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Abstract. A mathematical model is proposed for the spread of an epidemic disease of age-
dependent infectivity through an asexual population with spatial heterogeneity, assuming that some
individuals recover from the disease with temporary immunity, another part recover with permanent
immunity, and the last part recover with no immunity. The demographic changes such as births and
deaths due to natural causes and the chronological age of individuals are not taken into account.
The model is based on a system of partial integro-differential equations including a differential
equation to describe the evolution of individuals who have recovered with temporary immunity. The
existence and uniqueness of the globally defined solution is proved, and its long-time behaviour is
studied.

Keywords: epidemic models, coupled parabolic systems, infectivity, immunity, reaction-diffusion
systems.

1 Introduction

The objective of this work is to analyse a mathematical model, which describes the spread
of an epidemic disease through an asexual population taking into account the spatial
dispersal of individuals, infection age (time since infection), and immunity duration after
recovery from the disease. Many studies [8, 9, 11], [10, 14-16, 18, 20, 22] have been
devoted to study the spread of epidemics in an asexual spatially homogeneous population
taking into account the infection-age-dependent infectivity. Epidemic models with spatial
diffusion but without age structure are treated in [1-3,21].

Epidemic models with spatial and infection-age-dependent heterogeneity are studied
in [4,5]. According to [4], individuals recover from the disease with permanent immunity,
while in work [5], it is assumed that people recover with no immunity. In [4, 5], the
population is divided into three classes: susceptible (who are not infected but capable of
becoming infected), exposed (who are infected, but during the latent period (time elapsed
from an infection moment to infectiousness), are not yet infectious), and infectious (who
can transmit the disease to susceptibles through contacts with them). Both of these works
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assume that the diffusion coefficients of all classes are constants and that the infectivity of
the disease is independent of the infection age. In [4], the infectivity is a positive function
of the location variable and is independent of the infection age, while in [5], it is a positive
constant. The mortality rate is a constant in [5] and it is a function of the location variable
and infection age in [4]. In works [4, 5], it is also supposed that the disease spreads over
a short enough period of time to disregard demographic changes such as births, natural
death, and chronological age of individuals. In works [4,5], the infective class is structured
with infection age 7 € [0,T], T' < oc.

In many epidemic diseases, natural immunity after recovery is temporary, and recov-
ered individuals lose their immunity and return to the class of susceptibles after an average
protected period. For example, according to [12], natural immunity to HCoV-OC43 and
HCoV-HKUI1 infection appears to wane within one year, while SARS-CoV-1 infection
can induce longer-lasting immunity. In this work, we consider a SEIRS model for the
spread of an epidemic disease through an asexual population. As in [4, 5], we disregard
births, natural death, and chronological age of individuals and, contrary to works [4, 5],
take into account the dependence of the infectivity on the infection age and assume
that individuals spread over the {2 habitat bounded with the surface X' with diffusion
coefficients depending on the location variable. We also take into account temporary
immunity of recovered individuals. We divide the population into four classes: suscep-
tible, infected, temporary immune (composed of individuals recovered with temporary
immunity), and removed (who recovered with permanent immunity). We divide the class
of infected individuals into two subclasses: (i) exposed (who are infected, but during the
latency period, are not yet infectious) and (ii) infectious (who can transmit the disease
to the other individuals through contacts with them). We assume that individuals, who
have recovered without any immunity and those whose temporary immunity has ended,
immediately return to the class of susceptibles.

Our aim is to study the existence, uniqueness, and long-time behaviour of the classical
solution to this model for two classes of smoothness of the model data.

The plan of this work is the following. In Section 2, we describe the model. In
Section 3, we prove the existence and uniqueness theorem. Section 4 contains the long-
time behaviour of the solution for the model data class given in Section 2. In Section 5,
we consider the model with improved smoothness of the model data, prove the existence
and uniqueness theorem, and find the long-time behaviour of its classical solution. Some
remarks in Section 6 conclude the paper.

2 The model

Let S = S(z,t) denote the density of susceptible individuals at time ¢ at the position
x € 2 CR" n > 2 andlet I = I(x,t,7) and R = R(x,t,71) be densities of
the infected (exposed with 7 € [0, 7.] and infectious with 7 € (7.,7T]) and recov-
ered individuals with the disease and immunity age 7 and 7, respectively, at the po-
sition x € {2 at time ¢. Here 7 € [0,7] is time passed since the infection moment,
and T is the disease infectivity period, 7. is the latent period, 71 € [0,7}] is time
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past since the recovery moment with temporary immunity, and 77 is the period of the
temporary immunity. Assume that R; = R;(x,t) is the density of the individuals re-
covered with permanent immunity at time ¢ at the position z € 2. Let u = u(z,t)
be the infection rate at time ¢ at the position © € (2 (rate at which susceptibles catch
the disease, which infectivity is & = k(z,7), x € (2), and let yI(-,-,T) denote the
rate at which individuals recovered without any immunity enter the susceptible class.
Similarly, assume that ~11(-,-,T) is the rate at which recovered individuals enter the
class of individuals recovered with temporary immunity. Let (1 — v — ~1)I(-,-,T)
denote the rate at which the recovered individuals enter the class of individuals recovered
with permanent immunity. We also assume that all individuals after the expiration of the
protected period T} immediately return to the susceptible class and that v = v(7) means
disease mortality. Our model consists of the following coupled systems:

0pS — div(ksVS) =~I(-,-,T) + R(-,-,T1) —uS in {2 x (0, 00),
OnS =0 onX x(0,00), (1)
S(,O) = SO il’lﬁ7

Ol + 0,1 — div(k;VI) = —vI in 2 x (0,00) x (0,77,
Onl =0 onX x (0,00) x (0,7,

_ 2
I(-,0,-) = Iy in£ x][0,T], @
I(-,-,0) =uS in 2 x [0, 00),
R+ 0, R—div(kiVR) =0 in 2 x (0,00) x (0,T1],
OnR=0 onX x (0,00) x (0,T1], &)

R(-,0,-) =Ry in 2 x [0,Ty],
R(',',O) :71[('a'aT) inﬁx [0,00),

3tR1 —diVH1VR1 = (1—’7—’)/1)1(',',T) in {2 x (0,00),

OnR1 =0 onX x (0,00), 4)

Rl(', O) = R10 in ﬁ,

T

u:/k('vT)I('a'aT)dT inﬁx [0,00), (5)
where Y = 02, T, Ty, , 1 are positive constants such that T < T1, v+ 711 < 1, 04,
0y, and O, stand for partial derivatives, 5, with n = n(x), € X, denotes the outward
normal derivative, V and div are the gradient and divergence operators, ks = Ks(x),
ki = ki(x), and k1 = k1(x) denote the diffusivity of the susceptible, infected (exposed

and infectious), and recovered individuals with temporary and permanent immunity, re-
spectively, So = So(z), Iy = lo(z,7), Ry = Ro(z,71), Rio = Rio(z) are the initial

Nonlinear Anal. Model. Control, 28(4):735-759, 2023


https://doi.org/10.15388/namc.2023.28.32230

738 V. Skakauskas, A. Ambrazevicius

functions. Condition 9y, f|s = 0, where f = S, I, R, and R; ensure that the population
remains confined to (2 for all time.

The main novelty of our model is the introduction of a class of individuals of density
R(z,t, 7 ) whose age of temporary immunity at moment ¢ at point = is 71 € [0, 73],
where T is a finite period of temporary immunity, and R(x, t, 71 ) satisfies system (3).

Knowing the model data ks, k;, k1, k, v, Y1, T, T1, T+, and initial functions Sy,
Iy, Ry, equations (1)-(3) and (5) can be applied, for example, to model the spread of
COVID-19 or influenza infection in a human population.

It is trivial to observe that Egs. (1)—(3), (5) decouple from system (4). Since in-
dividuals of the removed class do not affect the development of the disease, and the
determination of I and the initial function Ry completely determine R;, we shall not
consider system (4) further.

We add to system (1)—(3) and (5) the following compatibility conditions:

T
:So/k(',T)Io(',T)dT, Ro(,O) :’Yllo(',T) ll’lﬁ
0

Set
ex s)ds reR,0<t<r<T,
Hatr) = P, P o0 ash e e 2 ©)
exp{—foys sh, =xeN, t>T€e[0,T],
and insert function (6) into (2) to get
O F + 0. F = div(k;VF) in 2 x (0,00) x (0,7,
OnF =0 onX x (0,00) x (0,77,
_ 7
F(-,0,-) =1y in {2 x[0,T], ™
F(-,-,0) =uS in 2 x [0,00).
Inserting function (6) into Eq. (5), we have
fT* E(- exp{ fT t s)ds}F(-,t,7)dr, t e [0,77],
k(T ex ds F dr
) = e R e Iy } ato7) c ®
+ft k(-,7)exp{— f ds}F( t,7)dr, te(r*,T],
S kG 7y exp{— [y v( ds}F( ,7)dr, t>T,

in £2. Knowing F, we can find I by Eq. (6) and then construct u by Eq. (8).

Let a constant 3 € (0,1) and assume that the surface >’ € C? and given functions
S0, Lo, Ro, ks, ki, K1, V, k satisfy the following conditions of smoothness (called (H;)
hypotheses):

(i) So € C(£2), So(x) = 01in 2 and is continuously differentiable in a neighbour-
hood of surface X' excluding the X itself.
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(i) Ip € C%1(2 x [0,7T)) and Ry € C%*(£2 x [0,T}]) are nonnegative and contin-
uously differentiable in x in a neighbourhood of surface X' excluding the surface
X itself.

(iii) ks, ki, k1 € C1P(02) and are positive in £2.

(iv) v € C([0,T]) and is nonnegative, k € C11 (2 x [r*,T]) N C(2 x [7*,T]) and
is positive.

Definition 1. Collection (S, I, R, u) is called a classical solution of problem (1)—(3),
5)if S € C?1(2 x (0,00))NC (2 x [0,00)]), OunS is continuous on X x (0, 0),
I € OB x (((0,00) x (0, TN\ {t =7}))NC (2 x [0,00) x [0,T]), Onl is con-
tinuous on X x (0,00) x (0,7], R € C?L1(2 x (((0,00) x (0, T1]) \ {t = 71 })) N
C(£2 x [0,00) x [0,T1]), OnR is continuous on X' x (0,00) x (0,T1], u € CH(2 x
(0,00) N C(2 x [0,00)) and if this collection satisfies equations (1)~(3), (5) and their
initial and boundary conditions.

We also use the definition of the classical solution to system (1), (3), (6), (7), (8).
Definition 2. Collection (S, F, R,w) is called a classical solution of problem (1), (3),
(1), 8)if S € C%1(§2 x (0,00)) N C (2 x [0,00)]), InS is continuous on X x (0, o0),
F e C?H1 (02 x (((0,00) x (0, TN\ {t=7}))NC(2 x [0,00) x [0,T]), O F is con-
tinuous on X' x (0700) (0, 7], R € C>Y1(02 x (((0,00) x (0, T1) \ {t = 71})) N
C(£2 x [0,00) x [0,T1]), (’)nR is continuous on X x (O,oo) x (0,T1], u € CH(02 x
(0,00))NC(§2 x [0, 00)) and if this collection satisfies equations (1), (3), (7), and (8) and
their initial and boundary conditions.

3 Existence, uniqueness, and estimates of the classical solution to
system (1)=(3), (5)
Consider the linear parabolic system
Of —div(eVf)+cf =q in2x(0,t], t* < oo,
Onf =1 onX x(0,t"], )
fli=o = fo in 2,
where [ = f(z,t), ¢ = q(z,t), ¥ = P(x,t), c = c(z,t), ¢ = p(x), and fo = fo(z)
are given functions. We apply to this system a well-known result on the existence and
uniqueness of the classical solution of linear parabolic equations. Let I' = I'(&, z;t,t')

be the fundamental solution of the differential equation 0; f — div(¢pV f) + ¢f = 0, and
let n(&) be a unit outward normal vector to surface X' at point &.

Theorem 1. (See [6, Chap. V, Sect. 3, Thm. 2 and Cor.2]). Let 3 € C't8, » ECHB(ﬁ)
and is positive in 2, c € CPO(2x [0,t*]), ¢ € COO(X x [0,t*]), ¢ € CPO(2x [0,t*]),
0 < t* < oo, fo € C(£24), £24 D (2, and satisfies the condition

[

1
<Ct™¢, €€ <2, 1), C = const. (10)
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Then system (9) has a unique solution f € C**(£2 x (0,t*]) N C(£2 x [0,t*]), which is
continuous in x, uniformly in {2 x [0,t*].

It is shown [6, Chap. V, Sect. 3, Cor. 2] that condition (10) is fulfilled if function fj is
continuously differentiable in a neighbourhood of the surface & € C''+7_If a surface X
belongs to the class C?, then (see [19, Vol. IV, Part II, Chap. II, Sect. 101]) for sufficiently
small § > 0, it is possible to construct surfaces 25 parallel to X, for any point £ € X
assigning a point £ = & + dn(¢) € YE, where n(¢) = n(f). Let 25 = {x € R™
dist{z, X} < 6} C £, 6 > 0, be a neighbourhood of X, and let 2 = 25 \ £,
25 = {25 N §2 with the surfaces 8!2;’ = YU E;’, 0f25 = X U Xy, respectively.
The following statement shows that, by increasing the smoothness of the surface X, the
condition of the continuous differentiability of fjy in 25 can be weakened.

Lemma 1. Let X € C?, and let a nonnegative function fo(y) be continuous in 2. and
continuously differentiable in (25 \ X. Suppose that there exist the normal derivatives of

function fo(y),
lim 9, ,
bt n(£) (g)fo(y)
s—40
that are continuous on .. Then
or'(€,y,t,0) c 1
T A e d < 2e? C= ta 07 95 | Ea
/ G foly)dy < const, € € (0,5 ), £ €

)
and this integral is a continuous function on the surface 3.

Proof. The fundamental solution I can be represented by the formula I'(§, y, ¢, t') =
FO(E -Y%Y, tv t/) + F/(gv Y, ta t/)’ where

2
T = ot t) = (ampla) (e — )" exp{ - I

is the principal term of the fundamental solution I". Therefore, it is enough to prove the
continuity of the integral

n 8 J—
/ Z Io(¢ 8? y,1,0) ni(€) foy) dy
Qs =1 Z

_ /Z OIo(€ BZ’ y,1,0) (ma(€) = ns() + ms(3)) foly) dy

It is easy to prove that

6
/> / BE B0 (10) - (o) fow)an| < £ << (0.3),

https://www.journals.vu.lt/nonlinear-analysis
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/ 2 Y LD () d

= [y vt 0ht g - [ Y TEZRELD ) ) 0
s i=1 v

where ¥ is a point on the surface X', which realizes the distance of the point y to the
surface 2,
E-y*>  n

HE -~ 9,500 = ( 4t 20(y)

It is easy to verify that the integral with the kernel H is a bounded and continuous function
on the surface X'. Then

/Z oIb(§ _857 y:t,0) ni(7) fo(y) dy
i1 '

- aFO(f_yay7t70)n _ - 8F0(£_yay7t70) —
= —= 2 @ oy dy + [ Y i (§) foly) d
[l_zl 0y, 0 / 0y; 0

_ =1
5

__/FO(g_naTI?t’O)fO(n)dZn_+/ZO(€_n7nat7O)f0(n)d27—:_

- +
2(5 25

_/ZFO(f_ya yvt’0)<nl(g)f0(y))y7d

02

)ro@ — 5 51,0 (4 (), n(D)).

By virtue of the assumption of smoothness of the surface X, function Y-, (n;(¥))y, is
continuous. Moreover, conditions of lemma show that >~ | 7;(7) (fo(¥))y, = On(g)fo(y)
converges to a continuous function on the X if y approaches the X' from within {2 or
from without (2. Therefore, the last integral is also a continuous function. The proof is
complete. O

In order to obtain a global existence result, we apply the method of steps and Lemma 1.
The following proposition gives the existence and uniqueness of the solution to sys-
tem (1)—(3), (5):

Theorem 2. Let assumptions (1)—(iv) hold. Then system (1)—(3), (5) has a unique globally
defined nonnegative solution (S, I, R,u) such that
(i) S € C?H(2 % (0,00)) NC(N x [0,00)),

(i) 1€ C211(12 x (((0,00) x (0, 7))\ {t = 7})) N C(2 x [0, 50) x [0,]),

(i) R € C%HH(02 x (((0,00) x (0, 1)) \ {t =71 })) N C(£2 x [0,00) x [0, T1]),

(iv) u(z,t) € CH1(82 x (0,00)) N C(£2 x [0, 00)).

Proof. In order to prove the existence of the solution, we first consider system (7); 2 3 for
0 < t < 7 on the characteristic lines 7 = t + «a, a = const € [0, 7], of the operator
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O + O; and system (3)1 23 for 0 < ¢ < 7y on the characteristic lines 7 = t + ay,
ay = const € [0, T4], of the operator 0 + O, . Denoting A(z, t; ) := F(z,t, t+«) and
Ai(z,t;0q) := R(x,t, t + aq), we have the following equations:

OA( ) — dlv(mVA ,Q )
in2x(0,T —aq, O<a<T,

11
OnA(,5a)=0 onX x (0,7 —a], 0 a<T, (n
A(+,0;0) = Ip(z,a) in2,0< a<T,
8tA1(-, ';041) — diV(KJVAl( s )) = 0,
in £2 x (O,Tl —041], 0< g <1y,
(12)

8nA1(~,~;a1) =0 onlX x (O,Tl —011}7 0<ar < Tl,
Al('ao;al) :RO('val) inﬁ7 Ogal ng

Assumptions (ii) and (iii) of hypotheses (H;) and Theorem 1 ensure the existence
and uniqueness of the solution A(+,-;a) € C*1(2 x (0, T — a]) with a € [0,7)
and A(,a) € C(2 x [0,T — a]) with 0 < a < T to system (11). Similarly,
Assumptions (ii) and (iii) of hypotheses (H;) and Theorem 1 guarantee the existence
and uniqueness of the solution A; (-, ;1) € C*1(§2 x (0, Ty — o1]) with oy € [0,T1)
and A1(-,501) € (2 x [0, — a1]) with 0 < a1 < T} to system (12). Moreover,
these solutions can be represented using the potential theory (see [6, Chap. V, Sect. 3])
and are Holder continuous in x, uniformly in (£2 x [0, T — «]) and (2 x [0, T} — 1)),
respectively (see [17, Chap. 2, Thm. 1.2]). The nonnegativity follows from the positivity
lemma (see [17, Chap. 2, Sect. 2.2]).

In order to prove that A and A; are continuously differentiable in « and «, respec-
tively, we consider system (11) with A and I, replaced by 0, A and 0,1y, respectively,
and system (12) with A; and Ry replaced by 0., A1 and J,, Ry, respectively. Again,
by virtue of assumptions (ii) and (iii) of hypotheses (H;) and Theorem 1, each of these
two new systems has a unique solution 9, A(:, ;) € C%*1(2 x (0, T — «o]) with
a € [0,T) and 9y, A1 (-,;01) € C?L(2 x (0, Ty — ay]) with a; € [0,Ty). Direct
computation shows that function F = F(x,t,7) = A(z,t;7 — t) satisfies equations
(71,2,3 for 7 —t > 0, and that function I defined by (6); is a solution to system (2)1 2 3
and lies in C*H1(2 x (0,7] x (0,T]) N C(2 x [0,7] x [0,7)). Similarly, function
R(', . ) = Al(l‘,Tl;Tl - t) € 02’1’1(9 X (0,7’1] X (O,Tl]) N C(ﬁ X [0,7’1] X [O,Tl])
satisfies system (3)1 2.3 for g —¢ > 0.

Second, denoting B(z, 7; ) := F(z, 7+ «, 7) and By (z,71; 1) := R(x, 71 + a1,
T1), We rewrite systems (7)1,2,4 and (3)1,2,4 on the characteristic linest = o+ 7, o > 0,
and t = a1 + 71, aq = 0, of the operators J; + 0, and 0; + 0, , respectively:

9:B(-,5;a) — div(s;VB(+,5;0)) =0 in 2 x (0,T], a >0,
OnB(,;0)=0 onX x (0,T], « >0, (13)
B(-,0;a) = S(-,a)u(-,a) in 2, a >0,

https://www.journals.vu.lt/nonlinear-analysis
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8TB1(~, ';041) — diV(l‘EiVBl(', ~;a1)) =0 in{2 x (O,Tl], (6] > 0,
8nB1(-,-;a1) =0 onlX x (0 Tl] = O, (14)
Bl(~,0;041)=’}/1[(-,041,T) IHQ (651 20

By virtue of Eq. (6)1, the function I(-,¢,7) = F(-,t,7)exp{— [ ,v(s)ds}, where
F(-,t,7) := A(-,t;7 — t) is known for (¢,7) € [0, 7] X [7x, T Changmg variables,
function v determined by Eq. (8) can be reduced to

T—t y+t
U(,t) = / k(ay+t)exp{_ / V(S)dS}A(vtvy) dyv Ogté,r*v
T*—t Y

which shows that v is known for t € [0, 7] and that u € CH(2x (0, 7*]NC (2% [0, 74]).
Moreover, u is Holder continuous in x, uniformly in 2 x [0, 7.]. Because I(z,t,T) =
Az, t;T —t) exp{— fT ,v(s)ds} and R(x,t,T1) = Ay(z,7; Ty — t) are Holder con-
tinuous in z, uniformly in Q x [0,7] and 2 x [0,Ty], respectively, assumptions (i)
and (iii) of hypotheses (H;) and Theorem 1 show that system (1) has a unique solution
S € C?1(02 x (0,7.]) N C(2 x [0,7.]), which by virtue of the positivity lemma is
nonnegative. Moreover, S is Holder continuous in x, uniformly in 2 x [0, 7*], and can
be represented by the formula (see [6, Chap. V, Sect. 3])

t
S(z,t) ://F(x,t,f,s)u(@s) dXe ds
0 X
t
+ F(x,hy,O)SO(y) dy+ F(xutayvs)?(yvs) dde (15)
/ /1

Here ¢ € [0, 7*], I" is a fundamental solution of the equation 9,5 —div(kV.S)+uS =0,
fly,s) = vI(y,s,T) + R(y,s,T1), 29 D £, function Sy is extended on §2; \ {2 pre-
serving the same smoothness, nonnegativity, and notation, y is a continuous and bounded
solution of the integral equation (see [6, Chap. V, Sec. 3])

t

et = / / Q1(&, 1., sl 5) A5, ds + (&, ),

0o X

t
w(fat) :/Q1(§5t7ya0)50(y) dy+//Q1(§7tayas)?(y78)dydsv
20 0 2
Ql(gatanas):_ 5627t€ X[O,T*].
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We note that function S expressed by formula (15) is defined in the whole space
R™ and is continuously differentiable in {2y \ X. Moreover, it has continuous normal
derivatives On(5)5(7,t) = limy ,gecx On(y)S(y,t) regardless of whether the variable
y approaches X along the normal n(y) from inside or outside domain (2. The similar
equality for normal derivatives of function A(, -; &), o € [0, T, is true.

Next, we consider system (13). For every 7 € [0, 7], we can extend function k on
25\ £2 preserving the same smoothness, nonnegativity, and definition (see [13, Chap. IV,
Sect. 4]). Since function S expressed by Eq. (15) is defined in {2y and function .S for any
fixed t € [0, T satisfies conditions of Lemma 1, an application of Theorem 1 shows that
linear system (13) has a unique solution B € C%1(£2 x (0,T])NC(§2 x [0,T]), which
obviously is nonnegative, Holder continuous in x, uniformly in 02 x [0, 7], and can be
represented by the formula (see [6, Chap. V, Sec. 3])

Ble,mia) = / / (2,76, 8)p(E, 5:0) AT ds + / (2,7, ,0)Bo(y, ) dy,
0o X

29

where o € [0, 7], function By(y, @) = u(y, a)S(y, a) is continuous in 2, and contin-
uously differentiable in (2o \ X for @ € (0,7*], I' is a fundamental solution of Eq. (13),
29 D {2, and ¢ is a continuous and bounded solution of the integral equation

T

w(fm;oz)=//Ql(ﬁ,T,n78)<ﬁ(n,s;a)d2nd8+¢(€,T;a)7
0 X

where £ € X, 7 € x[0,T],

o700 = [ QilE9.00Bo(y,0)dy, Qu(6,7,m,5) = 22T ST 1)
2 On(¢)

By arguments used to find the smoothness of 0, A(x,t; ), it is easy to see that
0aB(-, ;) € C*H02 x (0,T)) N C(2 x [0,T]) with a € (0, 7.]. Direct computation
shows that function F' = F(x,t,7) = B(z, T;t — 7) satisfies Eqs. (7)1,2,4 and that func-
tion I, determined by (6), with F'(z,t,7) = B(x,7;t—7), is known in 2 x [7, 7+ 7] x
[0, T, satisfies Eq. (2)1,2,4, and lies in C>V1 (02 x (7, 7 + 7] x (0,T]) N C(2 x [r,
7+7.] % [0, T1]). In particular, we have found function I(-,T) € C?>Y(2 x (T, T+7.])N
C(22 x [T, T + 7.]). Then by virtue of Eq. (8), function u is known in (2 x [7*, 277
and lies in 11 (2 x (7., 27.]) N C(£2 x [7s, 27.]). Moreover, function u is continuously
differentiable in ¢ at t = 7* since from Eq. (8) it follows that

t—7x—0 t—=7x—0
P

lim Quu(-,t) = lim 8t<k(',7)exp{—/V(S)dS}A(',t;T—t)> dr

T—t
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and
t T

t_}igﬂlﬁ&u(,t) = t_}iTr}kl+08t</k(~,T) exp{/y(s) dS}B(',T;tT) dr

T* 0

+/Tk(-,7)exp{ /Tu(s)ds}A(.,t,Tt)dT)

T

T T
= t_}iTrE_FO Oy (k(, T) exp{— / v(s) ds}A(-, T — t)) dr.

Ty T—1

Arguing similarly as above, we prove the existence and uniqueness of a nonnegative
solution By (-, ;1) € C21(02x (0, T1])NC (2% [0, T1]) with g € [0, 7] to system (14).
By argument above, we can also prove that

0o Bi (-, 1) € C2H(2 % (0,Th]) N C (2 x [0,T1])

for a; € (0, 7. ]. Direct computation shows that function R= R(x,t,71) = By (z, 71;t—71)
satisfies (3)1 2,4 Itis easy to see that R lies in C%1 (2 x (11, 71+ 7] % (0, T1]) NC (2 x
[7’1, 1 +7'*] X [0, Tﬂ) Hence, R(, Tl) € 02’1(9 X (Tl, Tl +T*])OC(§X [Tl, T1 +7'*])
is known.

Since u € CH1(02 x (0,27.]) N C(£2 x [0,27,]) is known, we can find a unique
nonnegative function S € C%1(2 x (0,27,]) N C(2 x [0,27.]) from Egs. (15) and
(1). Then from Egs. (13) we find a unique nonnegative function B(-,-;a) € C%1(2 x
(0,T)) N C(2 x [0,T]) with a € [r, 27.], and by Egs. (6)2 and (2);,2 4 We determine
IeCPP Y QX (1+ 7, 7+27] x (0, T)) NC(2 X [1 + 7w, T+ 27.] x [0,T]). This
allows us to construct function u € C11(2 x [27,,37.]) N C(N2 x [274, 37]).

Continuing this process, we find the solution (S, I, R,u) for x € {2, 7 € [0,T], and
any t > 0. Thus we have proved the existence and uniqueness of the solution (S, B, By)
to Egs. (1), (13), (14) and the existence of the solution (S, I, R, u) to Egs. (1)-(3), (5).

The proof of the uniqueness is standard, and we skip it. O

4 Long-time behaviour of the solution (S, I, R, u) to system (1)—(3),
()]

In this section, we show that the total number of infected individuals and the total number
of individuals recovered with temporary immunity for any diffusion coefficients eventu-
ally tend to zero and that the spatial averages of the infected individuals and of those
who recover with temporary immunity asymptotically converge to zero, provided that all
diffusion coefficients are equal. Denote

T

T
o, 1) = / Fla.t,r)dr, dole) = / Io(z, ) dr,
0

0
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T T
(o, t) = / Ra,t,m)dm,  dola) = / Ro(a, 1) dry
0 0

and integrate Egs. (7); and (3); over (0,7T) and (0, T} ), respectively, to have
Op=—F(-,-,T)+uS+div(kV¢) in £2 x (0,00),

On® =0 on X x (0,00), (16)
¢(,0) =¢o in £2,
atw = _R('7 * Tl) + 71T(T)F(7 ) T) + le(FEv’Q/J),
On» =0 on X x (0,00), a7
B(,0) = Yo in 2.
Set
P(z,t) = S(z,1) + ¢(x,t) + ¢(z,1), Py(x) = So(z) + ¢o(z) + o,
Pj =max Py(z), Ij= max Iy, k= max k, Rj=_max Ry,
7] 2x1[0,T] 02x[0,T] 02x[0,Ty]

Wy 1= maX(Iga k*(Pg)2)7 wyi= maX(R87 71w7l)a p(t’ T) =1- (’y—"_')/l)C(t’ T),

exp{— [, v(s)ds} ifo<t<r,
C(th) =
r(r) = exp{ fo s)ds} ift >,
Z(t,T):/I(CL’7t,T)d.’E, t, 11 —/thﬁ
o) 2
ZQ(T) = /10(1'77') dSC, ) = /RO T, T1
Q 2

Lemma 2. Let (S,I,R,u) be a solution to system (DH)—(3), (5) guaranteed by Theo-
rem 2. Then the integrals [, S(x,t)dz, [, ¢(z,t)dz, and f91/; z,t)dx wzth t > 0do
not exceed [, Po(x) dzx, and the integrals fo (s,T)ds, fo (s,0)ds, fo (s,T1)ds,

fgfg u(x,s)S(z,s)dxds, fof Z(s,7)drds, fon x, 8) dx ds are uniformly bound-
edforallt > 0.
Moreover:

(1) these six temporal integrals converge as t — oo,
(ii) there exist nonnegative limits of [, S(x,t)dx, [, ¢(z,t)dz
and [, (z,t)dz ast — oo,
(iii) lim¢—yeo fo (t,7)dr = lim— 00 fOT fQ F(x,t,7)dedr =
limy oo fQ u(z,t) de = lim— oo fOTl Q(t,71)dr =0.
_ Ifks = ki = k1 =i K, then P < Py and u < k" Py in 2x[0,00), I <F <win
2 x1]0,00) x [0,T], and R < w1 in £2 x [0,00) x [0, T1].
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Proof. Assuming equal diffusion coefficients, we add Eqs. (16) and (17) to Egs. (1) to
get
P — div(kVP) = —p(-, T)F(-,-,T) in 2 x (0, 00),
OnP =0 on X x (0,00), (18)
P(-,0) =P in 2.

An application of the positivity lemma to this system yields P < P; in {2 x [0, o), which

shows that
T

u(z,t) < k*/[(a:,t,T)dT <Kk*P}, z€0,t>0,
0
and the positive lemma applied to Egs. (11)—(14) yields I < w;, R < w;.

In the case of any diffusion coefficients, we integrate Eqs. (16); and (17); over {2,
add to Eq. (1), integrated over {2, and integrate their sum over (0, t) to have

t

!P(x,t)dx!Po(z)dxo/ s, T)/F(x 5. T)dz ds
g/ o(2)dz — (1— 7 — 7 0// (2,5, T) da ds.

0

Since the left-hand side of the above equality is nonnegative and the temporal integrals in

the equality and inequality above do not decrease in ¢, they are bounded for all ¢ > 0 and

converge as t — oo. This yields the existence of the nonnegative lim;_, |, o Pz, t)dx.
If we integrate system Eq. (17); over {2 x (0, ¢), we obtain

/z/J(m,t)dx:/wo(x)dx—l—’}q/t/C(S,T)F(x,S,T)dCL‘ds—/tQ(s,Tl)ds
2 2 0 0 0

Because the first temporal integral on the right-hand side of this equality converges as
t — oo and the left-hand side is nonnegative, the second temporal integral on the right-
hand side is bounded for all ¢ > 0 and is not decreasing in ¢. Therefore, it converges, and
hence, the integral |, o ¥ (x,t) dz converges to a nonnegative limit as ¢t — oo.

Integration of Eq. (1)1 over £2 x (0, ¢) yields

/S(m,t) dx—/So(gc)der/t(/’y((s,T)F(:c,s,T)dx+Q(5,T1)> ds
(0] (9] 0 (9]
O/ZU(x,s)S(x,s)d:rds.
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Since the first temporal integral on the right-hand side of this equality converges as
t — oo and the left-hand side is nonnegative, the second temporal integral on the right-
hand side is bounded for all ¢ > 0. Because it does not decrease, it converges as t — oo.
This and the equality above yield the existence of the nonnegative lim;_, . | o S(x,t)dx.

By integrating Eqs. (2) and (3) over {2 we derive the systems

OZ +0;Z =—-vZ in (0, 00) x (0,77,

Z(0,-) = Zy, T €10,T],

2(,0) = /u(:z:,-)S(z,~)dx in [0, 00),
)

8tQ + 8-,—1(2 =0 in (0,00) X (O,Tl],

Q(0,-) =Qo in[0,T1],

Q(’O) = ’YIZ('aT) in [01 OO)

and solve them to have

Zolr = - <TLT,
Z(t,7) = o(r —t)exp{— [/, v(s)ds}, t<T< )
Z(t —7,0)r(7), 0<7<t,
- < 71, ,Th],
Q(t,Tl) _ QO(Tl t)7 t<T, T E [0 1] 20)
1Z(t—=1,0), t=m7,n €[0,T1]

Similarly, from system (7) we get

/F(a:,t,T) dr =

{fQF(x,O,Tt)dl'—ZO(Tt), t <,
2

Jo F(x,t —7,0)dz = Z(t —7,0), 7<t.

By virtue of Eq. (19), we obtain fort > T,

t t ¢
/Z(&T)dsg//F(x,s,T)da:ds:C’—l—//F(x,s,T)dxds
T Q

0 0

—C’—l—// —T,0)dzds
- T
:C+//F(x7y,0)dxdy, C= //Fxsdeds
0 0 0 0
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which shows that the integral fot Z(y,0)dy = fo Jo F

(z,y,0)dz dy converges as
t — oo. Then using Eq. (19), we get for t>T,

T

/ /ZtT // (x,t,7)dedr

Q ™ 0
T _
//F dxdT—k*// (z,9,0)dx dy
™ 0 -T2

t— t=T

=k* /F(m,y,O)dxdy—k* /F(:c,y,O)dxdy—)O ast — o0o.
0 Q 00

Similarly, we have for t > T,

T T t
/Z(t,r)dTg/Z(th,O)dT: /Z(S,O)dsﬁ() ast — oo,
0 0 t~T

and for t > T},

t

Ty T t
Q(t,m)dr = [ Qt —7,0)dr = Q(y,0)dy
[avmins ] i

t t
=M / Z(y,T)dy <m / /F(:U,y—T,O)dxdy
t—Ty t—T) 2
t—T
=M / /F(x,y,O)dzdy%O ast — oo.
t—T—-T, 2

Fort > T, we also have

t T
/dS/Z(S,T
0o 0

| |
Tt~

¢ T
dT/Z —l—/dT/Z(s,T)ds
0 0

t

T T
C+/d7’/ (s —1,0)ds :C+/dT/Z(y,O)dy
0

C

T

<C+T/Z(s,0)ds<oo, O:/
0 0
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which shows that [ ds fOT Z(s,7)dr converges as t — co. Similarly,

¢ t T
/ds/u(z,s)dxékz*/ds/ZtT )dT < 0.
0 2 0 T*

The proof is complete. O

Lemma 3. [If all diffusion coefficients are equal and (S, I, R,u) is the solution to sys-
tem (1)=(3), (5) guaranteed by Theorem 2, then lim;_, . maxy P(-,t) < Py.

Proof. Consider a sequence P(-,t;) := S(~,tj)+fOT F(.,t;,7) dTJrfOTl R(-,t;,m)dm
with) =1p <11 <tp <---<t; <---,t; = 00asj — oo and rewrite Eqs. (18) as

follows:
0P —diviVP = —p(t,T)F(-,-,T) in {2 x (tj,00),

OnP =0 onX x (tj,00),
P(-,t)|i=¢, = P(-,t;) in 2.

The positivity lemma immediately yields P < maxg P(-,t;) in £2 x [t;,00). Arguing as
above, we also have

P <max P(-,tj11) < max P(-,t;) in 2 X [tj41,00).
g 9]
Letting ¢; run to infinity in this inequality, we observe that function maxg P(-,t) does

not increase in variable ¢. Moreover, it is bounded from above by P and from below by
zero. Hence, it has a limit between zero and Fj. The proof is complete. O

Lemma 4. Let all diffusion coefficients be equal, and let (S, I, R,u) be the solution to
system (1)—(3), (5) guaranteed by Theorem 2. Then

tlg& Z(t,7)=0 in[0,T], tlgrolo Q(t,71)dz =0 in[0,T1].

Proof. In the case of equal diffusion coefficients, Lemma 2 shows that

Z(t,0) /Sxt (x,t)d Po/dx/er (x,t,7)dr

< k*Pg/Z(t,T) dr.
0

This and Lemma 2 yield
Jim Z(t,0) = 0. @1
—00

Then it follows from Egs. (19) and (21) that
lim Z(t,7) = tli)m Z({t—71,0r(r)=0 fortel0,T].

t—o00
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This and Egs. (20) and (21) show that

lim Q(t,7) = hm Q(t—m,0) = tllm nZ(t—m,T)=0.

t—o0

The proof is complete. O

Lemma 4 shows that, in the case of equal diffusion coefficients, the spatial averages
Z(t,7)/|82] and Q(¢t,m1)/|f2| of the infected individuals and those who recover with
temporary immunity, respectively, where 7 € [0, 7], 71 € [0, 73], and |{2| is the measure
of the domain {2, eventually converge to zero.

Remark 1. Let all diffusion coefficients be equal. Since 0 < r f o (z,t,7)dz <
Z(t,7) = 0ast — oo, then [, F(x,t,7)dr — 0ast — oo. ThlS shows that, in the
case of equal diffusion coefficients, the spatial average value of the infected individuals
eventually extinguishes even if the mortality v = 0 in [0, 7).

Lemma 5. Assume that (S,1,R,u) is the solution to system (1)—~(3), (5) guaranteed
by Theorem 2, and let the functions S, ¢, and ¥ be uniformly bounded. Then the limit
lim o0 [, S(2,t) dx is positive.

Proof. The proof of this lemma is based on the arguments used in the proofs of Lem-
mas 3.24 and 3.26 in [1], and for the sake of brevity of this article, we are forced to omit
its details. O

Corollary 1. Equations (18) show that, in the case of equal diffusion coefficients, func-
tions S, ¢, 1 are uniformly bounded by the constant max¢ P(-,T), and therefore, in this
case, Lemma 5 is true.

Define a spatial average of function S by the equality S(t =/, o , and

let Soo = limy o0 S(1).

Lemma 6. Assume that (S, I, R,u) is the solution to system (1)-(3), (5) guaranteed by
Theorem 2. Let functions S, 1, R, and u be uniformly bounded. Then S — So, — 0 in
W3 (82) ast — .

Proof. Let positive constants W, W;, W1, and w* be the upper bounds of functions S, I,
R, and wu, respectively. To prove this lemma, we may apply an argument used in [3]. We
first prove that limy_, oo [, S?(, t) da, limy_, o0 fot [ S%(,t) dz, and lim_, o fot ds x
[ £(2)|VS(z, s)? dz are finite. We multiply Eq. (1); by 25, integrate over {2, and then
mtegrate by parts to have

0, / S2(z,t) dz = 2 ! (VI(@,t,T) + R(x,t, T1))S(x, £) do

—2/52(I,t)u(x,t) dsz/n|VS(x,t)’2dx.

2 2
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Integration of this equation over (0, t) yields

S*(z,t)dz = [ S§(z)dz+2 [ ds [ (vI(z,s,T)+ R(z,t,T1))S(z,s)dz
[ [ [

t

72/ds/52(x,t)u(:c,s) ds72/d5/n(:r)|VS(z,s)|2dz.

0 2 0 2

Since S is bounded, the first temporal integral on the right-hand side of this equation by
Lemma 2 converges. The sum of the second and third temporal integrals on the same
side of this equation is bounded by the sum of the first two terms on the same side, and
the third and fourth temporal integrals on the right-hand side do not decrease. Therefore,
they have finite limits. Hence, there exists a finite nonnegative limit of the left-hand side
as time tends to infinity, i.e., lim¢ . [,, $*(z,t) dz < oc.

Because [, ds [, k(z)|VS(z, s)[*dz converges, there exist two increasing se-
quences {ty} and {¢x}, txr1 = tg + h, h = const > 0, tx € (tg,tps1), kK =1,2,...,
such that

tht1
/n(m)|VS(x,s)|2dxds = h/ﬁ(x)‘VS(m,f@fdx —0 ask — oo.

tr 2 (9]

Since £, := ming k > 0, [, [VS(z,)[*dz — 0as k — oc.

Next, we multiply Eq. (1); by 0.5, integrate over {2, and use the upper bound for S
to obtain

/ (0,:5(2, 1)) do < / (VI(,£.T) + R(x,t, T1))0,S (x,1) da
(9] (9]

+ s [ u(z,1)]|0:S(x,1))| dz+ [ 8,5 (z,t) div k(z)VS(z,t) da.
/ /

Young’s inequality, integration by parts, and use of the boundary condition of system (1)
show that

/(atS(x,t)fdx < 2%/(’yI(x,t,T)2+R2(m7t,T1)) dx+n/(8t5(x,t))2dx
(]

2 2

+ws<21€/u(x,t)2dx+;/(8t5(x,t))2dx>
(9 (9}

_ %ﬁt/n(x)’VS(x,t)fdx,
17
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where 77 = (1 + y)e/2. The upper bounds of I(z,t,T), R(x,t,T1), and u(x,t) yield

u/ (8t5(m,t))2dx < max(@;, &) / (vI(z,t,T) + R(z,t,T})) dz

2e
D 9]
o / u(z, t) dz - %at / A(@)| VS (1) dr,  (22)
Q Q

where p := 1 — (14 v+ @,)/2. If we integrate this inequality over (¢1,t) with ¢, > 0,
we obtain

u/t (/(835(x,8))2d$> ds < G(t) — %/H(m)‘VS(m,t)IQda:,

t1 2 2
where
¢
G(t) == max w“wl /ds/ vI(z,s,T) + R(z,t,T1)) dz
0
ds [ u(z,s)dz+ - //i((E)|VS(1’,t1)’2d{E.
o0 2

The temporal integrals in G(t) above converge as t — oco. Hence, lim;_, o, G(t) is finite.
For ¢ < 2(1 + v + w,) !, the left-hand side of the inequality above is nonnegative,
nondecreasing, and bounded from above by lim;_,, G(¢). Therefore, the integral on the
left-hand side of the inequality above also converges to a finite limit, which is equal to or
less then lim;_, o, G(¢)/p. Since x, > 0, then

t—o00

s / VS(z, 1)) dz < /m(x);w(x,m?dx < 2G(1) < 2 lim G(1)
(9} (9]

for t > t1, and, because S is bounded, S(x,t) € W4 (§2) fort > 0.
Integration of inequality (22) over (t,t), t € (tk, tg+1], yields

B j ds / (0,5(z, ) da

t

gw/ds/ (vI(z,s,T) + R(z,t,T1)) ds/u(x7t)dx
e 0 tr (9]
1 2 1 2
—5//1(35)|V5(I,t)| dx+§/n(x)‘VS(a:,tk)| dzx.
0 o
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All temporal integrals and the last term on the right-hand side of this inequality converge
to zero as t — oco. Hence,

t—o0

lim m(m)’VS(x,t)}de =0 and tli}m /’VS(m,t)‘de =0
I7) Q

since K > k4 > 0. Then the Poincaré—Wirtinger inequality shows that

/(S(x,t)—?(t))2dx<K/fVS(x,t)‘zdx%O ast — oo, (23)
I7; Q

where K is a constant independent of ¢, and S(t) = [, S(x,t) dz/|f2|. Observe that by
Lemma 5, Soo > 0. Thus S—S(t) — 0in W (£2) as t — oco. The proof is complete. [

In the case where n = 1, the Sobolev embedding theorem yields lim; o, S = S
for all z € (2.

Corollary 2. In the case of equal diffusion coefficients, ws = FPj, W; = w;, W1 = wi,
w* = k*Py. Consequently, in this case, Lemma 6 is true.

According to [4] and [5], densities of the infected individuals and susceptibles con-
verge in C'(2 x [0,T]) and C(£2) to zero and a positive number, respectively, as ¢ — co.
According to our model in the case of equal diffusion coefficients, density I for 7 € [0, T
and function R for 7, € [0, T3] converge to zero in L;({2), while the density of suscep-
tibles, S, converges in L;({2) to a positive number. The claim that lim;_,~ S(z,t) > 0,
lim; oo I(x,t,7) = 0 with 7 € [0,T], limy 0o R(z,¢,71) = 0 with 7, € [0,71],
lim; ;oo u(z,t) = 0 for all x € 2, and the dimension of the region {2 greater than
one under the hypotheses (H;) is an open problem.

In the next section, we improve the data smoothness of model (1)—(3) and (5) so
that conditions of Theorem 5.3 from [13, Chap. IV, Sect. 5] would be satisfied, and,
using Theorem 5.3 from [13, Chap. IV, Sect. 5], for any diffusion coefficients and any
{2 dimension, prove the existence of a unique nonnegative globally defined solution
(8,1, R,u) such that I and R converge to zero in C(2 x [0,T]) and C(£2 x [0,T1]),
respectively, and S tends to a positive number in C'(£2) as t — oc.

5 System (1)—(3), (5) with improved smoothness of the model data

Assume that a constant 8 € (0, 1), the surface X' is of class C' 248 and given functions Sy,
Iy, Ry, ks, ki, v, k satisfy the following smoothness conditions (called (Hz) hypotheses):

(i) So € C?TA(£2), Sy > 0in 2, 9,5 =0on %,
(i) Ip € C**AL(Q2 x [0,T)), Iy = 0in 2 x [0,T), O Io = 0on X x [0, 7],
(iii) Ry € C**P1(02 x [0,T1]), Ry = 0in 2 x [0,T1], 9, Ro = 0 on X x [0, T1],
(iv) kg, k; € C*TP(§2) and are positive in £2.
(v) v € CP/2([0,T)) and is positive in [0, T7,
(vi) k€ C?TAL(Q x [t*,T)) N C(§2 x [r*,T)) and is positive in £2 x [7*, T7.
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Theorem 3. Under hypotheses (Hs) (assumptions (1)—(vi)), system (1)—(3), (5) has a non-
negative globally defined solution (S, I, R, ) such that
(i) S e C*HBIHB/2( x [0,00)),

(ii) 1€ CHHALLQ % (((0,00) x [0, 7))\ {t = 7})),

(iii) R € C?ALL(02 x (([0,00) x [0, 1)) \ {t =71})),

(iv) u € C?FA1(2 x [0,00)).
Proof. The proof of this theorem is based on the direct application of Theorem 5.3 from
[13, Chap. IV, Sect. 5] to equations (11) for ¢t € [0, 7] x [0, T, (12) for ¢t € [0,71] x [0, T1],
(13)fort — 7 € [j7*,(j + 1)7*],and (14) for t — 7, € [j7*, (j + 1)7*],7=10,1,2,...,
and therefore, we skip it. O

Further in this section, we consider the long time behaviour of the solution guaranteed
by Theorem 3.

Lemma 7. Under the hypotheses (Hz), I and R — 0 uniformly in 2 % [0,T] and 2 x
[0, T1], respectively, u — 0 and S — Soo uniformly in 2 as t — co.

Proof. We first prove that S, I, R, and u are uniformly bounded. Set v, = mingg 7y v(7).
Since u(-,a)S(-, ) € C?**F(2) and v, > 0, the positivity lemma shows that the
function I, determined by equations

oI + 0.1 — div(k;VI) = —v, I in 2 x (74 7,,00) x (0,77,
Ol =0 onX x (147, 00)x (0,7, (24)
I(-,-,0) = S8(-,)u(-,-) in 2 x [r,,00)

written on the characteristic lines & = ¢ — 7, is a majorant of function [ for ¢ > 7 + 7%,

and it can be represented as

I(x,t,7) = /G(.Z‘,x/,T)S(.%‘/, t—71)u(z’, t —7)da’,
Q

where G(z, 2, T) is the Green function for system (24) written on the characteristic lines
t=7+a,a>01It is well known (see e.g., [4,5] and [7, Chap. VI, Sect. VI.2]) that for
x,2’ € 2and 7 > 7 > 0, function G is bounded, i.e., |G(x,2’,7)| < C(r') = const.
Hence,

f(x,uT) = /G(x,ar:ﬂT)S(x’7 t—Tu(z', t —T)da’
(9]
<C() / S, t— Thu(a, t — T) dat’.
(9]

The positivity lemma yields that S determined in [t*, 00) with t* > T + T} by
t

S(t) = max S(x, t*) + /(yméxl(m,s,T) + vy max I(z, s — 11, T)) ds
7] J 2 7]
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is a majorant for function S. Moreover,

t

S(t) < mgXS(x,t*) + C(T*)'yt*/!S(x, s—Tu(z, s —T)dxds

+C(T*)’Yl//5(m, s—=T—-T)u(z,s—T —Ty)dxds

t* 2

< max S(z, £*) + C(r*)(y + 1) / / S(a, y)ule, y) de dy < oo
0
0 N

since by Lemma 2 the temporal integral in the above inequality converges and therefore
function S is uniformly bounded. Then for t > ¢*,

T
u(z,t) < k*C(T*)//S(x, t—71)u(z, t —7)dedr
T 02

t—Ty

< k*C(7y) / /S(ay)u(m,y)dxdy

t—T 2
_ k*c(n)(/u / S(z, s)u(z, s) dz ds — 7T / S(z, s)u(z, s) dxds)
0 2 0 N

—0 ast— o

because by Lemma 2 both temporal integrals converge. Hence, function w is also uni-
formly bounded. Then for ¢ > t*,
I(x,t,7) <maxS(z, t — T)u(z, t —7) = 0
Q
and hence

nglmgxl(x,t—Tl,T)%O ast — oo.

It is evident that the functions I and R are uniformly bounded, and therefore, Lem-
mas 5 and 6 can be used in the case under consideration. Denoting maximum of upper
bounds of functions S, I, and R by w and using Lemma 6, we get that the spatial average
of S tends to a positive number Sy, in Wi (£2) as t — oo.

Second, since functions S, I, R, and u are uniformly bounded, [13, Chap. V, Sect. 7]
yields that |V S| is also uniformly bounded. Then direct application of inequality (23) for
p > n > 2yields

/ (S(z,t) —§(t))pdx <Oy / (S(z, 1) —g(t))2 dz < ClK/ |VS|*da,
Q

2 2
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/ VS|P de < G / VS| da,
7] 2
and Eq. (23) shows that

/ (S(z,t) - ?(t))p dz + / [VSIPdz — 0 ast— oo.
2 2

By the Sobolev embedding theorem, it follows that lim;_, o, S(x,t) = Su for all z € £2.
The proof is complete. O

It is easy to see that, in the case where ming So > 0, the function S determined as

t
S(t) = min Sy exp{—/maxu(@s) ds}
7}
0

2

is a minorant for S. Moreover,

[

t
S(t) = Cy min S exp{ - /m@x u(z, s) ds}
2
t*

t T
> C minSOeXp{—k*C(T*)///S(x, s — 7)u(z, s—r)}dxdes
Q
t* T

. 0
> C minSOexp{—k*C(T*)(T—T*)//S(x,y)u(x,y)dxdy}
7]
00

=:5,>0

since the temporal integral converges. Hence, S, > S, > 0.
Assume that Iy > 0in {2 x [0, T']. Applying an argument similar to that used to prove
Theorem 3.4 in [9, p. 137, Chap. 7, Sect. 3], we can prove that

T -1
Seo < (/mink‘(m,T) dT) .
7}

Remark 2. Since 0 < r(T)F < I and I — 0 uniformly in £2 x [0,T] as ¢t — oo, then
F also tends to zero uniformly in 2 x [0, 7] as ¢ — oc. This shows that under the (Hz)
hypotheses the class of infected individuals eventually disappears even if the mortality
rate v is identically zero.
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6 Concluding remarks

We conclude this work by summarizing main results. We proposed and analysed a math-
ematical model for the spread description of an epidemic disease of variable infectivity in
an asexual infection-age-and-immunity-structured population with spatial dispersal. It is
assumed that some individuals recover from the disease with temporary immunity, another
part recover with permanent immunity, and the last part recover with no immunity. The
demographic changes such as births and deaths due to natural causes and the chronologi-
cal age of individuals are disregarded. The model is based on the system of partial integro-
differential equations including a PDE for evolution description of individuals recovered
with temporary immunity. The existence and uniqueness of the globally defined classical
solution is proved. The long-time behaviour of its solution is studied for two classes (H;
and Hy) of the model data smoothness.

In the case of model data of class Hy, we have proved that the total number of
infected individuals and the total number of individuals recovered with temporary im-
munity for any diffusion coefficients eventually tend to zero and that for equal diffusion
coefficients the spatial average of susceptible individuals tends to a positive number,
while the spatial averages of the infected individuals and of those who recover with
temporary immunity asymptotically converge to zero. The claim that lim;_, o, S(z,t) >
0, limy 00 I(x,t,7) = 0 with 7 € [0,T], lim_oo R(z,t,71) = 0 with 7, € [0,Ty],
limy o0 u(x,t) = O for all 2 € (2, and the dimension of the region {2 greater than one
under hypotheses (H;) is an open problem.

In the case of the model data of class Hz, we have proved that for any diffusion
coefficients, the density of susceptible individuals, S, eventually tends to a positive num-
ber uniformly in {2, while densities I and R tend to zero uniformly in 2 x [0, T and
§2 x [0, Ty], respectively. The class of infected individuals disappears even if the mortality
v is identically zero.
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