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1 Introduction

Fixed point theory is a clear subject, which affords beneficial techniques and senses for
dealing with diverse problems. Particularly, we mention the being of solutions of math-
ematical questions diminishable to equivalent fixed point problems. Thus, we remember
that the Banach contraction principle [5] is based on this theory. Nevertheless, the fixed
point theory has been able to attract many researchers. In 2018, Vetro [31] proved the
existence and uniqueness of a fixed point in the setting of ordered metric spaces by
introducing the notion of ordered S-G-contraction. Hoc and his colleagues [13] provided
some new fixed point theorems in compact metric space. In 2022, Kim [18] studied the
existence of a coupled fixed point in Hilbert space. Also, Gautam et al. [11] introduced
the notion of interpolative Matkowski-type contraction, and they obtained the solution for
the nonlinear matrix equations. Therefore, there are many achievements for enthusiasts,
look, for example, [6, 8–10, 19–22, 28, 29, 33].

Recently, lots of conclusions became apparent linked to fixed point theorems in an
ordered metric space. Run and Reurings [27] expressed the first conclusion in this orienta-
tion, where they expanded the Banach contraction principle in metric space equipped with
a partial order. Subsequently, Nieto and Rodríguez-López [24] generalized the previous
results and used them to find a unique solution for a specific type of ordinary differential
equation. More progress in the above-argued results is detected in [2, 3, 12, 23, 25, 30].

Recently, the concept of simulation function was introduced and studied by Khojasteh
et al. [17]. By using the simulation functions Vetro [32] investigated the existence of
a common fixed point and coincidence point in both metric space and partial metric
space. In this article, we presume a pair of nonlinear operators satisfying in nonlinear
contractions including a simulation function in a metric space with a partial order. We
generalize some results Khojaste et al. [17] to obtain coincidence and common fixed
point results for this pair of operators with and without continuity. Also, we process two
interesting examples to explain our main results, so that one of them does not apply to the
principle of Banach contraction. Then we exploit our achievements to create a solution
for a particular type of nonlinear integral equation.

2 Preliminaries

The following definition was given by Argoubi et al. [4].

Definition 1. Let (X, d) be a metric space, and let ζ : [0,∞)× [0,∞)→ R satisfies the
following conditions:

(ζ1) ζ(p, q) < q − p for all p, q > 0;
(ζ2) If {pn} and {qn} are sequences in (0,∞) such that limn→∞ pn = limn→∞ qn =

l > 0, then
lim sup
n→∞

ζ(pn, qn) < 0.

Then ζ is a simulation function.
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Remark 1. Initially, Khojasteh et al. [17] defined the simulation function as a mapping ζ :
[0,∞)× [0,∞)→ R satisfying ζ(0, 0) = 0 and conditions (ζ1) and (ζ2) of Definition 1.
In the following, we will use the modified definition by Argoubi et al. [4].

Before starting the main results of this research, we render many examples that high-
light their possible applicability to the field of fixed point theory.

Example 1. (See [17].) Let ζi : [0,∞)× [0,∞)→ R, i = 1, 2, . . . , 6, be defined by

(i) ζ1(p, q) = ψ(q) − φ(p) for all p, q ∈ [0,∞), where ψ, φ : [0,∞) → [0,∞) are
two continuous functions such that ψ(t) = φ(t) = 0 if only if t = 0 and ψ(t) <
t 6 φ(t) for all t > 0.

(ii) ζ2(p, q) = αq − p for all p, q ∈ [0,∞) is a particular case of ζ1 with φ(t) = t
and ψ(t) = αt for all t > 0 and α ∈ [0, 1).

(iii) ζ3(p, q) = q − ϕ(q) − p for all p, q ∈ [0,∞), where ϕ : [0,∞) → [0,∞) is
a lower semicontinuous function such that φ−1(0) = {0}.

(iv) ζ4(p, q) = qϕ(q)−p for all p, q ∈ [0,∞), where ϕ : [0,∞)→ [0, 1) is a function
such that lim supt→r+ ϕ(t) < 1 for all r > 0.

(v) ζ5(p, q) = q − (f(p, q)/g(p, q))p for all p, q ∈ [0,∞), where f, g : [0,∞) →
(0,∞) are two continuous functions with respect to each variable such that
f(p, q) > g(p, q) for all p, q > 0.

(vi) ζ6(p, q) = q −
∫ p
0
φ(u) du for all p, q ∈ [0,∞), where φ : [0,∞) → [0,∞) is

a function such that
∫ ε
0
φ(u) du exists, and

∫ ε
0
φ(u) du > ε for each ε > 0.

Definition 2. Let (X, d) be a metric space and S, T : X → X . If v = Su = Tu for
some u in X , then u is called a coincidence point of S and T .

Definition 3. (See [15].) Let (X, d) be a metric space. The mappings S, T : X → X
are compatible if and only if for any sequence {un} in X such that limn→∞ Sun =
limn→∞ Tun, limn→∞ d(STun, TSun) = 0.

Definition 4. (See [16].) Let (X, d) be a metric space. The mappings S, T : X → X are
weakly compatible if and only if Su = Tu for some u ∈ X implies that STu = TSu or
S and T commute at their coincidence points.

If S and T are compatible, then S and T are weakly compatible.

Definition 5. (See [7].) Let (X,4) is a partially ordered set and S, T : X → X . S is
said to be T -nondecreasing if for u, v ∈ X ,

Tu 4 Tv =⇒ Su 4 Sv.

3 Main result

The following main theorem is a generalized coincidence point theorem for maps that are
not necessarily continuous.
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Theorem 1. Let (X,4) be a partially ordered set and suppose that there exists a metric
d on X such that (X, d) is complete metric space. Suppose that there exist a simulation
function ζ and S, T : X → X such that

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
> 0 ∀x, y ∈ X: Tx 4 Ty, (1)

and suppose the following hypotheses:

(i) SX ⊆ TX and TX is closed;
(ii) S is T -nondecreasing;

(iii) If {Txn} ⊂ X is a nondecreasing sequence, which converges to Tu in TX , then
Txn 4 Tu for all n > 0.

If there exists x0 ∈ X such that Tx0 4 Sx0, then S and T have a coincidence point, that
is, there exists v ∈ X such that Sv = Tv.

Proof. Using the theorem condition, we have x0 ∈ X such that Tx0 4 Sx0. Since
SX ⊆ TX , then there exists x1 ∈ X such that Tx1 = Sx0 and Tx0 4 Sx0 = Tx1.
Since S is T -nondecreasing, we have Sx0 4 Sx1. Continuing this process, we construct
the sequence {xn} with the following conditions:

Sxn = Txn+1 ∀n > 0, (2)
and

(3)Tx0 4 Sx0 = Tx1 4 Sx1 = Tx2 4 Sx2 4 · · ·
4 Sxn−1 = Txn 4 Sxn = Txn+1 4 · · · .

If two consecutive members of the sequences {Sxn} or {Txn} are equal, then the con-
clusion of the theorem follows. So we have

d(Sxn, Sxn+1) 6= 0, d(Txn, Txn+1) 6= 0 ∀n > 0. (4)

If for some n ∈ N, we assume that d(Txn−1, Txn) < d(Txn, Txn+1), then by property
(ζ1) of simulation function and (2)–(4) we have

0 6 ζ
(
d(Sxn−1, Sxn), d(Txn−1, Txn)

)
= ζ
(
d(Txn, Txn+1), d(Txn−1, Txn)

)
< d(Txn−1, Txn)− d(Txn, Txn+1) < 0.

This contradiction shows that

d(Txn, Txn+1) 6 d(Txn−1, Txn).

This implies that the sequence {d(Txn−1, Txn)} is a monotone decreasing sequence of
nonnegative real numbers, and consequently, there exists r > 0 such that the sequence
{d(Txn−1, Txn)} converges to r.
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Suppose r > 0. By (3) we know that the elements Txn and Txn+1 are comparable,
so using property (ζ2) of a simulation function with pn = d(Sxn, Sxn+1) and qn =
d(Sxn−1, Sxn), we have

0 6 lim sup
n→∞

ζ
(
d(Sxn−1, Sxn), d(Txn−1, Txn)

)
= lim sup

n→∞
ζ
(
d(Txn, Txn+1), d(Txn−1, Txn)

)
< 0,

which is a contradiction, and hence,

lim
n→∞

d(Txn−1, Txn) = 0.

The next step is to show that the sequence {Txn} is Cauchy. By contradiction and
by Lemma 2.1 of [14] there exist an ε > 0 and {Txm(k)}, {Txn(k)} ⊂ {Txn} with
n(k) > m(k) > k for all k ∈ N such that

lim
k→∞

d(Txm(k), Txn(k)) = lim
k→∞

d(Txm(k)+1, Txn(k)+1) = ε, (5)

d(Txm(k), Txn(k)) > ε. (6)

Then we can assume that

d(Txm(k)+1, Txn(k)+1) > 0 ∀k ∈ N. (7)

Again, by (3) we know that the elements Txm(k) and Txn(k) are comparable, so using
(5)–(7) and property (ζ2) of a simulation function with pn = d(Txm(k)+1, Txn(k)+1) and
qn = d(Txm(k), Txn(k)), we have

0 6 lim sup
k→∞

ζ
(
d(Sxm(k), Sxn(k)), d(Txm(k), Txn(k))

)
= lim sup

k→∞
ζ
(
d(Txm(k)+1, Txn(k)+1), d(Txm(k), Txn(k))

)
< 0,

which is a contradiction. We conclude that the sequence {Txn} is a Cauchy sequence,
and hence, {Txn} is convergent in the complete metric space (X, d). TX is closed,
therefore, by (2) there exists u ∈ X such that

lim
n→∞

Sxn = lim
n→∞

Txn = Tu. (8)

From (3) and (8) we know that {Txn} is a nondecreasing sequence in TX such that
Txn → Tu, then by condition (iii) and (4) we have

Txn ≺ Tu. (9)

Again, by (3), (4) and since S is T -nondecreasing, we have

Sxn ≺ Su. (10)
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Using property (ζ1) of a simulation function, (9) and (10), we have

0 6 ζ
(
d(Sxn, Su), d(Txn, Tu)

)
< d(Txn, Tu)− d(Sxn, Su) ∀n ∈ N.

Taking n→∞ in the above inequality, we have limn→∞ Sxn = Su. Then

Su = lim
n→∞

Sxn = lim
n→∞

Txn = Tu. (11)

This completes the proof.

Now, we will prove the existence and uniqueness theorem of a common fixed point.

Theorem 2. If in Theorem 1, it is additionally assumed that S and T are weakly com-
patible and Tu 4 TTu, where u is a coincidence point of S and T , then S and T have
a common fixed point in X . Moreover, if a set of fixed points of T is totally ordered, then
S and T have a unique common fixed point.

Proof. We prove v = Su = Tu. Since S and T are weakly compatible, by (11) we have
STu = TSu. Then

Tv = TTu = TSu = STu = SSu = Sv. (12)

If Tv = v or Sv = v, then v is a common fixed point. Otherwise, i.e., if Tv 6= v and
Sv 6= v, by property (ζ1) of a simulation function with Tu 4 TTu

0 6 ζ
(
d(v, Sv), d(v, Tv)

)
= ζ
(
d(Su, SSu), d(Tu, TTu)

)
< d(Tu, TTu)− d(Su, SSu).

Using (11) and (12) in the above inequality, we have

d(Su, SSu) < d(Tu, TTu) = d(Su, SSu),

which is a contradiction. Therefore, Tv = v or Sv = v, and we conclude that v = Sv =
Tv.

Now, suppose that the set of fixed points of T is totally ordered. Assume on the
contrary that v = Sv = Tv and v′ = Sv′ = Tv′ but v 6= v′. Since v and v′ contain a set
of fixed points of T , without loss of generality, we assume that Tv 4 Tv′. If Sv = Sv′

or Tv = Tv′, then v = v′ , which is a contradiction. Otherwise, i.e., if Sv 6= Sv′ and
Tv 6= Tv′, by property (ζ1) of a simulation function we have

0 6 ζ
(
d(Sv, Sv′), d(Tv, Tv′)

)
= ζ
(
d(v, v′), d(v, v′)

)
< d(v, v′)− d(v, v′) = 0,

which is a contradiction. Therefore, S and T have a unique common fixed point.

In the next theorem, we will omit condition (iii) of Theorem 1, and we will assume
that S, T : X → X are continuous and compatible.

Nonlinear Anal. Model. Control, 28(3):578–596, 2023
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Theorem 3. Let (X,4) be a partially ordered set, and let there exists a metric d on X
such that (X, d) is complete metric space. Suppose that there exist a simulation function
ζ and S, T : X → X such that

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
> 0 ∀x, y ∈ X: Tx 4 Ty.

We suppose the following hypotheses:

(i) SX ⊆ TX;
(ii) S is T -nondecreasing;

(iii) S and T are continuous;
(iv) The pair {S, T} is compatible.

If there exists x0 ∈ X such that Tx0 4 Sx0, then S and T have a coincidence point, that
is, there exists u ∈ X such that Su = Tu. Further, if Tu 4 TTu and the set of fixed
points of T is totally ordered, then S and T have a unique common fixed point.

Proof. Following the proof of Theorem 1, we have that {Txn} is a Cauchy sequence in
the complete metric space (X, d). Then there exists u ∈ X such that

lim
n→∞

Sxn = lim
n→∞

Txn = u. (13)

Since S and T are compatible, this implies that

lim
n→∞

(
S(Txn), T (Sxn)

)
= 0. (14)

From (13) and the continuity of S and T we have

lim
n→∞

T (Txn) = Tu, lim
n→∞

S(Txn) = Su. (15)

By the triangular inequality we have

d(Su, Tu) 6
(
Su, S(Txn)

)
+ d
(
S(Txn), T (Sxn)

)
+ d
(
T (Txn+1), Tu

)
.

By (14) and (15) and letting n→∞, we obtain:

d(Su, Tu) 6 0,

therefore, Su = Tu, that is, u is the coincidence point of S and T .
Finally, because S and T are compatible (therefore, they are weakly compatible) and,

on the other hand, Tu 4 TTu and set of fixed points of T is totally ordered, then by
Theorem 2, S and T have a unique common fixed point.

If T : X → X is the identity mapping, we can deduce easily the following fixed point
results. It is an immediate consequence of Theorem 1.

https://www.journals.vu.lt/nonlinear-analysis
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Theorem 4. Let (X,4) be a partially ordered set and suppose that there exists a metric
d on X such that (X, d) is complete metric space. Suppose that there exist a simulation
function ζ and S : X → X such that

ζ
(
d(Sx, Sy), d(x, y)

)
> 0 ∀x, y ∈ X: x 4 y.

We suppose the following hypotheses:

(i) S is a nondecreasing function;
(ii) If {un} is a nondecreasing sequence, which converges to u in X , then un 4 u

for all n > 0.

If there exists x0 ∈ X such that x0 4 Sx0, then S has a fixed point.

The following result is an immediate consequence of Theorem 3.

Theorem 5. Let (X,4) be a partially ordered set and suppose that there exists a metric
d on X such that (X, d) is complete metric space. Suppose that there exist a simulation
function ζ and S : X → X such that

ζ
(
d(Sx, Sy), d(x, y)

)
> 0 ∀x, y ∈ X: x 4 y.

We suppose the following hypotheses:

(i) S is a nondecreasing function;
(ii) S is continuous.

If there exists x0 ∈ X such that x0 4 Sx0, then S has a fixed point.

4 Consequences

In this section, as applications, we obtain some results of Theorem 1 in fixed point theory
in partially ordered metric space via specific choices of simulation functions.

Let (X,4) be a partially ordered set and suppose that there exists a metric d on X
such that (X, d) is a complete metric space.

Corollary 1. Let S, T : X → X be mappings such that there exist two continuous
functions φ, ψ : [0,∞) → [0,∞) verifying ψ(t) = φ(t) = 0 if and only if t = 0,
ψ(t) < t 6 φ(t) for all t > 0, and

φ
(
d(Sx, Sy)

)
6 ψ

(
d(Tx, Ty)

)
∀x, y ∈ X: Tx 4 Ty.

We suppose the following hypotheses:

(i) SX ⊆ TX and TX is closed;
(ii) S is T -nondecreasing;

(iii) If {Txn}⊂X is a nondecreasing sequence converges to Tu in TX , then Txn4
Tu for all n > 0.

Nonlinear Anal. Model. Control, 28(3):578–596, 2023
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If there exists x0 ∈ X such that Tx0 4 Sx0, then S and T have a coincidence point, that
is, there exists u ∈ X such that Su = Tu. Further, if S and T are weakly compatible,
Tu 4 TTu, and the set of fixed points of T is totally ordered, then S and T have a unique
common fixed point.

Proof. The result follows from Theorems 1 and 2 by taking as simulation function

ζ1(p, q) = ψ(q)− φ(p) ∀p, q > 0,

which was introduced in Example 2.

Corollary 2 [Banach type]. Let S, T : X → X be mappings such that there exists
α ∈ [0, 1) verifying

d(Sx, Sy) 6 αd(Tx, Ty) ∀x, y ∈ X: Tx 4 Ty.

We suppose the following hypotheses:

(i) SX ⊆ TX and TX is closed;
(ii) S is T -nondecreasing;

(iii) If {Txn}⊂X is a nondecreasing sequence converges to Tu in TX , then Txn4
Tu for all n > 0.

If there exists x0 ∈ X such that Tx0 4 Sx0, then S and T have a coincidence point, that
is, there exists u ∈ X such that Su = Tu. Further, if S and T are weakly compatible,
Tu 4 TTu, and the set of fixed points of T is totally ordered, then S and T have a unique
common fixed point.

Proof. The result follows from Theorems 1 and 2 by taking as simulation function

ζ2(p, q) = αq − p ∀p, q > 0,

which was introduced in Example 2.

Corollary 3. Let S, T : X → X be mappings such that there exists a lower semicontin-
uous function ϕ : [0,∞)→ [0,∞) verifying ϕ−1({0}) = {0} and

d(Sx, Sy) 6 d(Tx, Ty)− ϕ
(
d(Tx, Ty)

)
∀x, y ∈ X: Tx 4 Ty.

We suppose the following hypotheses:

(i) SX ⊆ TX and TX is closed;
(ii) S is T -nondecreasing;

(iii) If {Txn} ⊂ X is a nondecreasing sequence, which converges to Tu in TX , then
Txn 4 Tu for all n > 0.

If there exists x0 ∈ X such that Tx0 4 Sx0, then S and T have a coincidence point, that
is, there exists u ∈ X such that Su = Tu. Further, if S and T are weakly compatible,
Tu 4 TTu, and the set of fixed points of T is totally ordered, then S and T have a unique
common fixed point.

https://www.journals.vu.lt/nonlinear-analysis
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Proof. The result follows from Theorems 1 and 2 using simulation function

ζ3(p, q) = q − ϕ(q)− p ∀p, q > 0,

which was introduced in Example 2.

Corollary 4. Let S, T : X → X be mappings such that there exists a function ϕ :
[0,∞)→ [0, 1) with lim supt→r+ ϕ(t) < 1 for all r > 0, and

d(Sx, Sy) 6 d(Tx, Ty)ϕ
(
d(Tx, Ty)

)
∀x, y ∈ X: Tx 4 Ty,

We suppose the following hypotheses:

(i) SX ⊆ TX and TX is closed;
(ii) S is T -nondecreasing;

(iii) If {Txn}⊂X is a nondecreasing sequence converges to Tu in TX , then Txn4
Tu for all n > 0.

If there exists x0 ∈ X such that Tx0 4 Sx0, then S and T have a coincidence point, that
is, there exists u ∈ X such that Su = Tu. Further, if S and T are weakly compatible,
Tu 4 TTu, and the set of fixed points of T is totally ordered, then S and T have a unique
common fixed point.

Proof. The result follows from Theorems 1 and 2 by taking as simulation function

ζ4(p, q) = qϕ(q)− p ∀p, q > 0,

which was introduced in Example 2.

Corollary 5. Let S, T : X → X be mappings and f, g : [0,∞) → (0,∞) be two
continuous functions with respect to each variable such that f(p, q) > g(p, q) for all
p, q > 0, and

f(d(Sx, Sy), d(Tx, Ty))

g(d(Sx, Sy), d(Tx, Ty))
d(Sx, Sy) 6 d(Tx, Ty) ∀x, y ∈ X: Tx 4 Ty.

We suppose the following hypotheses:

(i) SX ⊆ TX and TX is closed;
(ii) S is T -nondecreasing;

(iii) If {Txn}⊂X is a nondecreasing sequence converges to Tu in TX , then Txn4
Tu for all n > 0.

If there exists x0 ∈ X such that Tx0 4 Sx0, then S and T have a coincidence point, that
is, there exists u ∈ X such that Su = Tu. Further, if S and T are weakly compatible,
Tu 4 TTu, and the set of fixed points of T is totally ordered, then S and T have a unique
common fixed point.

Nonlinear Anal. Model. Control, 28(3):578–596, 2023
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Proof. The result follows from Theorems 1 and 2 by taking as simulation function

ζ5(p, q) = q − f(p, q)

g(p, q)
p ∀p, q > 0,

which was introduced in Example 2.

Corollary 6. Let S, T : X → X be mappings and there exists a function ϕ : [0,∞) →
[0,∞) such that

∫ ε
0
φ(u) du exists,

∫ ε
0
φ(u) du > ε for each ε > 0, and

d(Sx,Sy)∫
0

φ(u) du 6 d(Tx, Ty) ∀x, y ∈ X: Tx 4 Ty.

We suppose the following hypotheses:

(i) SX ⊆ TX and TX is closed;
(ii) S is T -nondecreasing;

(iii) If {Txn}⊂X is a nondecreasing sequence converges to Tu in TX , then Txn4
Tu for all n > 0.

If there exists x0 ∈ X such that Tx0 4 Sx0, then S and T have a coincidence point, that
is, there exists u ∈ X such that Su = Tu. Further, if S and T are weakly compatible,
Tu 4 TTu, and the set of fixed points of T is totally ordered, then S and T have a unique
common fixed point.

Proof. The result follows from Theorems 1 and 2 using the simulation function

ζ6(p, q) = q −
p∫

0

φ(u) du ∀p, q > 0,

which was introduced in Example 2.

5 Example

In this section, we suppose that ζ(p, q) : [0,∞)×[0,∞)→ R with ζ(p, q) = q−((p+2)/
(p+ 1))p. Clearly, ζ is a simulation function.

Example 2. Let X = {0, 1, 2, 3, 4, . . . } be endowed with the metric d : X × X → R
given by

d(x, y) =

{
x+ y if x 6= y,

0 if x = y.

We define a partial order 4 in X as x 4 y if and only if x > y, (y − x) is divisible by 2
for all x, y ∈ {2, 3, 4, . . . }, and 1 4 0, 2 4 1. Clearly, (X, d,4) is a complete partially
ordered metric space.
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Let S, T : X → X be defined as

Sx =

{
x− 2 if x > 3,

0 if x = 0, 1, 2,
Tx =

{
x− 1 if x > 1

0 if x = 0, 1.

Without loss of generality, assume that x > y and verify inequality (1). Then the following
cases are possible.

(C1) If x = 1, then y = 0 and Sx = Sy = Tx = Ty = 0. Then (1) is satisfied.
(C2) If x = 2, then y = 0 or 1 and Sx = Sy = 0. Then (1) is satisfied.
(C3) If x ∈ {3, 4, 5, . . . }, then we have the following subcases:

(a) If y = 0 or y = 1, then Sx = x − 2, Sy = 0, Tx = x − 1, and Ty = 0.
Therefore,

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
= x− 1− x− 2 + 2

x− 2 + 1
(x− 2) =

1

x− 1
> 0.

(b) If y = 2, then Sx = x− 2, Sy = 0, Tx = x− 1, and Ty = 1. Therefore,

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
= x− x− 2 + 2

x− 2 + 1
(x− 2) =

x

x− 1
> 0.

(c) If y ∈ {3, 4, 5, . . . }, then Sx = x − 2, Sy = y − 2, Tx = x − 1, and
Ty = y − 1. Then

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
= x+ y − 2− x+ y − 4 + 2

x+ y − 4 + 1
(x+ y − 4)

=
x+ y − 2

x+ y − 3
> 0.

Thus, (1) is verified.
On the other hand, if {Txn} is a nondecreasing sequence in TX with respect to 4

such that Txn → Tu. By the definition of the metric d, there exists m ∈ N such that
Txn = Tu for all n > m, so condition (iii) of Theorem 1 is satisfied.

Thus, S and T satisfy all other hypotheses of Theorem 1. Therefore, S and T have
a coincidence point. Moreover, since S and T satisfy all the hypotheses of Theorem 2,
we obtain S and T have a unique common fixed point in 0.

Remark 2. We know by using the Archimedean property for all α ∈ (0, 1) there exists
x ∈ {3, 4, . . . } such that

(1− α)x > 2,

therefore,
(α− 1)x < −2 =⇒ αx− (x− 2) < 0.

If ζ(p, q) = αq − p and y = 2 in the previous example, then we have

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
= αx− (x− 2) < 0.

Then the previous example does not apply to Banach contraction.
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Example 3. Let X = [0,∞) be endowed with the metric d : X ×X → R given by

d(x, y) =

{
0 if x = y,

max{x, y} if x 6= y.

Now consider the usual order of real numbers and define the mappings S, T : X → X by
Sx = x and Tx = 2x for all x ∈ X . Then we have

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
= 2y − y + 2

y + 1
y =

2y(y + 1)− y(y + 2)

y + 1
=

y2

y + 1
> 0

for all x, y ∈ X with x 6 y. Therefore, inequality (1) is satisfied. Thus, S and T satisfy
all the hypotheses of Theorem 3. Here v = 0 is a coincidence point as well as a unique
common fixed point of S and T .

6 Existence of solution for a nonlinear integral equation

Consider the integral equation

x(t) = f1(t)− f2(t) + ε

t∫
0

n1(t, s)k1
(
s, x(s)

)
ds

+ δ

T∫
0

n2(t, s)k2
(
s, x(s)

)
ds, t ∈ I, (16)

where I = [0, T ], T > 0.
The purpose of this section is to give an existence theorem for a solution of (16) using

Theorem 1. This application was inspired by [1, 26].
Previously, we considered the space

C(I) := {x: I → R | x is continuous on I}.

Obviously, C(I) with the metric given by

d(x, y) = sup
t∈I

∣∣x(t)− y(t)∣∣ ∀x, y ∈ C(I),
is a complete metric space. C(I) can also be equipped with the partial order 4 given by

x, y ∈ C(I), x 4 y ⇐⇒ x(t) 6 y(t) ∀t ∈ I.

Moreover, in [24], it was proved that if a nondecreasing sequence {un} ⊆ C(I) converges
to u in C(I), then un 4 u for all n > 0.

Now, we will prove the following result.
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Theorem 6. For each x ∈ C(I), define the operators

Sx(t) = −f2(t) + ε

t∫
0

n1(t, s)k1
(
s, x(s)

)
ds

and

Tx(t) = x(t)− f1(t)− δ
T∫

0

n2(t, s)k2
(
s, x(s)

)
ds,

where t ∈ I , ε, δ ∈ R, f1, f2 ∈ C(I) with f1(t) > f2(t), and n1(t, s), n2(t, s),
k1(s, x(s)), k2(s, x(s)) are continuous real-valued functions in I × R.

Suppose that the following hypotheses hold:

(i)
∫ T
0
supt∈I |ni(t, s)|ds = Ni <∞, i ∈ {1, 2};

(ii) For each s ∈ I and for all x, y ∈ C(I) with Tx 4 Ty, there is Pi > 0 such that∣∣Ki

(
s, x(s)

)
− ki

(
s, y(s)

)∣∣ 6 Pi
∣∣x(s)− y(s)∣∣, i ∈ {1, 2};

(iii) δ

T∫
0

n2(t, s)k2

(
s, ε

s∫
0

n1(s, v)k1
(
v, x(v)

)
dv + f1(s)− f2(s)

)
ds = 0;

(iv) Tx 4 Ty implies Sx 4 Sy for all x, y ∈ C(I);
(v) There exists x0 ∈ C(I) such that

x0 6 f1(t)− f2(t)

+ ε

t∫
0

n1(t, s)k1
(
s, x0(s)

)
ds+ δ

T∫
0

n2(t, s)k2
(
s, x0(s)

)
ds.

If
|ε|P1N1

1− |δ|P2N2
< 1 and |δ| < 1

P2N2
,

then the integral equation (16) has a solution.

Proof. Note that the integral equation (16) has a solution if and only if the operators S
and T have a coincidence point. Clearly, S and T are self-operators on C(I). Now, for
all x, y ∈ C(I) with Tx 4 Ty, by assumptions (i) and (ii) we have

∣∣Sx(t)− Sy(t)∣∣ 6 |ε| t∫
0

∣∣n1(t, s)∣∣∣∣k1(s, x(s))− k1(s, y(s))∣∣ ds
6 |ε|

t∫
0

sup
t∈I

∣∣n1(t, s)∣∣∣∣k1(s, x(s))− k1(s, y(s))∣∣ds
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6 |ε|
t∫

0

sup
t∈I

∣∣n1(t, s)∣∣P1

∣∣x(s)− y(s)∣∣ds
6 |ε|P1‖x− y‖

t∫
0

sup
t∈I

∣∣n1(t, s)∣∣ds
6 |ε|P1N1‖x− y‖.

This implies that

‖Sx− Sy‖ = sup
t∈I

∣∣Sx(t)− Sy(t)∣∣ 6 |ε|P1N1‖x− y‖. (17)

On the other hand, we have∣∣∣∣∣δ
T∫

0

n2(t, s)k2
(
s, x(s)

)
ds− δ

T∫
0

n2(t, s)k2
(
s, y(s)

)
ds

∣∣∣∣∣
6 |δ|

T∫
0

∣∣n2(t, s)∣∣∣∣k2(s, x(s))− k2(s, y(s))∣∣ ds
6 |δ|

T∫
0

sup
t∈I

∣∣n2(t, s)∣∣∣∣k2(s, x(s))− k2(s, y(s))∣∣ds
6 |δ|

T∫
0

sup
t∈I

∣∣n2(t, s)∣∣P2

∣∣x(s)− y(s)∣∣ds
6 |δ|P2N2‖x− y‖,

which implies

sup
t∈I

∣∣∣∣∣δ
T∫

0

n2(t, s)k2
(
s, x(s)

)
ds− δ

T∫
0

n2(t, s)k2
(
s, y(s)

)
ds

∣∣∣∣∣
6 |δ|P2N2‖x− y‖.

Therefore, we have

‖Tx− Ty‖

> ‖x− y‖ − sup
t∈I

∣∣∣∣∣δ
T∫

0

n2(t, s)k2
(
s, x(s)

)
ds− δ

T∫
0

n2(t, s)k2
(
s, y(s)

)
ds

∣∣∣∣∣
>
(
1− |δ|P2N2

)
‖x− y‖,
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which implies

‖x− y‖ 6 1

1− |δ|P2N2
‖Tx− Ty‖. (18)

From (17) and (18) we get

‖Sx− Sy‖ 6 |ε|P1N1

1− |δ|P2N2
‖Tx− Ty‖,

and, since α = |ε|P1N1/(1− |δ|P2N2) < 1, if we define ζ(p, q) = αq − p for all
p, q ∈ [0,∞), then we have

ζ
(
d(Sx, Sy), d(Tx, Ty)

)
> 0

for all x, y ∈ C(I) with Tx 4 Ty. Thus, condition (1) is trivially satisfied. Next, we can
show that S(C(I)) ⊆ T (C(I)). Indeed, by (iii) for x(t) ∈ C(I) we have

T
(
Sx(t) + f1(t)

)
= Sx(t) + f1(t)− f1(t)− δ

T∫
0

n2(t, s)k2
(
s, Sx(s) + f1(s)

)
ds

= Sx(t)− δ
T∫

0

n2(t, s)k2

(
s, ε

s∫
0

n1(s, v)k1
(
v, x(v)

)
dv + f1(s)− f2(s)

)
ds

= Sx(t).

Clearly, hypothesis (iv) means that S is T -nondecreasing. Next, by (v) we get

x0 − f1(t)− δ
T∫

0

n2(t, s)k2
(
s, x0(s)

)
ds 6 −f2(t) + ε

t∫
0

n1(t, s)k1
(
s, x0(s)

)
ds,

that is, Tx0 4 Sx0. Thus, all the cases of Theorem 1 are satisfied, and hence, its
result holds, that is, S and T have at last a coincidence point. Consequently, the integral
equation (16) has a solution in C(I).

7 Conclusion

In this work, we consider a pair of nonlinear operators satisfying a nonlinear contrac-
tion involving a simulation function in a metric space endowed with a partial order. For
this pair of operators with and without continuity, we establish coincidence and unique
common fixed point results. Moreover, an application of our results obtained to prove the
existence of a solution to an integral equation is presented.
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