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1 Introduction

Fractional integro-differential operators have many applications to investigate the mathe-
matical modeling of physical phenomenon in many technological fields, namely, mechan-
ics and physics. To see several published papers in this regard, the reader is referred to [2,
7,8,13]. Among these works, the Riemann-Liouville and Caputo integro-differential op-
erators are the most fractional operators, which have been used. Recently, a new fractional
integro-differential operator, namely, @-Caputo fractional derivative, which means that
the fractional derivative is defined with respect to another strictly increasing differentiable
function, was introduced in [14] and used in [6]. Then some researchers used this operator
in different subjects (see, for example, [1,3,5,11,15,23]).

In [9], da C. Sousa and de Oliveira introduced a fractional derivative with respect to
another function, the so-called v-Hilfer fractional derivative, and discussed some prop-
erties and important results of the fractional calculus. In this sense, they presented some
results involving uniformly convergent sequence of function, uniformly continuous func-
tion, and examples including the Mittag-Leffler function with one parameter. Finally, they
presented a wide class of integrals and fractional derivatives by means of the fractional
integral with respect to another function and the v-Hilfer fractional derivative.

In [10], da C. Sousa and de Oliveira studied a Leibniz-type rule for the 1-Hilfer
fractional differential operator in two forms. They also presented some specific cases
of Leibniz-type rule for this operator. In [19], these authors also presented a differential
operator of arbitrary order defined by means of a Caputo-type modification of the gen-
eralized fractional derivative. As an application, they proved the fundamental theorem of
fractional calculus associated with this differential operator.

Recently, Samei et al. [22] investigated the following ¢-Caputo fractional differential
inclusion:

D (D (DL (DI (1))
€ f(t,2(t),“DEP 2(t), “DP¥? (“DTP 2(t)), D7 (“DEY (“DEF 2(t)))),
2(a) = 2o, ‘DEF2(a) = 21,

CDif’ (cDg;fz(a)) = 29, cDZ’f (CDZ;f (CDZfz(a))) = 21,

(1

where “D"i is the o-Caputo fractional-order derivative introduced by Jarad et al. [14],
f : Ja,b] x R* — P(R) is a multivalued function, 7 belong to {q,p,, k} such that
0 < q,p,7,k < 1, the increasing function p € C1([a, b]) is such that ¢’ (t) # 0, t € [a, b],
and 2o, 21, 22, 23 € R.

The authors investigated the solvability of the above-mentioned problem by using the
a—-contractive multivalued mappings defined in [17].

In this paper, we pursue two goals: In Section 3, we introduce a new multivalued
contraction named the weak Wardowski multivalued contraction and prove the existence
of a fixed point for such mappings. In Section 4, we use our new contraction to show that
the above p-Caputo fractional differential inclusion (1) is solvable when the right-hand
function f : [a, b] x R* — P(R) does not always involve a—-contraction for multivalued
mappings.

https://www.journals.vu.lt/nonlinear-analysis
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2 Preliminaries and auxiliary notions

Let (X, d) is a metric space. Following [18], denote by P, (%) the class of all nonempty
closed bounded subsets of X. Let H be the Hausdorff~Pompeiu metric on P, (X) induced
by the metric d given as

H(T1,T3) = max{ sup d(s1,73), sup d(CQ,Tl)}
1€ S2€T>

for every 11,75 € Pep(X).

Anelement 6 € X is said to be a fixed point of a multivalued mapping 7" : X — P(X)
if0 €T6.

Recently, Parvaneh and Farajzadeh [20] introduced and obtained the weak Wardowski
contractions and obtained some fixed point theorems for this contractions via the notion
of measure of noncompactness.

Denote by = the set of all functions § : [0, oo] — [—00, 0] so that:

(01) § is increasing and continuous;
(02) F(s)=0 & s=1.

As examples of elements of ="

In(t), te(0,00), —ﬁ +1, te(0,00),
(i) Fi(t) =4 —o00, t=0, (i) F3(t) =} —oo, t=0,

00, t = oo, 1, t = o0,

In(t) +¢, te(0,00), —1+1, te(0,00),
(ii) F2(t) =  —oo, t=0, (iv) Fa(t) = { —oo, t=0,

00, t = oo, 1, t = oo.

Denote by ©’ the collection of all functions ¥ : R — (0, o) such that +J is continuous.
As examples of elements of ©':
i) %(s)=71, 7>0, (iii) 93(s)=7+e" %, 7>0,
(i) da(s)=7e*, 7>0, (V) Vals) =7+ 7>0,

(v) U5(s) = s> + s+ 1.

Now, let us recall some introductive definitions of fractional differential equations
[16,21]. For a continuous function f : [a,b] — R, the Riemann-Liouville integral of
fractional order « is defined by

t

o (1) = % / (t— )" f(r)dr. @)

a
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The Caputo derivative of fractional order « is defined by

cryo o 1 / _Tnfozfl (n) A dr
D f(t)—r(n_a)a/(t ye () ®

forn —1 < a < n,n = [a] + 1. Here the Riemann-Liouville fractional derivative of
order « is defined by

t

D) = i () [- 7 @

forn—1<a<nn=l[a]+1

Definition 1. (See [3].) Let ¢ is an increasing map so that ¢’(s) > 0 for any s € [a, b].
Then the p-Riemann-Liouville integral of order r of a integrable function f : [a,b] — R
with respect to ¢ is defined as

t

U9 f(t) = %/@’(6)(@@) —0(€))

r

r—1

f(§)dg, )

a

provided that the right-hand side of equality is finite-valued.

It should be noted that if p(t) = t, then, clearly, the p-Riemann—Liouville integral (5)
reduces to the standard Riemann—Liouville integral (2).

Definition 2. (See [14].) Let n = [r] + 1. For a real mapping f € C([a,b],R), the
p-Riemann-Liouville derivative of order r is formulated as

D10 = o (o) [ OF0 e @ ©

a

provided that the right-hand side of equality is finite-valued.

In the similar manner, if @(t) = ¢, then it is obvious that the p-Riemann-Liouville
derivative (6) reduces to the standard Riemann—Liouville derivative (4). Inspired by these
operators, Almeida presented a new -version of the Caputo derivative in the following
formulation.

Definition 3. (See [3].) Letn = [r]+ 1, and let f € AC™([a, b], R) be an increasing map
with ¢’(s) > 0 for any s € [a, b]. The p-Caputo derivative of order r of f with respect to
pis

1

D) = sy [ O - o)

1 d
@'(§) d¢

provided that the right-hand side of equality possesses values finitely.

) fede, )

a
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It should be noted that if ¢(s) = s, then it is obvious that the p-Caputo derivative
of order r in formula (7) reduces to the standard Caputo derivative of order r in (3).
In the following, some useful specifications of the p-Caputo and p-Riemann-Liouville
integro-derivative operators can be seen. Let AC([a, b], R) stand for the set of absolutely
continuous functions from [a, b] into R. Define AC([a, b], R by

1 d
Acn —Jw: "y e A -
Cw([a,b],R) {w [a,b] — ]R|5@ w e C([a,b],R), dy 70 dy}
Lemma 1. (See [14].) Let n = [r] + 1. For a real mapping f € AC™([a,b],R),
n—1 k
- (6,5f)(a) k
LD =1(t) =) —E—(F(t) = f(@)",
k=0
where 552 = 0404+ 0.
Lemma 2. (See [4].) Letn = [a]+ 1, o, 8 > 0. For a real mapping f € C([a,b],R), we

have:

IFTIPF() = TP f (), DIFIIEf() = f(8),

D (1) — pl@) " = F(g(ﬁ)a)(so(t) —p(a)”
A CIORIO ng(f)a)(so(t) —p(a)”

D (o(t) — p(a))" =0, k=0,1,2,...,n—1.

3 Main results

In 2005, Echenique [12] started combining fixed point theory and graph theory. Consider
adirected graph G on a metric space (X, d) such that the set of its vertices V' (G) coincides
with X (ie., V(G) = X), and the set of its edges E(G) is such that E(G) O A, where
A ={(z,z): x € X}. Letus also assume that G has no parallel edges. We can identify G
with the pair (V(G), E(G)). The graph G is called a (C')-graph if for any sequence {z,, }
in X such that 2, — x and (z,,, ©,,+1) € E(QG) for all n € N, there exists a subsequence
{zn, } such that (x,, ,x) € E(G) for all k € N. Now, we are ready to state and prove the
main results of this study.

Definition 4. Let (X, d) be a metric space. Assume that G is a directed graph on X.
Let T : X — Pep(X) be a multivalued mapping. We say that 7" is a weak Wardowski
multivalued contraction if there exist § € = and ¥ € ©’ such that

§(H(Tz,Ty)) < F(M(z,y)) —9(F(M(z,y)))
for all x,y € X, where

M(z,y) = rnax{d(L y),d(z, Tx),d(y, Ty), d(z,Ty) ; d(y,Tx) }

Nonlinear Anal. Model. Control, 28(5):825-840, 2023
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Theorem 1. Ler (X, d) be a complete metric space, and let G be a directed graph on X.
Assume that T : X — Pep(X) is a weak Wardowski multivalued contraction satisfying
comparable approximate valued property. If G is a c-graph, then T has a fixed point.

Proof. Choose a fixed element ¢y € X. If g9 € T'sy, then we have nothing to prove.
Suppose that o ¢ T'p. Since T has comparable approximative valued property, there
exists ¢; € T'sp such that (5p,¢1) € E(G) and d(so,T<p) = d(so,1). It is clear that
¢1 # <. If ¢ € Tq, then ¢ is a fixed point of 7. Suppose that ¢; ¢ T'¢;. Then
there exists ¢ € T's; such that (¢1,2) € F(G) and d(s1,Ts1) = d(s1,2). It is clear that
G2 # <1. By continuing this process we obtain a sequence {s, } in X such thatg, € T's,_1,
(Sn—1,5n) € E(G), ¢y # sn—1,and d(sp—1,$n) = d(sp—1, Tsn—1) forall n € N. In view
of (3), we obtain that

F(d(snt1,n42)) = F(d(Sns1, Tsnt1)) = F(H(Tn, Tsnt1))
< S(M(gny §n+1)) - ﬂ(S(M(gn; §n+1)))7

where

max{d(%, Snt1), A(Snt1s §n+2)}

< M(gn» §n+1>

= max{d(%v gn-l—l)a d(§n7 T(,L), d(gn-i-la Tgn-‘rl)a [d(gna T§n+1) +d(§7L+17 Tgn)] }

N | =

< max{d(¢n, Snt1), A(Snt1, Snt2) }-
Thus, M (G, Snt1) = max{d(sn, Sn+1), d(Sn+1,Snt2) }- If

max{d(sn; Sn+1), A(Snt1, Snt2) } = d(Snt1, Snt2),
then

g(d(§n+1a §n+2)) < S(d(gnJrl, §n+2>) - ﬁ(g(d(gnJrla §n+2))) < S(d(§n+la §n+2>)7

which is a contradiction. Thus,

max{d(Sn, Snt1), A(Snt1,5n+2) } = d(Sns Snt1)-
Therefore,

F(d(sn+1,5n42)) < F(d(snsnt1)) — F(F(d(Sn, Snt1))) (8)

for each n > 0. Put t,, := d(<y, Spt1). From (8) we have

F(tnr1) <F(tn) —0(F(tn)) < F(tn) VYn =0, 9)

Since § is increasing, we get t,,.1 < t,, and so there is 7 > 0 such that ¢, — rT.
Now, we show that r = 0. Suppose to the contrary » > 0. Passing to the limit through (9),
F(r) < §(r) —9(3(r)) < §(r), which is a contradiction. So lim,,_,oc t, = = 0. We

https://www.journals.vu.lt/nonlinear-analysis
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claim that {¢, } is Cauchy. If {¢,} is not Cauchy, then there are ¢ > 0 and subsequences
{$m, } and {c,, } of {s,, } so that
ng >m; >4, d(Smy,Sn,) =€ (10)
and
A(SmyySn—1) < €.
Using (10), we get
€< d(gmm Cni) < d(gmi, gni,_l) + d(gn,;—la Cni) < e+ d(gm—lv <n¢)~

As i — 0o, we find
hm d(§mi7<m) =&
i—00
Also, we have
d(g’mia gm) - d(gmi ) gmr‘rl) B d(g"'i ’ gni+1)
< d(§mi+1u gniJrl) < d(§m1 ’ (miJrl) + d(§mi7 §ni) + d(gnl ’ gni+1).
As i — 0o, we find
lim d(gmrklvg’ﬂrl’l) =&

1—00
Also,
d(gmi-"la §n,+1) < d(gmr‘rla Tgmi) + IH(TCWL{, ) Tgm,) = ,H(Tgmm T§n7)
By (3) we find

S(d(@nﬁla gniJrl)) (H<T§mwT§ni))

<3
On the other hand,

d(gm.l b §n7)
< M (Gm; s Sns)

[d(gm 5 gmi-&-l) + d(g'rm y Cni-i-l)] }

N =

< max{d(qmi y gm)a d(gmia gmﬁ-l), d(gni y gm+1)7

< d(gm, s gm) + d(§mi, gmi-&-l) + d(gn, s gni+1)~
As i — 00, we find

Hm M (Sm,,Sn,) = €.

i—00

Taking limit in both sides of (11),
F(e) < F(e) = 9(S(e) < (o),

a contradiction.

Nonlinear Anal. Model. Control, 28(5):825-840, 2023
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Thus, {¢,} is a Cauchy sequence in the complete metric space (X, d), hence there is
z € X so that

lim ¢, = z.
n— o0

We claim that d(z, Tz) = 0. Suppose to the contrary d(z,Tz) # 0.
Since G is a (C)-graph, there exists a subsequence {x,, } such that (z,, ,z) € E(G)
forall k € N.

We have
‘S(d(gnk+17TZ)) g ‘3’( (TgnvaZ))
< F(M(Sny» 2)) = I(F(M (605 2)))- 12)
Also,
iy M5 2)
1
= nll_{I;O max{d(gnk ) 2)7 d(gnk ) <nk+1)7 d(z, TZ)7 5 [d/(gnk+17 Z) + d(gnk ’ TZ)} }
=d(z,Tz).
Passing to the limit through (12), we obtain F(d(z,Tz)) < §(d(z,Tz)), which is a con-
tradiction. Thus, d(z,Tz) = 0. Now, since G has comparable approximate valued
property, there exists v € X such that u € T'z, (z,u) € E(G), and d(z,u) = d(z,Tz).
Consequently, d(z,u) = 0 and so z = u € T'z. The proof is completed. O

Denote by P.,(X) the family of all nonempty compact subsets of X.

Corollary 1. Let (X, d) be a complete metric space, and let G be a directed graph on X.
Assume that T : X — P.p(X) is a weak Wardowski multivalued contraction. Moreover,
assume that Graph(T) = {(z,y): y € Tx} C E(G). If G is a c-graph, then T has
a fixed point.

4 Application to fractional differential equations

From now on, assume that X = C([a, b],R) is the Banach space of continuous functions
z : [a, b] = R endowed with the norm

2l = sup |2(t)] + sup |DEF=(t)| + sup |DYF(DELx(E)]

t€la,b] t€la,b] t€la,b]
+ sup |DI¢ (DY (‘DEP=(1)))| Vz € C(la,b],R).
t€la,b]

Define d(z1,22) = ||z1 — 22| for all 21,22 € C([a,b],R). Then (X, d) is a complete
metric space. From [22] we know that the function z € C := C([a, b],R) is a solution
of system (1) if it satisfies the boundary conditions and there is 3 € L!([a, b]) such that
3(t) € f.(t) for almost all ¢ € [a, b], where

Folt) = F (6 2(0), DEF=(0), DV (DEF2(1), “DLE (DY (DEF (1)) )

https://www.journals.vu.lt/nonlinear-analysis
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and

(p(t) — p(a))? L (p(t) — p(a))t?
T(g+1) Tlgtp+l)

(plt) = Pla)) ™7 [ (p(t) — ()
T(g+p+r+1) +/</7(T) e tp T T E

+ 23 3(r)dr

a

for all t € [a,b]. For each z € C, we define the set of selections of the operator f as
follows:

Ss. = {5€ L ([a,b]): 3(t) € f.(t) Vt € [a,b]}.
Define the operator 4 : C — P(C) by
U(z) = {p € C: there exists 3 € S . such that p(t) = T (t) Vt € [a,b]}, (13)
where

(p(t) — () (p(t) — o(a))r?
[(g+1) 2 Tlg+p+1)

(plt) = @)™+ [ (p(t) — )
I(g+p+r+1) +/<p(7') Tq+ptrtk)

T(t) = 20 =+ Z1

+ 23

3(7) dr.

From now on, we assume that for the pair of functions (F,4), §~H{F() — I(F())} is
a nondecreasing function.

Theorem 2. Let f : [a,b] x R* — P, (R) be a multivalued mapping. Suppose that the
following conditions are satisfied:

(i) The multivalued mapping f is integrable, and f (-, v1,v2, v3,v4) : [a,0] = Pep(R)
is measurable for v1,vs,v3,v4 € R;
(ii) There exist § € = and ¥ € @' such that

H(f(t,i}l, U27U37U4)a f(ta Uizvévvévvé))

< 0*3—1<&<§|vi —vél) —ﬁ(&(é vi = vél))) (14)

forallt € [a,b] and vy, va, v3,v4, V], V5, V5, v} € R, where O = O~ and

(p(b) — (@) THPHE (p(b) — p(a))Ptr
T(g+p+r+k+1)  Tlp+r+k+1)
(p(b) — p(a))™t*  (p(b) — (p(a))k’.

Tr k1) | Th+1)

Then the inclusion problem (1) has at least one solution.

Nonlinear Anal. Model. Control, 28(5):825-840, 2023
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Proof. We shall show that the multivalued mapping 4 defined in (13) has a fixed point.
Let z,2" € C and A} € Y(2’) and choose 31 € & .+ such that

() —p(@)? (o) = p(a) "

Ri(t) =20+ 21 T(g+ 1) 2 Tqtp+1)
(plt) = (@)™ [ (p(t) = p(r)yrtirei
B g prr 1) / (7) T(q+p+r+F) s(r)dr

for all t € [a, b]. From (14) we have
H(f(1), (1) <OFHE(|2() — 2/ (1)] + "D () - “DEE 2 (1)]
D (D)) — DL (DL 1)
+ DL (DI (DR 2(1)) = DI (DR (‘D= (1))
—9(F(|2(t) = 2'(t)| + |'DEE 2(t) — “DIF 2 (1)
+ DV (DI (1)) — “DEP (DEFZ (1)
+ DR (DR (*DGE=(1)) = DR (D (‘DR (0))]))
for all z, 2’ € C. Thus, there exists 1" € fz such that
310~ T < O°F (B (|2(1) — /(0] + |"DEL=(t) — °DEFZ (1)
DL (DEE(0) ~ DLE (DEE 1)
+ DL (DI (DR 2(1)) — ‘D ("D (D= (1))
—9(F(|z(t) = 2'(t)| + |°DEL2(t) — “DELZ (1)
+ D (DI (0) — DL (DI 1)
+ "D (DF (D =(1)) = D (D (‘D= (D)) }-
Now, define a multivalued mapping 91 : [a, b] — P(C) as
N = {TC () - T <)}
for all ¢t € [a, b], where
¢(t) = 0" F & (|=(t) - #/ (V)] + "Dy =(t) — “Dir 2 (1)
D (DI =(0) ~ D (D= ()
+ DL (DEF (DR 2(1)) — DI (DR (Dgir=' (1))
—D(F(|2(t) = 2'(t)| + |"DIF 2(t) — “DEZ ()|
D (DEP=(0) — DR (DEF 1)
+ "D (DR (D 2(1)) = DU (DR (D= (1)))])) }-

https://www.journals.vu.lt/nonlinear-analysis
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As 31 and ((t) are measurable, so there is 9(-) N f-(-). Now, let 35 € £, (t) be such that

51(8) = 52(0)] < O"F B (|=(t) — 2/(0)] + |"DEF2(t) - “DIe (1)
[ (DIPa(0) — DI (DL ()

+|'Dg¥ (Dfi’f (‘D t>)) =D (D (D (1)))])
—0((|=(0) - |+| 2(t) = D (0)]

+ "D (D =(0) - CDZf (‘D (1))

+ "D (D, (ch (1)) = “DF (DI (Drr='))]) }-

Now, we define /3 € $l(z2) as

() = (@) | (p(t) = p(a)) "™
P(g+1) * T(g+p+1)

ﬁ;(t) =2zp+ 21

32(T)dr

+ 23

(plt) = @)™ [ (p(t) — )
Plgtptr+d) +/@(T) D(g+p+r+k)

for all ¢t € [a, b]. Then
B (1) = B3 ()] < TIP3 (8) - 5(8)
(p(b) = p(a)THPHtr /
< _
STatprriksD O {8(=0) -7
+ |°DEP2(t) — “DEPZ (t)|
D7 (D2=(0) D (D12=/0)|
+ |CD2f(CD5f’ (CDW (1)) = D (DLF (D= (1))
—I(F([2(t) = 2 ()] + | DLE2(t) — DL (1)
D (DEP () DI (DL )
+ DL (DI (D 2(1)) — DL (DR (D= (0)))) }

(olb) = pla) ™7+ , ,
Sh 7 e e G(CRE VG (EEE )

"D mi(t) = ‘D (1)]
< I;IPMW‘MU) —32(t)]|
< (“;((‘2 ;f(ﬁ?f: O 5 HE(|2(t) — 2/ (1) + | 'DEF 2(t) — DELZ (1)
+|DEY ("D =() — De¥ (D= (1)
+[Dg¥ (CDZ?" (CDW (0)) = D (D (D= (1))
= 9(®(|=(0) — '] + ['De(t) - DEF(1)]
+[DE(° DZfZ( ) =D (D ()]

Nonlinear Anal. Model. Control, 28(5):825-840, 2023


https://doi.org/10.15388/namc.2023.28.32142

836 H. Jafari et al.

+ "D (D (D =(1) = D (DL ((DFr= 1)) ])}

o a))P+r k
%J (+ Q: J O 5 {8 (= = 2'lI) = 9@ (= = 2'1)) }+

“DEEReR;(6) — D s ()|
ST sn(t) - 52 (0)

r+k
< B =P 54 3(et0) — (0] + [DEF () — DEF=!(0)
+ [DEE (DI (1) —DF (DI ()
+ DR (CDZL“’ (chfZ( ))) = D (D (D2 ))])
—9(F(|2(0) — 2/0)] + DEP=0) — DE (1)
D (DRE () DO (D)
+ | D (D (D A1) — DI (DR (D= (1)))]))

) — a r+k 1 , /
. (npé()r +i;(+))1) O F Y3 (== 1) —9E (12 = 21)) )},

and

|CD21Lp+q;“0ﬁT (t) _ chirpw;soﬁ; (m

<Iff)|31 ) — 52(t)|
< DA 051 (5 (1t0) - 2]+ [P =(0) ~ D 0)

+ "D (DI (1)) — DR (Cszz/<t>>|

+ |CD““’(”DZ;+‘” (CDZf’ (1)) = DL (‘D ("Dir#'(1))])
—D(F(|2(t) = 2’ ()| + |°DEF2(t) — “DEFZ (¢)|

+|DrY (CDa+ 2(t)) = DFE (D2 (1)

+ DI (DIF (DEF (1)) — ‘D (‘DY (‘D2 (1)))])) }

(o0) = ¢(@)* s , ,
<R O (- 2 ) ~ 9 (1= - 1)

Therefore,

i (t) — s ()] + Sup |°DEERT(t) — “DERS (1)
t€(a,
+ sup |CDp<'9(CDth*( )) — D¢ (CDa+ ﬁ;(t))‘
t€la,
+ s e (o (DREK0)) — DL (DR (D)
o <(<p(b) — ()Pt (p(b) = p(a))PrrHF
Ig+p+r+k+1) IF'lp+r+k+1)

17 = Aiz]| = sup
tefab]
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Trikr1) (k+1)

x O'F HE (12— 1) =0 (== 2'1I)}
— 005" 1{%(Hz—z’ll) I (== 21))}
=5 {3z = 21) —2@F (= = 2'lI) }-

((b) = (@)™ (p(b) - 90(@))’“)

Thus,
H(U(z), 4(=") <FHE(lz = 2'11) =2 (= — 1))}
<FHS(M(z,2) = 0(§(M(2,2))) },

and so
F(H(U(2), 4(=1)) <F(M(z,27)) = 9(F(M(2,2))).

Now, taking a graph G on C such that E(G) = C x C, all the conditions of Corollary 1
are satisfied. Thus, i{ has a fixed point, and so the problem (1) has a solution. O

Example 1. Consider the fractional differential inclusion
1 2; 1/350 cy1/450 (c1~1/5;
oi ( DOJ/r “( Doi “( Doi 72(1))))

<o, et L. BIEO+DLT (@)1 Dy () Dy R ()
’ 1 3+\z(t)+°’Déf’“”z(t)+CD314+1/5“"2(t)+CD343+1/4+1/5“"Z(15)\
€[0,1], o(t) =2¢,

20)=1,  “Dy¥*z(0) =2,

cD(l)i4;<P(cD(1)J/r5;goz(0)) =3, cD(l)J/rB;gp(CD(l)J/:l;Ap(cDé{rS;apZ(o))) — 4,

)

where
91/5+1/4+1/3+1/2 91/4+1/3+1/2 91/3+1/2 91/2

= - + + :
Fi+4+5+214+1) TE+L+3+1) TGE+3+1) T(3+1)
Note that

1 3lv1 + vo + v3 + vy
H3—|—|’01 —|—U2+’03+1}4| '
Obviously, f is continuous. Here ¢ = 1/5,p = 1/4,r =1/3, k =1/2,a =0,b =1,
=i+1,i=0,1,2,3.
Thus,

f(t,v1,v2,v3,04) = |0, €

((b) = () PHr (p(b) — p(a))PHrH*

I'lg+p+r+k+1) Flp+r+k+1)
(p(b) = w(@)™*  (p(b) = p(a)*
I(r+k+1) I'k+1)

=II.
Therefore, O* = O~ = 1/1L
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Take ¥(t) = 1/3 and §(t) = —1/¢ + 1. Then we have

H(f(tvvhv%v?)avél)a f(t7’U/1,’L)/2,1}é, Uz/l))

<ot 3lvi +va+vg+va|  3[v] +vg 4 vh + v
3+ v +va+vs+vs| 34|V +vh+ v+ v
— 0! [v1 + vo + v3 + v4] B [v] + vh + v + v)]
1+%|v1+vg+v3+v4\ 1+%|vi+v’2+v§+vg\
-1 lvr+ve + s+ o] — Jog + 05 + o5 + V)|
B (1+ vy + vz + vy +va])(1 + F|v] + vh + v + )|
<o |[v1 + v2 + v + va| — U] + vy + vg + vy
1+ %o 4 v2 + vg + va| — |v] + v + v} + V|
<ol Zizlvi—v]

2
1 +%Zi:1 i —vj

oo oE-0) o))

Thus, condition (ii) in Theorem (2) is satisfied. Now, all conditions of Theorem (2) are
satisfied. Thus, by this theorem the problem (1) has a solution.

5 Conclusion

In this paper, we first introduce a new multivalued contraction called weak Wardowski
multivalued contraction and show that such mappings have fixed points. Second, we use
our new contraction to show that the ¢-Caputo fractional differential inclusion (1) is
solvable when the right-hand function f : [a, b] x R* — P(R) does not require the a—)-
contractive condition for multivalued mappings. An example is given to show the usability
of our new results. We intend to develop a coupled fixed point theorem for two variable
multivalued mappings satisfying a weak Wardowski-type multivalued contraction in the
future. Then we propose to investigate the solvability of the p-Caputo fractional differ-
ential systems of inclusions (1) when the right-hand functions satisfy a weak Wardowski
multivalued contraction.
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