compact in C1−γ(J,Z ). By the definition of R∗ there
exists {zm} ⊂ Ψ such that

R∗
(
Gu(Ψ)

)
=
(
ωK(Gu

(
{zm}

))
, ℘C

(
Gu
(
{zm}

)))
>
(
ωK
(
{zm}

)
, ℘C

(
{zm}

))
. (10)

Now, we first give an estimate for ωK(Gu({zm})). From (H4) and Proposition 1 one can
get

R
(
Gu
(
{zm}

)
(t)
)

6 R

({ t∫
0

K−1Qµ(t− s)G
(
s, zm(s), zm[p]s

)
ds

})

6 2

t∫
0

R
({
K−1Qµ(t− s)G

(
s, zm(s), zm[p]s

)})
ds

6 2

t∫
0

K−1
[
ξ1(t, s)R

(
{zm(s)}

)
+ ξ2(t, s) sup

τ∈[−~,0]
R
({
zm[p](s+ τ)

})]
ds

6 2

t∫
0

K−1
[
ξ1(t, s)R

({
zm(s)

})
+ ξ2(t, s) sup

ς∈[0,s]
R
({
zm(ς)

})]
ds

6 2

t∫
0

K−1
[
ξ1(t, s) + ξ2(t, s)

]
sup
ς∈[0,s]

R
({
zm(ς)

})
ds.

Next,

e−KtR(Gu
({
zm
}

(t)
)

6 2

t∫
0

e−K(t−s)K−1
[
ξ1(t, s) + ξ2(t, s)

]
sup
ς∈[0,s]

e−KςR
({
zm(ς)

})
ds

6 2ωK
(
{zm}

) t∫
0

K−1e−K(t−s)[ξ1(t, s) + ξ2(t, s)
]

ds.

The last inequality implies

ωK
(
Gu
(
{zm}

))
6 ΛωK

(
{zm}

)
.
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From (10) we conclude that ωK({zm}) 6 ΛωK({zm}). Then ωK({zm}) = 0 due to the
fact that Λ < 1 as chosen in (8). This turns out that ωK(Gu({gm})) = 0. In view of
Lemma 2, one can get ℘C(Gu({zm})) = 0. Again, from (10) one can get R∗(Gu(Ψ)) =
0. Hence R∗(Ψ) = 0 due to (9). The proof is complete.

Theorem 2. Assume that (H2)–(H4) are satisfied. Then the solution set of (1) is nonempty
and compact. Further, any solution of (1) satisfies the following estimate:

sup
ς∈(0,t]

∥∥x(ς)
∥∥

Z
6
(
C∗ + v2‖Bu‖L1(J,Z )

)
× exp

{
MK̃1b

1−γ

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s) + e2(s)

]
ds

}
(11)

for t ∈ J ′, where

v1 =
MK̃1K̃2

Γ(ν(1− µ) + µ)
, v2 =

MK̃1b
µ+1−γ

Γ(µ+ 1)
,

C∗ = v1
∥∥p(0)

∥∥+ v2
(
‖e3‖L1(J) + ‖p‖~‖e2‖L1(J)

)
.

Proof. The solution operator Gu is R∗-condensing due to Lemma 3. Let κ ∈ C1−γ(J,Z )
be the solution of integral equation

κ(t) = v1
∥∥p(0)

∥∥+ K̃1
M

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s) + e2(s)

]
κ(s) ds

+ v2
(
‖e3‖L1(J) + ‖p‖~‖e2‖L1(J) + ‖Bu‖L1(J,Z )

)
,

and let

E =
{
z ∈ Sp: sup

s∈[0,t]

{
s1−γ

∥∥z(s)∥∥} 6 κ(t), t ∈ J ′
}
.

Then it is easy to check that E is a bounded, closed, and convex set. Further, if z ∈ E ,
then∥∥Gu(z)(t)

∥∥
= sup
t∈J′

t1−γ

∥∥∥∥∥K−1Tν,µ(t)Kp(0) +

t∫
0

K−1Qµ(t− s)
[
Bu(s) +G

(
s, z(s), z[p]s

)]
ds

∥∥∥∥∥
6

∥∥∥∥K−1 M

Γ(ν(1− µ) + µ)
Kp(0)

∥∥∥∥+ b1−γ
t∫

0

∥∥K−1Qµ(t− s)Bu(s)
∥∥ds

+ b1−γ
t∫

0

∥∥K−1Qµ(t− s)G
(
s, z(s), z[p]s

)∥∥ ds
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6 v1
∥∥p(0)

∥∥+ v2‖Bu‖L1(J,Z )

+ K̃1
Mb1−γ

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s)

∥∥y(s)
∥∥+ e2(s)

∥∥y[p]s
∥∥
~ + e3(s)

]
ds

6 v1
∥∥p(0)

∥∥
+ K̃1

Mb1−γ

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s)

∥∥z(s)∥∥+ e2(s)
(

sup
ς∈[0,s]

∥∥z(ς)∥∥+ ‖p‖~
)]

ds

+ v2
(
‖e3‖L1(J) + ‖Bu‖L1(J,Z )

)
6 v1

∥∥p(0)
∥∥+ K̃1

Mb1−γ

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s) + e2(s)

]
sup
ς∈[0,s]

∥∥z(ς)∥∥ds

+ v2
(
‖e3‖L1(J) + ‖p‖~‖e2‖L1(J) + ‖Bu‖L1(J,Z )

)
6 v1

∥∥p(0)
∥∥+ K̃1

M

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s) + e2(s)

]
κ(s) ds

+ v2
(
‖e3‖L1(J) + ‖p‖~‖e2‖L1(J) + ‖Bu‖L1(J,Z )

)
= κ(t).

Due to the fact that κ is increasing, we get ‖Gu(z)(ρ)‖ 6 κ(ρ) 6 κ(t) for all 0 6 ρ 6 t.
Accordingly, Gu(z) ∈ E , i.e., Gu(E) ⊂ E . Hence, we get the conclusion of existence
result by the application of Theorem 1. If we consider x as a solution of (1), then by the
same estimate as for Gu one can get

∥∥x(t)
∥∥ 6 v1

∥∥p(0)
∥∥+ K̃1

Mb1−γ

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s) + e2(s)

]
sup
ς∈[0,s]

∥∥x(ς)
∥∥ds

+ v2
(
‖e3‖L1(J) + ‖p‖~‖e2‖L1(J) + ‖Bu‖L1(J,Z )

)
6
(
C∗ + v2‖Bu‖L1(J,Z )

)
+ K̃1

Mb1−γ

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s) + e2(s)

]
sup
ς∈[0,s]

∥∥x(ς)
∥∥ds. (12)

R.H.S. of (12) is increasing with respect to t, and we obtain

sup
ς∈J′
‖x(ς)‖ 6

(
C∗ + v2‖Bu‖L1(J,Z )

)
+ K̃1

Mb1−γ

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s) + e2(s)

]
sup
ς∈[0,s]

∥∥x(ς)
∥∥ds.
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Therefore, one can obtain estimate (11) by referring the Gronwall’s inequality. The proof
is complete.

3 Topological outcome

Let X and Y be metric spaces. A multi-valued map F : X →P(Y ) is said to be:

(i) upper semicontinuous (u.s.c) if the set F−1+ (U) = {z ∈X : F(z) ⊂ U} is open
for any open set U ⊂ Y ;

(ii) closed if its graph ΓF = {(z, y): y ∈ F(z)} is a closed subset of X × Y .

The multivalued map F is called closed quasicompact if its restriction to any compact
set is compact. For sufficient condition of upper semicontinuity, we need the following
statement.

Lemma 4. (See [7].) Let X and Y be metric spaces, and let F : X → P(Y ) be
a quasicompact multimap with compact values. Then F is upper semicontinuous.

Consider the solution multimap

W : L2(J, U)→P
(
C1−γ(J,Z )

)
, W(u) =

{
x: x = Gu(x)

}
. (13)

Proposition 2. From (H1) the restriction of operator F , given by (5), on L2(J,Z ) is
compact, i.e., if Ψ ⊂ L2(J,Z ) is a bounded set, then F (Ψ) is relatively compact in
C1−γ(J,Z ).

Assumption (H3) can be extended in the following way to obtain further properties of
the solution multimapW:

(H5) The nonlinearity G satisfies (H3) with e1, e2, e3 ∈ L2(J).

Lemma 5. From assumptions (H1), (H2) and (H5) the solution multivalued map W ,
discussed in (13), is completely continuous, that is, it is upper semicontinuous and assigns
each bounded set into a relatively compact set.

Proof. We split the proof into two steps.
Step 1. Let E be a bounded set in L2(J, U). We show thatW(E ) is relatively compact

in C1−γ(J,Z ). Suppose {xm} ⊂ W(E ). Then there exists {um} ⊂ E such that

xm(t) = K−1Tν,µ(t)Kp(0)

+

t∫
0

K−1Qµ(t− s)
[
Bum(s) +G

(
s, xm(s), xm[p]s

)]
ds.

Above inequality can also be written as

xm(t) = K−1Tν,µ(t)Kp(0) + F (gm +Bum)(t), (14)
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where F is the operator defined in (6), gm(t) = G(t, xm(t), xm[p]t). We observe that
{Bum} is a bounded set in L2(J,Z ) since B is a bounded linear operator. This implies
by Proposition 2 that {F (Bum)} is relatively compact inC1−γ(J,Z ). On the other side,
in view of some regular estimates, we can obtain that {xm} is a bounded in C1−γ(J,Z ).
Therefore, assumption (H5) means that {gm} is also bounded in L2(J,Z ), and one
ensure that {F (gm + Bum)} is compact. In view of (14), we conclude that {xm} is
compact as well.

Step 2. We prove that W is u.s.c. According to Lemma 13, W has a closed graph.
Suppose um → u in L2(J, U) and xm in W(um), xm → x in C1−γ(J,Z ). We claim
that x ∈ W(u). We obtain

xm(t) = K−1Tν,µ(t)Kp(0)

+

t∫
0

K−1Qµ(t− s)
[
Bum(s) +G

(
s, xm(s), xm[p]s

)]
ds. (15)

Since G(t, ·, ·) is continuous, we have that gm(s) = G(s, xm(s), xm[p]s) converges
to g(s) = G(s, x(s), x[p]s) for a.e. s ∈ J . Due to the fact that {gm} is integrably
bounded, the Lebesgue dominated convergence theorem implies gm−g → 0 inL1(J,Z ).
Moreover, since B is bounded, we notify that Bum − Bu → 0 in L1(J,Z ). Therefore,
from (15) we get

x(t) = K−1Tν,µ(t)Kp(0)

+

t∫
0

K−1Qµ(t− s)
[
Bu(s) +G

(
s, x(s), x[p]s

)]
ds, t > 0.

The proof is now completed.

Definition 8. (See [15, 17].) A subset B of a metric space X is said to be contractible
in X if the inclusion map iB : B → X is null-homotopic, i.e., there exist z0 ∈ X and
a continuous map h : B × [0, 1] → X such that h(z, 0) = y and h(z, 1) = z0 for any
z ∈ B.

Definition 9. (See [15,17].) A subset B of a metric space X is called Rδ-set if B can be
represented as the intersection of decreasing sequence of compact contractible sets.

A multivalued F : Z → P(X ) is said to be an Rδ-map only if F is u.s.c. and for
every x ∈ Z , F(x) is an Rδ-set in X .

Lemma 6. (See [15, 17].) Suppose Z is a metric space, E is a Banach space, and
f : Z → E is a proper map. That is, f−1(L) is compact for each compact set L ⊂ E, f
is continuous. Then there exists a sequence {fm} of mappings from Z into E such that

(i) fm is proper, and {fm} uniformly converges to f on Z .
(ii) For a given point z0 ∈ E and for all z in a neighborhood N (z0) of z0 in E,

there exists exactly one solution xm of the equation fm(x) = z.
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It is necessary to have the following theorem to prove this lemma.

Lemma 7 [Lasota–Yorke approximation theorem]. (See [5, 17].) Let E be a normed
space and g : Z → E a continuous map. Then for each ε > 0, there is a locally Lipschitz
map gε : Z → E such that ‖gε(x)− g(x)‖E < ε for each x ∈ Z .

Theorem 3. Suppose the assumptions of Lemma 5 are satisfied. Then for each u ∈
L2(J, U),W(u) is an Rδ-set.

Proof. As the nonlinearity G(t, ·, ·) in our problem is continuous, by Lemma 7 one can
take a sequence {Gm} such that Gm(t, ·, ·) are locally Lipschitz functions and∥∥Gm(t, η, ψ)−G(t, η, ψ)

∥∥ 6 εm

for any t ∈ J and η ∈ Z , ψ ∈ C1−γ([−~, 0],Z ). In the above inequality, εm → 0 as
m→∞. Without loss of generality, we can assume that∥∥Gm(t, η, ψ)

∥∥ 6 e1(t)‖η‖+ e2(t)‖ψ‖~ + e3(t) + 1 for all m.

Consider the equation

x(t) = K−1z∗(t)K +

t∫
0

K−1Qµ(t− s)
[
Bu(s) +G

(
s, x(s), x[p]s

)]
ds. (16)

From previous section we get existence result for (16). In addition, since Gm(t, ·, ·) is
a locally Lipschitz property, the solution of (16) is unique.

Let

H (x) = (I − Gu)(x), Hm(x)(t) = (I − Gum)(x)

Gum(x) = K−1Tν,µ(t)Kp(0) +

t∫
0

K−1Qµ(t− s)
[
Bu(s) +G

(
s, x(s), x[p]s

)]
ds.

Then one claims that the maps H and Hm are proper. Absolutely, we will verify this
assertion, e.g., for H . We take H −1(L) compact for any compact set L ⊂ C1−γ(J,Z ).
Assume that (I − Gu)(U) = L and {xm} ⊂ U is any sequence. Then there exists a
sequence {zm} ⊂ L such that xm − Gu(xm) = zm. That is,

xk(t) = K−1Tν,µ(t)Kp(0) + zm(t) +

t∫
0

K−1Qµ(t− s)
[
Bu(s) + gm(s)

]
ds,

where gm(s) = G(s, xm(s), xm[p]s), s ∈ J .
Referring (H5) and the fact that {zm} is bounded in C1−γ(J,Z ), we observe that

{xm} is bounded in C1−γ(J,Z ). Thus, {gm} is continuous and bounded in L2(I,Z ).
From Proposition 2 we conclude that {F (gm)} is compact. Hence {xm} is relatively
compact, and U is a compact set. Moreover, {Hm} converges to H uniformly in
C1−γ(J,Z ), and Hm(x) = z has a unique solution z ∈ Sp from (16). Then we conclude
thatW(u) = H −1(0) is an Rδ-set. The proof is complete.
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4 Approximate controllability results

As discussed in Section 2, the Hilfer fractional system

Dν,µ
0+

[
Kx(t)

]
= Ax(t) +G

(
t, x(t), xt

)
+ q(t), t ∈ J ′ := (0, b],

I
(1−ν)(1−µ)
0+ x(t) = p(t), t ∈ [−~, 0],

(17)

has at least one mild solution x = x(·, q) for all q ∈ L2(J,Z ). Also, in view of the
results reviewed in Section 3, we see that the solution map

W(q) =
{
x(·, q): the solution of system (17)

}
is an Rδ-map. Furthermore, by (H2) and (H3) the map VG defined by (7) is continuous.
Therefore, VG is also an Rδ-map.

Define a linear operator Υ : L2(J,Z )→ Z by

Υ (w) =

b∫
0

K−1Qµ(b− s)w(s) ds.

Let O = {w ∈ L2(J,Z ): Υw = 0}, we have that O is a closed subspace of
L2(J,Z ). SupposeO⊥ is the orthogonal space ofO ∈ L2(J,Z ) and Q is the projection
from L2(J,Z ) intoO⊥. LetR[B] be the range ofB. We need the following assumption:

(H6) For any r1 ∈ L2(J,Z ), there exists r2 ∈ R[B] such that Υ (r1) = Υ (r2).

By assumption (H6) we have that {x +O} ∩ R[B] 6= ∅ for any x ∈ O⊥. Hence, by the
proof of [22, Lemma 1] the following mapping P from O⊥ to R[B]

Px =
{
x∗: x∗ ∈ {x+O} ∩R[B], and

‖x∗‖L2(J,Z ) = min
{
‖z‖L2(J,Z ): z ∈ {x+O} ∩R[B]

}}
is well defined. Furthermore, P is linear and bounded.

Remark 4. We take hypothesis (H6) as in [25]; that is, it requires r2 ∈ R[B], it is slightly
stronger than that in [22] (r2 ∈ R[B]). In fact, this requirement is necessary for our
arguments when the solution to control system is not unique. Moreover, in application,
(H6) is much easier to verify than the one assumed in [22].

For given u0 ∈ L2(J, U), we establish the operator J : O⊥ →P(O⊥) determined
in

Jw = QBu0 − QVGWPw. (18)

We have to verify that J has a fixed point. For this purpose, we need the following
notions and facts in the sequel.
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Definition 10. Let X be a metric space.

(i) X is called an absolute retract (AR-space) if for any metric space Y and any
closed A ⊂ Y , every continuous function g : A → X extends to a continuous
function g̃ : Y →X .

(ii) X is called an absolute neighborhood retract (ANR-space) if for any metric
space Y , any closed A ⊂ Y , and continuous g : A → Y , there exists a neigh-
borhood of U ⊃ A and a continuous extension g̃ : A → Y of g.

Obviously, if X is an AR-space, then Y is an ANR-space.

Proposition 3. (See [22].) Let C be a convex set in a locally convex linear space X .
Then C is an AR-space.

In particular, the last proposition states that every Banach space and its convex subsets
are AR-spaces. The following theorem is the main tool for this section. For related results
on fixed point theory for ANR-spaces, one can verify the papers [8, 10, 17].

Theorem 4. (See [9].)Let X be an AR-space. Assume that φ : X → P(X ) may be
factorized as

φ = φm ◦ φm−1 ◦ · · · ◦ φ1.

In the above equation, φ : X−1 → P(X),  = 1, 2, . . . , N , are Rδ-maps, and X,
 = 1, . . . , N − 1, are ANR-spaces, X0 = XN = X are AR-spaces. If there is
a compact set U such that φ(X ) ⊂ U ⊂X , then φ has a fixed point.

Theorem 5. If hypotheses (H1), (H2), (H5), and (H6) hold, then the operator J defined
in (18) has a fixed point in O⊥, provided that

MK̃1b
(1−2γ+2µ)/2

√
2µ− 1Γ(µ)

‖P‖‖e1 + e2‖L2(J,Z )

× exp

{
MK̃1b

µ+1−γ

Γ(µ+ 1)
‖e1 + e2‖L1(J,Z )

}
< 1. (19)

Proof. The operator J can be factorized as

J = I ◦ Q ◦ VG ◦W ◦ P,

where I(w) = QBu0 − w is a single-valued and continuous mapping. It is easy to see
that all component in above presentation is Rδ-map. Therefore, in order to use Theorem
4, it suffice to prove that there exists a convex subsets U ⊂ O⊥ such that J (U) ⊂ U and
J (U) is a compact set. We look for R > 0 such that ‖J (w)‖L2(J,Z ) 6 R, provided
‖w‖L2(I,Z ) 6 R, and then take

U = BR ∩ O⊥ (20)
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thanks to the fact that O⊥ is a convex subset of L2(J,Z ). For x ∈ W(Pw), it follows
from Theorem 2 that

sup
ς∈[0,t]

∥∥x(ς)
∥∥ 6

(
C∗ + v2‖Pw‖L1(J,Z )

)
× exp

{
MK̃1b

1−γ

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s) + e2(s)

]
ds

}
.

From (11) and hypothesis (H3) one can get∥∥VG(x)(t)
∥∥

=
∥∥G(t, x(t), xt)

∥∥ 6 e1(t)
∥∥x(t)

∥∥+ e2(t)
∥∥xt∥∥~ + e3(t)

6
[
e1(t) + e2(t)

]
sup
ς∈[0,t]

∥∥x(ς)
∥∥+ e2(t)

∥∥‖p‖~ + e3(t)

6
(
C∗ + v2‖Pw‖L1(J,Z )

)
exp

{
MK̃1b

1−γ

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s) + e2(s)

]
ds

}
×
[
e1(t) + e2(t)

]
+ e2(t)‖p‖~ + e3(t).

Taking into account that ‖Q‖ 6 1 for any q ∈J (w), one can get∥∥q(t)∥∥ =
∥∥Bu0(t)

∥∥+
(
C∗ + v2‖Pw‖L1(J,Z )

)
× exp

{
MK̃1b

1−γ

Γ(µ)

t∫
0

(t− s)µ−1
[
e1(s) + e2(s)

]
ds

}
×
[
e1(t) + e2(t)

]
+ e2(t)‖p‖~ + e3(t).

This implies that

‖q‖L2(J,Z ) 6 ‖Bu0‖L2(J,Z ) +

(
C∗ +

MK̃1b
1−2γ+2µ

2

√
2µ− 1Γ(µ)

‖P‖‖w‖L2(J,Z )

)
× ‖e1 + e2‖L2(J,Z ) exp

{
MK̃1b

µ+1−γ

Γ(µ+ 1)
‖e1 + e2‖L1(J,Z )

}
+ ‖e2‖L2(J,Z )‖p‖~ + ‖e3‖L2(J,Z ). (21)

Thanks to assumption (19), (21) ensures the existence of a number R > 0 such that
‖q‖L2(J,Z ) 6 R, provided ‖w‖L2(J,Z ) 6 R. That is, J (U) ⊂ U with the closed
bounded subset U denoted in (20). By Lemma 5 the setW ◦ P(U) is compact, and then
L = J (U) is a compact set. Thus we get the desired conclusion.

Remark 5. If the nonlinearity G is uniformly bounded with respect to the second and
third arguments; that is, ‖G(t, η, ψ)‖ 6 e3(t) for a.e. t ∈ J and all η ∈ Z , ψ ∈
C1−γ([−h, 0],Z ), then condition (19) can be relaxed since in this case, e1 = e2 = 0. Let
Rb(G) = {x(b, u): u ∈ L2(J, U)}, the set of all terminal state of solutions to system (1).
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The set Rb(G) is called the reachable set of the control system (1). When G = 0, the
notationRb(0) stands for the reachable set of the corresponding linear system.

Definition 11. (See [11].) The control system (1) is said to be exact controllable (or
controllable) ifRb(G) = Z . It is called approximately controllable ifRb(G) = Z .

It is shown in [22, Lemma 2] by assuming hypothesis (H6) that Rb(0) = Z . Thus
(H6) is a sufficient condition for the approximate controllability of the linear system
associated with (1). One can find more details in [4, 14] for some other conditions. The
following theorem is our main result in this section.

Theorem 6. Under the hypotheses of Theorem 5, the control system (1) is approximately
controllable if the corresponding linear system is.

Proof. We prove that Rb(0) ⊂ Rb(G). Consider x0 ∈ Rb(0). Then there exists u0 ∈
L2(J, U) such that x0 =K−1Tν,µ(t)Kp(0)+ΥBu0. Let w∗ be a fixed point of J, then
we have

QBu0 = QVGWPw∗ + w∗. (22)

By the definition of P we conclude that Pw∗ ∈ {w∗ +O} ∩R[B], and then

ΥPw∗ = Υw∗. (23)

Moreover, Q is the projection from L2(J,Z ) into O⊥, then

ΥQq̆ = Υ q̆ for all q̆ ∈ L2(J,Z ). (24)

Combining (22)–(24) yields ΥBu0 = Υ (g + Pw∗), where g ∈ VGWPw∗. Therefore,

x0 = K−1Tν,µ(t)Kp(0) + ΥBw0

= K−1Tν,µ(t)Kp(0) + Υ (g + Pw∗)

= x(b,Pw∗),

where x is a solution of (17). Since Pw∗ ∈ R[B], there exists a function u ∈ L2(J, U)
such that Pw∗ = Bu. Then we have x(·,Pw∗) = x(·, Bu) = y(·, u), where y is a mild
solution of system (1). This implies thatRb(0) ⊂ Rb(G). This completes the proof.

5 Example

As an application, we consider the following fractional system:

D
ν,2/3
0+

[
x(t, y)− ∂2

∂y2
x(t, y)

]
=

∂2

∂y2
x(t, y) +G

(
t, x(t, y), x(t− ~, y)

)
+Bu(t, y),

y ∈ [0, π], t ∈ (0, b],

x(t, 0) = x(t, π) = 0, t > 0,

I
(1−ν)/3
0+ x(t, y) = p(t, y), t ∈ [−~, 0], y ∈ [0, π],

(25)
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where Dν,2/3
0+ represents the Hilfer fractional derivative, µ = 2/3 is a order of the above

system, and ν ∈ [0, 1] is a type. I
(1−ν)/3
0+ is the Riemann–Liouville integral of order

(1 − ν)/3, x, u ∈ C([0, b];L2(0, π)) is the state function and the control function,
respectively.

The characteristics in (25) is that the nonlinearity has neither Lipschitz property nor
uniform boundedness compared to the existing results in literature.

Abstract form. Assume that Z = U = L2([0, π],R) and define the operators A :
D(A) ⊂ Z → Z andK : D(K) ⊂ Z → Z respectively byAx = x′′ andKx = x−x′′
with domain

D(A) = D(K) =

{
x ∈ Z , x, x′ are absolutely continuous,

x′′ ∈ Z , x(0) = x(π) = 0.

Then A and K can be written, respectively, as

Ax =

∞∑
m=1

m2〈x, ϑm〉ϑm, ϑ ∈ D(A)

and

Kx =

∞∑
m=1

(
m2 + 1

)
〈x, ϑm〉ϑm, ϑ ∈ D(K),

where ϑk(x) =
√

2/π sin(mx), m = 1, 2, . . . , is the orthogonal set of eigenvectors of
A. Additionally, for x ∈ Z , we have

K−1x =

∞∑
m=1

1

(1 +m2)
〈x, ϑm〉ϑm,

AK−1x =

∞∑
m=1

1

(1 +m2)
〈x, ϑm〉ϑm.

It is known thatAK−1 is self-adjoint, andAK−1 the infinitesimal generator of an analytic
semigroup S(t)(t > 0) in Z given by

S(t)x =

∞∑
m=1

e−m
2t〈x, ϑm〉ϑm, x ∈ Z .

In particular, S(t) is a uniformly stable semigroup, and ‖S(t)‖ 6 e−t. We select B as
in [22], that is, the intercept operator Bγ,b is

Bγ,bw(t) =

{
0, 0 6 t 6 γ,

w(t), γ 6 t 6 b,
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where w ∈ L2(0, b;L2(0, π)). It is known that B = Bγ,b satisfies (H6). Then the linear
system

D
ν,2/3
0+

[
x(t, y)− ∂2

∂y2
x(t, y)

]
=

∂2

∂y2
x(t, y) +Bu(t, y),

y ∈ [0, π], t ∈ (0, b],

x(t, 0) = x(t, π) = 0, t > 0,

I
(1−ν)/3
0+ x(s, y) = p(s, y), s ∈ [−~, 0], y ∈ [0, π],

is approximately controllable, that is,Rb(0) = L2(0, π). Concerning the nonlinearity G,
we assume that G : [0, b]×R×R→ R is continuous. There exist functions a1, a2, a3 ∈
L1(J) such that ∥∥G(t, η, ψ)

∥∥ 6 a1(r)‖ψ‖+ a2(r)‖ψ′‖~ + a3(r),

for any t ∈ [0, b], η, ψ ∈ R.
Using the abstract results in previous sections, we conclude that the control sys-

tem (25) is approximately controllable in L2(0, π), provided inequality (19) holds. Fur-
thermore, the solution set depends upper semicontinuously on the control function u, and
it is anRδ set.

6 Conclusion

In this paper, the existence of mild solution for Hilfer fractional delay differential equa-
tions of Sobolev type without uniqueness has been investigated using the fixed point
theorem, and the topological structure of the solution map is discussed. The estimated
outcomes for Hilfer fractional delay differential equations and approximate controllability
results were calculated using the multivalued map, condensing, and the theorems and
definitions related to the absolute neighborhood retract space and absolute retract space.
An example is provided in the end to support the analytical findings.

1. Furthermore, future research combining Hilfer fractional derivatives with Volterra
integrodifferential equations could provide useful insights into fractional calculus.
While examining the performance of approximation controllability results, ideas
from renormalization could be applied to fractional derivative prepossessing.

2. In the future, we will extend the current work to approximate controllability for
Hilfer fractional delay impulsive differential equations of Sobolev type with non-
local conditions via fixed point technique.

3. Some new work can also extend to the Hilfer fractional neutral differential evolu-
tion equation for the approximate controllability of a class of semilinear equations
depending on the method of approximate technique with infinite delay.

4. A solution on the approximation controllability for stochastic delay evolution equa-
tions of Sobolev type with order 1 < r < 2 with respect to uniqueness is taken up
as follow-up work.
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