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Abstract. The Turing patterns of reaction-diffusion equations defined over a square region are more
complex because of the D4-symmetry of the spatial region. This leads to the occurrence of multiple
equivariant Turing bifurcations. In this paper, taking the FHN model as an example, we give
a explicit calculation formula of normal form for the simple and double Turing bifurcation of the
reaction-diffusion equation with Dirichlet boundary conditions and defined on a square space, and
we also obtain a method for the calculation of the existence of spatially inhomogeneous steady-state
solutions. This paper provides a theoretical basis for exploring and predicting the pattern formation
of spatial multimode interaction.

Keywords: FitzHugh–Nagumo (FHN) system, reaction-diffusion, steady-state bifurcations, D4-
symmetry, reduced equations.

1 Introduction

The well-known FitzHugh–Nagumo (FHN) system with cubic nonlinearity was derived
as a simplified model of the famous Hodgkin–Huxley (HH) model [8] by FitzHugh [5]
and Nagumo et al. [14]. We consider the FHN model, which can capture most of the
characteristic properties of neuron cells dynamics. The model consists of two equations
describing fast and slow dynamics of the system, and it is given as follows:

εu̇ = af(u)− v, v̇ = u− δv,
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where ε > 0, δ > 0 are small parameters; u represents the membrane potential, v repre-
sents the recovery variable, namely, u, v represent the neural neurons, and f ∈ C4 with
f(0) = 0, f ′(0) = 1.

Mathematical models with diffusion have received increasing attention in the pattern
formation community. Since Turing [22] famously statement that instability is caused
by diffusion, a large number of reaction-diffusion systems have been used to simulate
the instability in the formation of biological models known as Turing instability. So far,
diffusion-driven instability mechanisms have been widely used in the study of various
specific problems in many fields due to the formation of models [1, 16, 18, 20, 23, 25, 26].
It is worth mention that in [23], Wei and his coworkers discussed steady-state bifurcations
for a glycolysis model in biochemical reaction based on bifurcation theory, Lyapunov–
Schmidt method, and singularity theory. The importance of diffusion versus patterns has
also been widely discussed in [3, 6, 9, 15, 17, 19, 27] through theoretical analysis and
numerical experiments. In these papers the formations of spatial and temporal patterns
are studied under the premise of sufficient nonlinearity of dynamics.

In biological neural network system, due to the inhomogeneity of cell concentra-
tion, diffusion exists widely. Therefore, it is necessary to study the diffusion kinetics of
FitzHugh–Nagumo model and the resulting Turing instability. In this paper, we consider
the effect of diffusion on the FitzHugh–Nagumo model as follows:

ε
∂ũ

∂t
= d̃1

(
∂2ũ

∂x̃2
+
∂2ũ

∂ỹ2

)
+ ãf(ũ)− ṽ, (x̃, ỹ) ∈ Ω̃,

∂ṽ

∂t
= d2

(
∂2ṽ

∂x̃2
+
∂2ṽ

∂ỹ2

)
+ ũ− δṽ, (x̃, ỹ) ∈ Ω̃.

(1)

Boundary conditions have sophisticated influence on spatial structure of solutions of reac-
tion diffusion equations. In this paper, we consider a square domainΩ with homogeneous
Dirichilet boundary condition

ũ(x̃, ỹ, t) = 0, ṽ(x̃, ỹ, t) = 0, (x̃, ỹ) ∈ ∂Ω̃. (2)

Writting a = ã/ε, b = 1/ε, d1 = d̃1/ε, then system (1) can be rewritten as

∂ũ

∂t
= d1

(
∂2ũ

∂x̃2
+
∂2ũ

∂ỹ2

)
+ af(ũ)− bṽ, (x̃, ỹ) ∈ Ω̃,

∂ṽ

∂t
= d2

(
∂2ṽ

∂x̃2
+
∂2ṽ

∂ỹ2

)
+ ũ− δṽ, (x̃, ỹ) ∈ Ω̃.

(3)

Here Ω̃ = [0, l]× [0, l].
To simplify the discussions, we incorporate explicitly the length l into the unit square

Ω = [0, 1]× [0, 1] by the transformation x̃ = lx, ỹ = ly, and (3) and (2) into

∂u

∂t
=
d1
l2

(
∂2u

∂x2
+
∂2u

∂y2

)
+ af(u)− bv, (x, y) ∈ Ω,

∂v

∂t
=
d2
l2

(
∂2v

∂x2
+
∂2v

∂y2

)
+ u− δv, (x, y) ∈ Ω,

(4)
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with
u(x, y, t) = 0, v(x, y, t) = 0, (x, y) ∈ ∂Ω. (5)

The symmetric properties of Ω have to be considered when bifurcations of a reaction-
diffusion on the two-dimensional space square region; see [12]. The studies of symmetry
in influence of boundary conditions upon the solution structure of partial differential
equation have been done by many scientists. Z. Mei and his collaborators have done
a lot of research in this field. For example, in [11] the authors studied the bifurcations
of a semilinear elliptic problem on the unit square with the Dirichlet boundary conditions
at corank-2 bifurcation points. They show the existence of bifurcating solution branches
and their parameterizations via a nonsingular enlarged problem. We would also like to
mention that many kinds of bifurcations of reaction diffusion equation have been investi-
gated in detail by Mei; see [2, 4, 13].

The theory of Lyapunov–Schmidt reduction is an important tool to study nonlinear
problems [10, 21, 24, 28]. For example, in [10], Guo and his coworkers obtained the exis-
tence of spatially nonhomogeneous steady-state solution by applying Lyapunov–Schmidt
reduction method. Moreover, they also considered the stability and nonexistence of Hopf
bifurcation at the spatially nonhomogeneous steady-state solution with the changes of
a specific parameter. In [28], steady-state bifurcations arising from the reaction-diffusion
equations are investigated. Using the Lyapunov–Schmidt reduction on a square domain,
a simple and a double steady-state bifurcation caused by the symmetry of spatial region
is obtained.

The focus of this work is to describe the dynamic properties for system (4) with
homogeneous Dirichilet boundary conditions on a square domain. Using the symmetric
theory of bifurcation and the Lyapunov–Schmidt method, we study in this paper how
the symmetric properties of domain Ω with homogeneous Dirichilet boundary condition
change the nontrivial solution of reaction-diffusion equations. An outline of this paper
is as follows. In Section 2, we describes the stability of the constant steady-state solution
(0, 0) and the symmetry of (4) and (5). In Section 3 the existence of nontrivial solutions is
reduced to algebraic equations via the well-known Lyapunov–Schmidt method. We derive
the bifurcation scenario at simple and double-bifurcation point. For steady/steady-state
mode interactions caused by b(λj) = b(λs) for some j 6= s, three types steady/steady-
state mode interactions are considered, which also caused by the symmetry of Ω in
Section 4. We illustrate simple and double bifurcation by some numerical simulation in
Section 5. When the homogeneous steady state bifurcates to spatial patterns at a sim-
ple eigenvalue, the system supports a pattern such as square. On the other hand, when
the bifurcation occurs via a double eigenvalue, more complex patterns arise due to the
interaction of different modes (for this reason, they are called mixed mode patterns).

2 Stability of the constant steady-state solution (0,0)

LetΩ be spatial region, and let C2,s(Ω) be the space of 2-times differentiable functions u
on the closure ofΩ such that u and its derivatives are Hölder continuous with the exponent
s ∈ (0, 1). We define X = {u ∈ C2(Ω); u|∂Ω = 0} and Y = C0,s(Ω) endowed with
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the Hölder norms ‖·‖2,s and ‖·‖0,s, respectively. We rewrite (4) as an operator equation

∂U

∂t
= Φ(U, b),

where U = (u, v), and the mapping Φ : X × R→ Y is defined by

Φ(U) =

(
d1
l2 (∂

2u
∂x2 + ∂2u

∂y2 )
d2
l2 ( ∂

2v
∂x2 + ∂2v

∂y2 )

)
+

(
af(u)− bv
u− δv

)
. (6)

It is clear that Φ(0) = 0. Differentiating Φ with respect to U at U0 = (0, 0), we obtain
the linearization L of Φ,

L =

(
d1
l2 (∂

2u
∂x2 + ∂2u

∂y2 ) 0

0 d2
l2 ( ∂

2v
∂x2 + ∂2v

∂y2 )

)
+

(
af ′(0) −b

1 −δ

)
.

To examine the spectrum of L, we observe the direct sum

X =

∞∑
m,n=1

Xm,n, Xm,n =

{(
c1
c2

)
sin(mπx) sin(nπy); c1, c2 ∈ R

}
,

and the L maps Xm,n into itself. Further more, the restriction of L in the subspace Xm,n

is a 2× 2 matrix

Mm,n = L|Xm,n =

(
−d1l2 (m2 + n2)π2 + af ′(0) −b

1 −d2l2 (m2 + n2)π2 − δ

)
, (7)

where m,n = 1, 2, . . . .
The eigenvalues of L consist of those of Mm,n ∈ R2×2, m,n = 1, 2, . . . . Then the

characteristic equations of L are the following sequence of quadratic equations:

Γ
(
m2, n2

)
= ν2 + T

(
m2, n2

)
ν +D

(
m2, n2

)
= 0 (8)

with

T
(
m2, n2

)
= −a+ δ +

π2(d1 + d2)

l2
(
m2 + n2

)
(9)

and

D
(
m2, n2

)
=
π4d1d2
l4

(
m2 + n2

)2
+

(−ad2 + δd1)π2

l2
(
m2 + n2

)
+ b− aδ. (10)

Lemma 1. Assume that a > 0, δ > 0, and b > 0. Then for system (4) without diffusion
(d1 = d2 = 0), the equilibrium U0 = (0, 0) is asymptotically stable for {b | a < δ, b >
aδ} and unstable for {b | b− aδ < 0} or {(a, δ) | a > δ}.

Proof. For (4), if d1 = d2 = 0, then we have L =
(
af ′(0) −b

1 −δ

)
. It is clear that U0 = (0, 0)

is asymptotically stable for {b | a < δ, b > aδ} and unstable for {b | b − aδ < 0} or
{(a, δ) | a > δ}.
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Figure 1. Bifurcation curve of steady-state solution.

Through this paper, we always assume that

(H1) b ∈ {b | b > aδ, a < δ, a > 0, δ > 0}, which implies that system (4) is
diffusion-free stable.

We now turn to the stability of steady state (0, 0) of system (4) with diffusion. For the
sake of a further discussion, we need to give some notations, which will be used later. Let

λi = π2
(
m2
i + n2i

)
, i = 1, 2, . . . ,

be the eigenvalues for the Laplacian operator −∆ = −∂2/∂x2 − ∂2/∂y2 in Ω with the
homogeneous Dirichlet boundary condition (5). Denote

bi = h(λi) = −d1d2
l4

λ2i +
ad2 − δd1

l2
λi + aδ.

Theorem 1. Assume that (H1) holds for system (4). Choosing b as the bifurcating pa-
rameter, we have that the equilibrium U0 = (0, 0) is unstable if the following equation
holds:

Q(λi, bi) ∈
{

(λi, bi)
∣∣∣ bi=h(λi), δa<bi<

4d1d2+(ad2−δd1)2

4d1d2
, δd1<ad2

}
. (11)

Proof. If (H1) holds, then (9) becomes

T (λi) = −a+ δ +
d1 + d2
l2

λi > 0.

Consider (10), we have

D(λi) =
d1d2
l4

λ2i +
−ad2 + δd1

l2
λi + b− aδ = 0.

Suppose (11) holds, then we find that at least one root of Eq. (8) has the positive real part.
Combining with the conclusion of Lemma 1, we get that the solution (0, 0) is Turing
unstable. Hence, (11) is the region of Turing unstability, and bi = h(λi) is Turing
bifurcation curve; see Fig. 1.
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3 Steady-state bifurcation caused by bi = h(λi) for λi 666 λN∗

In this section a weakly nonlinear analysis is carried out to obtain the reduced equations
describing the dynamics near the critical bifurcation values. Lyapunov–Schmidt method
is employed to determine the near-critical bifurcation structure of the patterns.

Let λN∗ = [(ad2 − δd1)/(2d1d2)]. From Fig. 1 we note that if λi 6 λN∗ , then bi
is in one-to-one correspondence with λi. In this case, zero will be a simple or double
eigenvalue of L. We will elaborate on why.

Let µ = b− bi. From (6) and (7) we know that

Φ(U) = LU + F (U), F (U) =

(
u2/2 + u3/6 +O‖u3‖

0

)
. (12)

Therefore, the steady states of (4) are corresponding to the solution of the elliptic prob-
lem (12) with the boundary condition U = 0.

For discussing the reduced equation, we give the decompositions of space

Y = RanL ⊕ Y1, X = KerL ⊕X1.

Since L : X → Y is Fredom with index zero, then L|X1
→ RanL is invertible and has

bounded inverse. In the following, we will use Lyapunov–Schmidt method to obtain the
reduced equation and spatially nonhomogeneous solution of (12).

Ω has obviously the D4-symmetry of the unit square, i.e., it is D4-equivariant. The
classical theory of elliptic partial differential equations shows that

L = DUΦ0 : X 7→ Y.

In D4-invariant domain Ω, under the homogeneous Dirichet boundary conditions, the
eigenpairs of the Laplacian −∆ are of the form

λi =
(
m2
i + n2i

)
π2, ϕi(x, y) = 2 sin(miπx) sin(niπy). (13)

These mean that λi is an eigenvalue of Laplacian −∆, while the corresponding eigen-
functions ϕi = 2 sin(miπx) sin(niπy) are called modes, and mi and ni are called wave
numbers.

Remark. One, two, or more pairs (mi, ni) may exist such that Eq. (13) is satisfied, and
in this case the eigenvalue will have single, double, or higher multiplicity, respectively. In
this paper, we shall restrict our analysis to cases where the multiplicity is 1 or 2.

Consider the action of D4 on the square Ω, and let

S(x, y) = (1− x, y), R(x, y) = (1− y, x)

be the generators of D4. The function spaces X , Y are obviously D4-invariant. In the
following, we will consider two cases:

https://www.journals.vu.lt/nonlinear-analysis
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(i) If mi = ni, then λi = (m2
i + n2i )π

2 is a simple eigenvalue of Laplacian −∆.
From Eq. (10) we have

D(λi) = D
(
m2
i ,m

2
i

)
=
π4d1d2
l4

(
m2
i +m2

i

)2
+

(−ad2 + δd1)π2

l2
(
m2
i +m2

i

)
+ b− aδ = 0.

Hence, zero is a simple eigenvalue of L. The associated KerL = E1 = Span{ϕ1} with

ϕ1 = 2

[
2d2
l2 π

2m2
i + δ2

1

]
sin(miπx) sin(miπy),

and E∗1 = Span{ϕ∗1} with

ϕ∗1 = 2

[
1

2d1
l2 π

2m2
i + af ′(0)

]
sin(miπx) sin(miπy).

In this case the induced action of D4 in E1 is

S1 = (−1)mi , R1 = (−1)mi .

(ii) If mi 6= ni, then λi = (m2
i + n2i )π

2 is double eigenvalue of Laplacian −∆:

D(λi) = D
(
m2
i , n

2
i

)
=
d1d2π

4

l4
(
m2
i + n2i

)2
+

(−ad2 + δd1)π2

l2
(
m2
i + n2i

)
+ b− aδ

= D
(
n2i ,m

2
i

)
=
d1d2π

4

l4
(
n2i +m2

i

)2
+

(−ad2 + δd1)π2

l2
(n2i +m2

i ) + b− aδ = 0.

Hence, zero is double eigenvalue of L, and the eigenspace is two-dimensional, then
KerL = E2 = Span{ϕ2, ϕ3} with

ϕ2 = 2

[
d2π

2

l2 (m2
i + n2i ) + δ

1

]
sin(miπx) sin(niπy),

ϕ3 = 2

[
d2π

2

l2 (m2
i + n2i ) + δ2

1

]
sin(niπx) sin(miπy),

and E∗2 = Span{ϕ∗2, ϕ∗3} with

ϕ∗2 = 2

[
1

d1π
2

l2 (m2
i + n2i ) + af ′(0)

]
sin(miπx) sin(niπy),

ϕ∗3 = 2

[
1

d1π
2

l2 (m2
i + n2i ) + af ′(0)

]
sin(niπx) sin(miπy).
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In this case the representation of D4 in E2 is

S2 =

[
(−1)mi−1 0

0 (−1)ni−1

]
, R2 =

[
0 (−1)mi−1

(−1)ni−1 0

]
.

In Sections 3.1 and 3.2, we use the Lyapunov–Schmidt technique to study reduced equa-
tions of system (12).

3.1 Turing instability

Consider the case mi = ni. Let KerL = E1 = Span{ϕ1}, and E − E1 denote the
projection operators from Y onto RanL and Y1. Observe that by assumption above
dim KerL = 1. The following trivial observation starts the derivation: U = 0 iff
E1U = 0 and (E − E1)U = 0. Then use the Lyapunov–Schmidt reduction [7]

U = z1ϕ1 + w1,

where z1 = 〈ϕ1, U〉, and w1 = U − z1ϕ1. Thus, system (12) (i.e., Φ(U, µ) = 0) may be
expanded to an equivalent pairs of equations

E1Φ(z1ϕ1 + w1, µ) = 0, (14)
(E − E1)Φ(z1ϕ1 + w1, µ) = 0, (15)

where z1 ∈ R and w1 ∈ X1.
Define a map G1 : (KerL)×X1 × R→ RanL, where

G1 = E1Φ(z1ϕ1 + w1, µ).

By the chain rule the differential of (14) with respect to the w1 variables at the origin is

E(dΦ)(0,0) = EL = L.

Furthermore, the linear map L : X1 → RanL is invertible. Thus, it follows from the
implicit function theorem that (14) is uniquely solvable for w1 near the origin. Then there
exist an open neighborhood N1 of O in R and a continuously differentiable map w1 =
W1(z1, µ) : N1 ×X1 → X1 such that

W1(0, 0) = 0 and E1Φ
(
z1ϕ1 +W1(z1, µ), µ

)
= 0.

Substituting w1 = W1(z1, µ) into (15), we obtain the reduced mappingB : KerL×R→
Y1:

B(z1, µ) = (E − E1)Φ
(
z1ϕ1 +W1(z1, µ), µ

)
= 0.

Then the zeros of B(z1, µ) are in one-to-one correspondence with the zeros of (15), the
correspondence being given by

B(z1, µ) = 0 iff Φ
(
z1ϕ1 +W1(z1, µ), µ

)
= 0.

https://www.journals.vu.lt/nonlinear-analysis
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We define B1(z1, µ) by

B1(z1, µ) =
〈
ϕ∗1, B

(
z1ϕ1 +W1(z1, µ), µ

)〉
= 0. (16)

Since B(z1, µ) ∈ Y1, then B(z1, µ) = 0 iff B1(z1, µ) = 0. Thus, the zeros of
B1(z1, µ) = 0 are also in one-to-one correspondence with solutions of Φ(z1, µ) = 0.
It is worth noting that substituting the definition of B1(z1, µ) into (16), the projection
(E − E1) drops out, i.e.,

B1(z1, µ) =
〈
ϕ∗1, Φ

(
z1ϕ1 +W1(z1, µ), µ

)〉
= 0. (17)

We call (17) the reduced equation. In the following, we consider two cases:

Case I: mi is an odd number.
In this case, we will show that the reduced equation (17) is given in the form

B1(z1, µ) = a1z1µ+ a2z
2
1 + · · · ,

where · · · stands for at least cubic terms; and

a1 =
〈
ϕ∗1, ΦUµ(ϕ1, ϕ1)

〉
, a2 =

1

2

〈
ϕ∗1, ΦUU (ϕ1, ϕ1)

〉
.

If a2 6= 0, by using the implicit function theorem we know that there exist a constant δ11
and a continuously differentiable map from (−δ11, δ11) to R such thatB1(z

(1)
1 (µ), µ) ≡ 0

for µ ∈ (−δ11, δ11). In fact, we have z(1)1 (µ) = −µa1/a2 + o(|µ|).

Theorem 2. Let mi be odd, and let a2 6= 0. Then we have:

(i) The equivalent forms of reduced equations of system (12) up to the second items
with the simple bifurcation is

a1z1µ+ a2z
2
1 = 0,

and the bifurcation are transcritical.
(ii) There exist a constant δ11 and a continuously differentiable map µ → z1 from

(−δ11, δ11) to R such that system (12) has a nonhomogeneous steady-state solu-
tion

Uµ1 = z
(1)
1 (µ)ϕ1 +W1

(
z
(1)
1 (µ), µ

)
and lim

µ→0
Uµ1 = U0,

where z(1)1 (µ) = −µa1/a2 + o|µ|.

Proof. According to Eq. (13), we know that U = z1ϕ1 + w1. In the following, we
give some calculation of Lyapunov–Schmidt reduction of B1 = 0. By calculating the
derivatives of (17) we can obtain

B1UU (0, 0) =
〈
ϕ∗1, ΦUU (ϕ1, ϕ1)

〉
,

Nonlinear Anal. Model. Control, 28(4):697–719, 2023
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where ΦUU (ϕ1, ϕ1) can be calculated by

Φt1t2(U, V ) =
∂2

∂t1∂t2
Φ(t1U + t2V, b

∗).

By Lyapunov–Schmidt reduction we have

B1(z1, µ) = z1a1µ+ a2z
2
1 + h.o.t.,

where

a1 =
1

2

〈
ϕ1, ΦUµ(ϕ∗1, ϕ1)

〉
, a2 =

1

2

〈
ϕ∗1, ΦUU (ϕ1, ϕ1)

〉
.

Hence, the reduced equation of system (12) up to the second items with the simple
bifurcation is

a1z1µ+ a2z
2
1 = 0.

Further more, if a2 6= 0, then from B1(z1, µ) = 0 we can obtain

z
(1)
1 (µ) = −µa1

a2
+ o|µ|

for µ ∈ (−δ11, δ11). So the system has a nonhomogeneous steady-state solution

Uµ1 = z
(1)
1 (µ)ϕ1 +W1

(
z
(1)
1 (µ), µ

)
. �

Case II: mi is an even number, or F (U) is odd function of U .
In this case the reduced equation B1(z1, µ) = 0 has the following equivalent form:

B1(z1, µ) = a1z1µ+ a3z
3
1 + h.o.t.,

where
a1 =

〈
ϕ∗1, ΦUµ(ϕ1, ϕ1)

〉
,

a3 =
1

6

〈
ϕ∗1, ΦUUU (ϕ1, ϕ1, ϕ1) + 3ΦUU

(
ϕ1,W

20
1

)〉
,

and
W 20

2 = L−1(E − E1)ΦUU (ϕ1, ϕ1).

For a1a3 > 0 (respectively, a1a3 < 0), there exist a constant δ12 > 0 and two
continuously differentiable mappings µ ∈ (−δ12, 0) (respectively, µ ∈ (0, δ12)) to R
such that B1(zµ2 , µ) ≡ 0 for µ ∈ (−δ12, 0) or µ ∈ (0, δ12)).

Theorem 3. Let mi be even. Then we have:

(i) The equivalent forms of reduced equations of system (12) up to the third items
with the simple bifurcation is

a1z1µ+ a3z
3
1 = 0,

and the bifurcation is pitchfork.
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(ii) For a1a3 > 0 (respectively, a1a3 < 0), there exist a constant δ12 > 0 and contin-
uously differentiable mapping µ→ z1 from (−δ12, 0) (respectively, (0, δ12)) to R
such that system (12) has nonhomogeneous solution

Uµ2 = z
(2)
1 (µ)ϕ1 +W1(z

(2)
1 (µ), µ), and lim

µ→0
Uµ2 = U0.

Here z(2)1 (µ) =
√
−µa1/a3.

Proof. This proof is similar to that of Theorem 2, we will omit it.

3.2 Double bifurcation

In the following, we consider the double-bifurcation case. From Section 2 we know that
if mi 6= ni, then E2 = Span{ϕ2, ϕ3}, where E2 and E − E2 denote the projection
operators from Y onto RanL and Y1. Observe that by assumption above dim KerL = 2.

Then using the Lyapunov–Schmidt reduction, we have

U = z2ϕ2 + z3ϕ3 + w2,

where z2 = 〈ϕ2, U〉, z3 = 〈ϕ3, U〉, and w2 = U − z2ϕ2 − z3ϕ3. Thus, system (12) may
be expanded to an equivalent pair of equations

E2Φ(z2ϕ2 + z3ϕ3 + w2, µ) = 0, (18)
(E − E2)Φ(z2ϕ2 + z3ϕ3 + w2, µ) = 0, (19)

where z2, z3 ∈ R, and w2 ∈ X1.
Define a map G2 : (KerL)×X1 × R→ RanL, where

G2 = E2Φ(z2ϕ2 + z3ϕ3 + w2, µ).

By the chain rule the differential of (18) with respect to the w2 variable at the origin is

E(dΦ)(0,0) = EL = L.

Furthermore, the linear map L : X1 → RanL is invertible. Thus, it follows from the
implicit function theorem that (18) is uniquely solvable for w2 near the origin. Then there
exist an open neighborhood N2 of O in R and a continuously differentiable map

w2 = W2(z2, z3, µ) =

[
W21(z2, z3, µ)
W22(z2, z3, µ)

]
: N2 ×X1 → X1

such that

W2(0, 0, 0) = 0 and E2Φ
(
z2ϕ2 + z3ϕ3 +W2(z2, z3, µ), µ

)
= 0.

Substituting W2 = W2(z2, z3, µ) into (19), we obtain the reduced mapping C : KerL ×
R→ Y1:

C(z2, z3, µ) = (E − E2)Φ
(
z2ϕ2 + z3ϕ3 +W2(z2, z3, µ), µ

)
= 0.
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Then the zeros of C(z2, z2, µ) are in one-to-one correspondence with the zeros of (19),
the correspondence being given by

C(z2, z3, µ) = 0 iff Φ
(
z2ϕ2 + z3ϕ3 +W2(z2, z3, µ)

)
= 0.

We define C1(z2, z3, µ) by

C1(z2, z3, µ) =

[
C11(z2, z3, µ)

C21(z2, z3, µ)

]
=

[
〈ϕ∗2, C(z2ϕ2 + z3ϕ3 +W2(z2, z3, µ), µ)

〈ϕ∗3, C(z2ϕ2 + z3ϕ3 +W2(z2, z3, µ), µ)

]
. (20)

Since C(z2, z3, µ) ∈ Y1, then C(z2, z3, µ) = 0 iff C1(z2, z3, µ) = 0. Thus, the zeros of
C1(z2, z3, µ)=0 are also in one-to-one correspondence with solutions of Φ(z2, z3, µ)=0.
It is worth noting that substituting the definition of C1(z2, z3, µ) in (20) into (19), the
projection E − E2 drops out, i.e.,

C1(z2, z3, µ) =

[
C11(z2, z3, µ)

C21(z2, z3, µ)

]
=

[
〈ϕ∗2, Φ(z2ϕ2 + z3ϕ3 +W2(z2, z3, µ), µ)

〈ϕ∗3, Φ(z2ϕ2 + z3ϕ3 +W2(z2, z3, µ), µ)

]
. (21)

Like in Section 3.1, we should consider the property of mi, ni that is caused by the D4-
symmetry of Ω. We also call Eq. (21) the reduced equations.

Case I: mi and ni are even numbers, and f is odd with U .
Since the double bifurcation is induced by the D4-symmetry, mi and ni are even

numbers, then the generators satisfy

S2 =

[
−1 0
0 −1

]
, R2 =

[
0 −1
−1 0

]
,

then we have

C11(−z2,−z3, µ) = −C11(z2, z3, µ),

C21(z2, z3, µ) = C11(z3, z2, µ).

Hence, by some calculations we obtain the reduced equation

C11 = c1µz2 + c2z
3
2 + c3z2z

2
3 + o

(
‖z‖3

)
,

C21 = c1µz3 + c3z
2
2z3 + c2z

3
3 + o

(
‖z‖3

)
,

(22)

where

c1 =
〈
ϕ∗2, ΦUµ(ϕ2)

〉
, (23)

c2 =
1

6

〈
ϕ∗2, ΦUUU (ϕ2, ϕ2, ϕ2)

〉
, (24)

c3 =
1

2

〈
ϕ∗2, ΦUUU (ϕ2, ϕ3, ϕ3)

〉
. (25)

Using the discusses above, we have the following theorem.
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Theorem 4. Let mi, ni be even, and let function f is odd in U . Then there exist the
following results:

(i) The equivalent forms of reduced equations of system (12) up to the third items
with the double bifurcation is

c1µz2 + c2z
3
2 + c3z2z

2
3 = 0,

c1µz3 + c3z
2
2z3 + c2z

3
3 = 0,

and the bifurcation is pitchfork.
(ii) If c1c2 < 0 (respectively, c1c2 > 0), there exist four continuously differentiable

mappings µ → (z2, z3), µ ∈ (−δ21, 0) (respectively, µ ∈ (0, δ21)) to R2 such
that system (12) has four nonhomogeneous solutions:

uµ±3 = z
(1)±
2 (µ)ϕ2 +W2

(
z
(1)±
2 (µ), z

(1)±
3 (µ), µ

)
,

uµ±4 = z
(1)±
3 (µ)ϕ3 +W2

(
z
(1)±
2 (µ), z

(1)±
3 (µ), µ

)
,

where

z
(1)±
2 (µ) = z

(1)±
3 (µ) = ±

(
µ
c1
c3

)1/2

, µ ∈ (−δ21, 0) or µ ∈ (0, δ21).

(iii) If c1/(c2 + c3) < 0 (respectively, c1/(c2 + c3) > 0), there exist four continuously
differentiable mappings µ → (z2, z3), µ ∈ (−δ22, 0) (respectively, µ ∈ (0, δ22))
to R2 such that system (12) has four nonhomogeneous solutions:

uµ±5 = z
(2)±
2 (µ)ϕ2 + z

(2)+
3 (µ)ϕ3 +W2

(
z
(2)±
2 (µ), z

(2)+
3 (µ), µ

)
,

uµ±6 = z
(2)±
2 (µ)ϕ2 + z

(2)−
3 (µ)ϕ3 +W2

(
z
(2)±
2 (µ), z

(2)−
3 (µ), µ

)
,

where

z
(2)±
2 (µ) = z

(2)±
3 (µ) = ±

(
µc1

c2 + c3

)1/2

, µ ∈ (−δ22, 0) or µ ∈ (−δ22, 0).

Proof. According to Eqs. (22)–(25), the bifurcations of system (12) is pitchfork, and con-
clusion (i) is obtained immediately. Moreover, we have four nontrivial isolated solutions

±
((

µ
c1
c3

)1/2
, 0

)
, ±

(
0,

(
µ
c1
c3

)1/2)
depending on the signs of µ and c1/c3, and conclusion (ii) is true. Similarly, according to
the signs of µ and c1/(c2 + c3), there also exist four nontrivial isolated solutions

±
((

µc1
c2 + c3

)1/2)
, ±

((
µc1

c2 + c3

)1/2)
.

Hence, conclusion (iii) was obtained immediately.
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Case II: Both mi and ni are odd numbers.
In this case the generators satisfy

S2 =

[
1 0
0 1

]
, R2 =

[
0 1
1 0

]
.

Then we have
C21(z2, z3, µ) = C11(z3, z2, µ).

Hence, by some calculations we obtain the reduced equation

C11 = k1µz2 + k2µz3 + k3z
2
2 + k4z2z3 + k5z

2
3 ,

C21 = k2µz3 + k1µz2 + k5z
2
3 + k4z3z2 + k3z

2
2 ,

(26)

where

k1 = k2 =
〈
ϕ∗3, ΦUµ(ϕ3, ϕ3)

〉
, k3 =

〈
ϕ∗3,

1

2
ΦUU (ϕ2, ϕ2)

〉
, (27)

k4 =
〈
ϕ∗3, ΦUU (ϕ2, ϕ3)

〉
, k5 =

〈
ϕ∗3,

1

2
ΦUU (ϕ3, ϕ3)

〉
. (28)

Using the discusses above, we have

Theorem 5. Let mi and ni be odd. Then there exist the following results:

(i) The equivalent forms of reduced equations of system (12) up to the second items
with the double bifurcation is

k1µz2 + k2µz3 + k3z
2
2 + k4z2z3 + k5z

2
3 = 0,

k1µz3 + k2µz2 + k3z
2
3 + k4z2z3 + k5z

2
2 = 0,

and the bifurcations are transcritical.
(ii) If

√
(k3 − 5k5)/(k3 − k5) > 0, there exist three continuously differentiable map-

pings µ → (z2, z3) (µ ∈ (−δ22, δ22)) to R2 such that Eq. (12) has three nonho-
mogeneous solutions:

uµ7 = z
(3)
2 (µ)ϕ2 + z

(3)
3 (µ)ϕ3 +W2

(
z
(3)
2 (µ), z

(3)
3 (µ), µ

)
,

uµ8 = z
(4)
2 (µ)ϕ2 + z

(4)
3 (µ)ϕ3 +W2

(
z
(4)
2 (µ), z

(4)
3 (µ), µ

)
,

uµ9 = z
(4)
3 (µ)ϕ2 + z

(4)
2 (µ)ϕ3 +W2

(
z
(4)
2 (µ), z

(4)
3 (µ), µ

)
,

where

z
(3)
2 (µ) = z

(3)
3 (µ) =

k1µ

k3 + 3k5
, µ ∈ (−δ22, δ22),

z
(4)
2 (µ) =

k1µ

2(k3 − k5)

(
−1−

√
k3 − 5k5
k3 − k5

)
, µ ∈ (−δ22, δ22),

z
(4)
3 (µ) =

k1µ

2(k3 − k5)

(
−1 +

√
k3 − 5k5
k3 − k5

)
, µ ∈ (−δ22, δ22).
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Proof. According to Eq. (26)–(28), we have three nontrivial isolated solutions:(
k1µ

k3 + 3k5
,

k1µ

k3 + 3k5

)
,(

k1µ

2(k3 − k5)

(
−1−

√
k3 − 5k5
k3 − k5

)
,

k1µ

2(k3 − k5)

(
−1 +

√
k3 − 5k5
k3 − k5

))
,(

k1µ

2(k3 − k5)

(
−1 +

√
k3 − 5k5
k3 − k5

)
,

k1µ

2(k3 − k5)

(
−1−

√
k3 − 5k5
k3 − k5

))
depending on the signs of

√
(k3 − 5k5)/(k3 − k5) > 0. Hence, the bifurcations of Eq. (4)

are transcritical, and the conclusion is obtained immediately.

Case III: mi is an even number, ni an odd number, or ni is an even number, mi an
odd number.

In this case the generators satisfy

S2 =

[
−1 0
0 1

]
, R2 =

[
0 −1
1 0

]
,

then we have
C21(z2, z3, µ) = C11(z3, z2, µ),

C11(−z2, z3, µ) = −C11(z2, z3, µ),

C11(−z3, z2, µ) = −C21(z2, z3, µ).

Hence, by some calculations, we find that the reduce equation is same as Case I. There-
fore, the conclusion of this part is the same as that of the Case I, so it will not be repeated.

4 Steady/steady-state mode interactions caused by b(λj) = h(λj) =
b(λs) = h(λs) for some j 6= s

In this section, we remove the restriction λN∗ = [(ad2− δd1)/(2d1d2)]. That means that
the multiple bifurcations occur when bj = h(λj) = bs = h(λs) for some

λj =
(
m2
j + n2j

)
π2, λs =

(
m2
s + n2s

)
π2, j 6= s.

Using Eq. (10), we have

D(λj) = D
(
m2
j , n

2
j

)
=
π4d1d2
l4

(
m2
j + n2j

)2
+

(−ad2 + δd1)π2

l2
(
m2
j + n2j

)
+ b− aδ = 0

and
D(λs) = D

(
m2
s, n

2
s

)
=
π4d1d2
l4

(
m2
s + n2s

)2
+

(−ad2 + δd1)π2

l2
(
m2
s + n2s

)
+ b− aδ = 0,

for some j 6= s.
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In the following, we will consider three cases. Due to the complexity of calculation,
we will not calculate the specific forms of Lyapunov reduction in this section. We only
give the basic preparations for calculation.

Case I: Steady/steady-state mode interactions of two simple bifurcations.
If there exist mj = nj and ms = ns such that

D(λj) = D
(
m2
j ,m

2
j

)
=
π4d1d2
l4

(
m2
j +m2

j

)2
+

(−ad2 + δd1)π2

l2
(
m2
j +m2

j

)
+ b− aδ = 0

and
D(λs) = D

(
m2
s,m

2
s

)
=
π4d1d2
l4

(
m2
s +m2

s

)2
+

(−ad2 + δd1)π2

l2
(
m2
s +m2

s

)
+ b− aδ = 0,

then, both λj and λs are simple eigenvalue of Laplacian −∆. In this case, we obtain
a double-bifurcation point b(λj) = b(λs) for some j 6= s. Hence, zero is a double
eigenvalue of L. The associated eigenspace is E3 = Span{ϕj , ϕs} with

ϕi = 2

[
2d2π

2

l2 m2
i + δ

1

]
sin(miπx) sin(miπy)

for i = j, s and E∗3 = Span{ϕ∗j , ϕ∗s} with

ϕ∗i = 2

[
1

2d1π
2

l2 m2
i + af ′(0)

]
sin(miπx) sin(miπy)

for i = j, s. In this case the induced action of D4 in E3 is

S3 =

[
(−1)mi−1 0

0 (−1)ni−1

]
, R3 =

[
0 (−1)mi−1

(−1)ni−1 0

]
for i = j, s. Hence, by using the Lyapunov–Schmidt reduction we have

U = z4ϕj + z5ϕs + w4,

where z4 = 〈ϕj , U〉, z5 = 〈ϕs, U〉 and w3 = U − z4ϕj − z5ϕs.

Case II: Steady/steady-state mode interactions of one simple and one double bifurca-
tion.

If there exist mj = nj and ms 6= ns such that

D(λj) = D
(
m2
j ,m

2
j

)
=
π4d1d2
l4

(
m2
j +m2

j

)2
+ (−ad2 + δd1)

π2

l2
(
m2
j +m2

j

)
+ b− aδ = 0
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and

D(λs) = D
(
m2
s, n

2
s

)
=
π4d1d2
l4

(
m2
s + n2s

)2
+ (−ad2 + δd1)

π2

l2
(
m2
s + n2s

)
+ b− aδ = 0,

then, λj is a simple eigenvalue and λs a double ones of Laplacian −∆. Hence, zero is a
triple eigenvalue of L.

In this case the associated eigenspace is E5 = Span{ϕj , ϕs1 , ϕs2} with

ϕj = 2

[
2d2π

2

l2 m2
j + δ

1

]
sin(mjπx) sin(mjπy),

ϕs1 = 2

[
d2π

2

l2 (m2
s + n2s) + δ

1

]
sin(msπx) sin(nsπy),

and

ϕs2 = 2

[
d2π

2

l2 (m2
s + n2s) + δ2

1

]
sin(nsπx) sin(msπy).

Further more, E∗4 = Span{ϕ∗j , ϕ∗s1 , ϕ
∗
s2} with

ϕ∗j = 2

[
1

2d1π
2

l2 m2
i + af ′(0)

]
sin(mjπx) sin(mjπy),

and

ϕ∗s2 = 2

[
1

d1π
2

l2 (m2
s + n2s) + af ′(0)

]
sin(nsπx) sin(msπy).

The induced action of D4 in E4 is

S3 =

(−1)mj−1 0 0
0 (−1)ms−1 0
0 0 (−1)ns−1

 , R3 =

 0 0 (−1)mj−1

0 (−1)ms−1 0
(−1)ns−1 0 0

 .
Hence, by using the Lyapunov–Schmidt reduction, we have

U = z6ϕj + z7ϕs1 + z8ϕs2 + w4,

where z6 = 〈ϕj , U〉, z7 = 〈ϕs1, U〉, z8 = 〈ϕs2, U〉 and w4 = U−z6ϕj−z7ϕs1−z8ϕs2.

Case III: Steady/steady-state mode interactions of two double bifurcations.
If there exist mj 6= nj and ms 6= ns such that

D(λj) = D
(
m2
j , n

2
j

)
=
π4d1d2
l4

(m2
j + n2j )

2 +
(−ad2 + δd1)π2

l2
(
m2
j + n2j

)
+ b− aδ = 0
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and

D(λj) = D
(
m2
s, n

2
s

)
=
π4d1d2
l4

(m2
s + n2s)

2 +
(−ad2 + δd1)π2

l2
(
m2
s + n2s

)
+ b− aδ = 0,

then, both λj and λs are double eigenvalues of Laplacian −∆. Hence, zero is a 4-fold
eigenvalue of L.

The associated eigenspace is E5 = Span{ϕj1, ϕj2, ϕs1 , ϕs2} with

ϕj1 = 2

[
d2π

2

l2 (m2
j + n2j ) + δ

1

]
sin(mjπx) sin(njπy),

ϕj2 = 2

[
d2π

2

l2 (m2
j + n2j ) + δ2

1

]
sin(njπx) sin(mjπy),

ϕs1 = 2

[
d2π

2

l2 (m2
s + n2s) + δ

1

]
sin(msπx) sin(nsπy),

and

ϕs2 = 2

[
d2π

2

l2 (m2
s + n2s) + δ2

1

]
sin(nsπx) sin(msπy).

Further more, E∗5 = Span{ϕ∗j1, ϕ∗j2, ϕ∗s1 , ϕ
∗
s2} with

ϕ∗j1 = 2

[
1

d1π
2

l2 (m2
j + n2j ) + af ′(0)

]
sin(mjπx) sin(njπy),

ϕ∗j2 = 2

[
1

d1π
2

l2 (m2
j + n2j ) + af ′(0)

]
sin(njπx) sin(mjπy),

ϕ∗s1 = 2

[
1

d1π
2

l2 (m2
s + n2s) + af ′(0)

]
sin(msπx) sin(nsπy),

and

ϕ∗s2 = 2

[
1

d1π
2

l2 (m2
s + n2s) + af ′(0)

]
sin(nsπx) sin(msπy).

In this case the induced action of D4 in E5 is

S3 =


(−1)mj−1 0 0 0

0 (−1)nj−1 0 0
0 0 (−1)ms−1 0
0 0 0 (−1)ns−1

 ,

R3 =


0 0 0 (−1)mj−1

0 0 (−1)nj−1 0
0 (−1)ms−1 0 0

(−1)ns−1 0 0 0

 .
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Using the Lyapunov–Schmidt reduction, we have

U = z9ϕj1 + z10ϕj2 + z11ϕs1 + z12ϕs2 + w5,

where z9 = 〈ϕj1, U〉, z10 = 〈ϕj2, U〉, z11 = 〈ϕs1, U〉, z12 = 〈ϕs2, U〉, and w5 =
U − z9ϕj1 − z10ϕj2 − z11ϕs1 − z12ϕs2.

5 Numerical simulations

The goal of this section is to present the results of numerical simulations, which comple-
ment the analytic results in the previous Section 3. Choose for f = u − u3/3! and fixed
values a, δ in all simulations, namely, a = 3, δ = 5. We take l = 1.0 and d1 = 0.001,
d2 = 0.01 satisfying (H1). According to Theorem 1, λN∗ = 1375. Hence, we know
that the constant steady state (0, 0) is Turing unstable, and the simple and double Turing
bifurcation occurs when b = bj . From Section 3 a spatially inhomogeneous steady-state
structure is characterized by ϕ1 or ϕ2, ϕ3 is generated for b > aδ and λ 6 λN∗ .

Choose λ1 = 315.8273, then the bifurcation parameter b1 = 30.3756. In this case
a simple bifurcation occurs for m1 = 4, n1 = 4; see Fig. 2. In this case the system
supports square patterns.

Choose λ2 = 986.9604, then the Bifurcation parameter b2 = 49.8010. In this case
a double bifurcation occurs for m3 = 11, n3 = 13 or m3 = 13, n3 = 11; see Fig. 3.

Choose fixed values a = 18, δ = 20 and take l = 1.0 and d1 = 0.001, d2 = 0.01
satisfying (H1). According to Theorem 1, λN∗ = 8500. Hence, we know that the constant
steady state (0, 0) is Turing unstable, and the simple and double Turing bifurcation occurs
when b = bj .

Choose λ3 = 3480.1, then the bifurcation parameter b3 = 795.7. In this case a double
bifurcation occurs for m2 = 8, n2 = 17 or m2 = 17, n2 = 8; see Fig. 4.

Figure 2. Turing pattern of u when m = 4, n = 4, t = 10000.
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Figure 3. Turing pattern of u when m = 11, n = 13, t = 10000.

Figure 4. Turing pattern of u when m = 8, n = 17, t = 10000.

Figure 5. Turing pattern of u when m = 16, n = 24, t = 10000.

Choose λ4 = 8211.5, then the bifurcation parameter b4 = 1803.3. In this case
a double bifurcation occurs for m4 = 16, n4 = 24 or m4 = 24, n4 = 16; see Fig. 5.
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6 Conclusions

Problem (4) has obviously the D4-symmetry of the unit square, i.e., it is D4-equivariant.
We are interested in the bifurcation structure of solution branches of (4)–(5) of simple
and double bifurcation on the trivial solution curve. Using Lyapunov–Schmidt method, we
show the existence of nonhomogeneous solutions. After calculating the reduced equations
of Eq. (12), we investigate the necessary structure of steady-state bifurcating solutions.
Numerical simulations show that the structure of pattern is determined by wave numbers.
Through the analysis of the steady/steady-state mode interactions, we found that the
model can have highly degenerate branches, which is caused by the symmetry of the
spatial region.

Acknowledgment. The authors wish to express their gratitude to the editors and the
reviewers for the helpful comments.
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