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Abstract. A mathematical model is proposed for the spread of an epidemic disease of age-
dependent infectivity through an asexual population with spatial heterogeneity, assuming that some
individuals recover from the disease with temporary immunity, another part recover with permanent
immunity, and the last part recover with no immunity. The demographic changes such as births and
deaths due to natural causes and the chronological age of individuals are not taken into account.
The model is based on a system of partial integro-differential equations including a differential
equation to describe the evolution of individuals who have recovered with temporary immunity. The
existence and uniqueness of the globally defined solution is proved, and its long-time behaviour is
studied.
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systems.

1 Introduction

The objective of this work is to analyse a mathematical model, which describes the spread
of an epidemic disease through an asexual population taking into account the spatial
dispersal of individuals, infection age (time since infection), and immunity duration after
recovery from the disease. Many studies [8, 9, 11], [10, 14–16, 18, 20, 22] have been
devoted to study the spread of epidemics in an asexual spatially homogeneous population
taking into account the infection-age-dependent infectivity. Epidemic models with spatial
diffusion but without age structure are treated in [1–3, 21].

Epidemic models with spatial and infection-age-dependent heterogeneity are studied
in [4,5]. According to [4], individuals recover from the disease with permanent immunity,
while in work [5], it is assumed that people recover with no immunity. In [4, 5], the
population is divided into three classes: susceptible (who are not infected but capable of
becoming infected), exposed (who are infected, but during the latent period (time elapsed
from an infection moment to infectiousness), are not yet infectious), and infectious (who
can transmit the disease to susceptibles through contacts with them). Both of these works
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assume that the diffusion coefficients of all classes are constants and that the infectivity of
the disease is independent of the infection age. In [4], the infectivity is a positive function
of the location variable and is independent of the infection age, while in [5], it is a positive
constant. The mortality rate is a constant in [5] and it is a function of the location variable
and infection age in [4]. In works [4, 5], it is also supposed that the disease spreads over
a short enough period of time to disregard demographic changes such as births, natural
death, and chronological age of individuals. In works [4,5], the infective class is structured
with infection age τ ∈ [0, T ], T <∞.

In many epidemic diseases, natural immunity after recovery is temporary, and recov-
ered individuals lose their immunity and return to the class of susceptibles after an average
protected period. For example, according to [12], natural immunity to HCoV-OC43 and
HCoV-HKU1 infection appears to wane within one year, while SARS-CoV-1 infection
can induce longer-lasting immunity. In this work, we consider a SEIRS model for the
spread of an epidemic disease through an asexual population. As in [4, 5], we disregard
births, natural death, and chronological age of individuals and, contrary to works [4, 5],
take into account the dependence of the infectivity on the infection age and assume
that individuals spread over the Ω habitat bounded with the surface Σ with diffusion
coefficients depending on the location variable. We also take into account temporary
immunity of recovered individuals. We divide the population into four classes: suscep-
tible, infected, temporary immune (composed of individuals recovered with temporary
immunity), and removed (who recovered with permanent immunity). We divide the class
of infected individuals into two subclasses: (i) exposed (who are infected, but during the
latency period, are not yet infectious) and (ii) infectious (who can transmit the disease
to the other individuals through contacts with them). We assume that individuals, who
have recovered without any immunity and those whose temporary immunity has ended,
immediately return to the class of susceptibles.

Our aim is to study the existence, uniqueness, and long-time behaviour of the classical
solution to this model for two classes of smoothness of the model data.

The plan of this work is the following. In Section 2, we describe the model. In
Section 3, we prove the existence and uniqueness theorem. Section 4 contains the long-
time behaviour of the solution for the model data class given in Section 2. In Section 5,
we consider the model with improved smoothness of the model data, prove the existence
and uniqueness theorem, and find the long-time behaviour of its classical solution. Some
remarks in Section 6 conclude the paper.

2 The model

Let S = S(x, t) denote the density of susceptible individuals at time t at the position
x ∈ Ω ⊂ Rn, n > 2, and let I = I(x, t, τ) and R = R(x, t, τ1) be densities of
the infected (exposed with τ ∈ [0, τ∗] and infectious with τ ∈ (τ∗, T ]) and recov-
ered individuals with the disease and immunity age τ and τ1, respectively, at the po-
sition x ∈ Ω at time t. Here τ ∈ [0, T ] is time passed since the infection moment,
and T is the disease infectivity period, τ∗ is the latent period, τ1 ∈ [0, T1] is time
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past since the recovery moment with temporary immunity, and T1 is the period of the
temporary immunity. Assume that R1 = R1(x, t) is the density of the individuals re-
covered with permanent immunity at time t at the position x ∈ Ω. Let u = u(x, t)
be the infection rate at time t at the position x ∈ Ω (rate at which susceptibles catch
the disease, which infectivity is k = k(x, τ), x ∈ Ω), and let γI(·, ·, T ) denote the
rate at which individuals recovered without any immunity enter the susceptible class.
Similarly, assume that γ1I(·, ·, T ) is the rate at which recovered individuals enter the
class of individuals recovered with temporary immunity. Let (1 − γ − γ1)I(·, ·, T )
denote the rate at which the recovered individuals enter the class of individuals recovered
with permanent immunity. We also assume that all individuals after the expiration of the
protected period T1 immediately return to the susceptible class and that ν = ν(τ) means
disease mortality. Our model consists of the following coupled systems:

∂tS − div(κs∇S) = γI(·, ·, T ) +R(·, ·, T1)− uS in Ω × (0,∞),

∂nS = 0 on Σ × (0,∞),

S(·, 0) = S0 in Ω,

(1)

∂tI + ∂τI − div(κi∇I) = −νI in Ω × (0,∞)× (0, T ],

∂nI = 0 on Σ × (0,∞)× (0, T ],

I(·, 0, ·) = I0 in Ω × [0, T ],

I(·, ·, 0) = uS in Ω × [0,∞),

(2)

∂tR+ ∂τ1R− div(κ1∇R) = 0 in Ω × (0,∞)× (0, T1],

∂nR = 0 on Σ × (0,∞)× (0, T1],

R(·, 0, ·) = R0 in Ω × [0, T1],

R(·, ·, 0) = γ1I(·, ·, T ) in Ω × [0,∞),

(3)

∂tR1 − div κ1∇R1 = (1− γ − γ1)I(·, ·, T ) in Ω × (0,∞),

∂nR1 = 0 on Σ × (0,∞),

R1(·, 0) = R10 in Ω,

(4)

u =

T∫
τ∗

k(·, τ)I(·, ·, τ) dτ in Ω × [0,∞), (5)

where Σ = ∂Ω, T , T1, γ, γ1 are positive constants such that T < T1, γ + γ1 < 1, ∂t,
∂τ , and ∂τ1 stand for partial derivatives, ∂n with n = n(x), x ∈ Σ, denotes the outward
normal derivative, ∇ and div are the gradient and divergence operators, κs = κs(x),
κi = κi(x), and κ1 = κ1(x) denote the diffusivity of the susceptible, infected (exposed
and infectious), and recovered individuals with temporary and permanent immunity, re-
spectively, S0 = S0(x), I0 = I0(x, τ), R0 = R0(x, τ1), R10 = R10(x) are the initial
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functions. Condition ∂nf |Σ = 0, where f = S, I,R, and R1 ensure that the population
remains confined to Ω for all time.

The main novelty of our model is the introduction of a class of individuals of density
R(x, t, τ1) whose age of temporary immunity at moment t at point x is τ1 ∈ [0, T1],
where T1 is a finite period of temporary immunity, and R(x, t, τ1) satisfies system (3).

Knowing the model data κs, κi, κ1, k, γ, γ1, T , T1, τ∗, and initial functions S0,
I0, R0, equations (1)–(3) and (5) can be applied, for example, to model the spread of
COVID-19 or influenza infection in a human population.

It is trivial to observe that Eqs. (1)–(3), (5) decouple from system (4). Since in-
dividuals of the removed class do not affect the development of the disease, and the
determination of I and the initial function R10 completely determine R1, we shall not
consider system (4) further.

We add to system (1)–(3) and (5) the following compatibility conditions:

I0(·, 0) = S0

T∫
0

k(·, τ)I0(·, τ) dτ, R0(·, 0) = γ1I0(·, T ) in Ω.

Set

I(x, t, τ) = F (x, t, τ)

{
exp{−

∫ τ
τ−t ν(s) ds}, x ∈ Ω, 0 6 t 6 τ 6 T,

exp{−
∫ τ

0
ν(s) ds}, x ∈ Ω, t > τ ∈ [0, T ],

(6)

and insert function (6) into (2) to get

∂tF + ∂τF = div(κi∇F ) in Ω × (0,∞)× (0, T ],

∂nF = 0 on Σ × (0,∞)× (0, T ],

F (·, 0, ·) = I0 in Ω × [0, T ],

F (·, ·, 0) = uS in Ω × [0,∞).

(7)

Inserting function (6) into Eq. (5), we have

u(·, t) =


∫ T
τ∗ k(·, τ) exp{−

∫ τ
τ−t ν(s) ds}F (·, t, τ) dτ, t ∈ [0, τ∗],∫ t

τ∗ k(·, τ) exp{−
∫ τ

0
ν(s) ds}F (·, t, τ) dτ

+
∫ T
t
k(·, τ) exp{−

∫ τ
τ−t ν(s) ds}F (·, t, τ) dτ, t ∈ (τ∗, T ],∫ T

τ∗ k(·, τ) exp{−
∫ τ

0
ν(s) ds}F (·, t, τ) dτ, t > T,

(8)

in Ω. Knowing F , we can find I by Eq. (6) and then construct u by Eq. (8).
Let a constant β ∈ (0, 1) and assume that the surface Σ ∈ C2 and given functions

S0, I0, R0, κs, κi, κ1, ν, k satisfy the following conditions of smoothness (called (H1)
hypotheses):

(i) S0 ∈ C (Ω), S0(x) > 0 in Ω and is continuously differentiable in a neighbour-
hood of surface Σ excluding the Σ itself.
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(ii) I0 ∈ C0,1(Ω × [0, T ]) and R0 ∈ C0,1(Ω × [0, T1]) are nonnegative and contin-
uously differentiable in x in a neighbourhood of surface Σ excluding the surface
Σ itself.

(iii) κs, κi, κ1 ∈ C1+β(Ω) and are positive in Ω.
(iv) ν ∈ C ([0, T ]) and is nonnegative, k ∈ C1,1(Ω × [τ∗, T ]) ∩ C(Ω × [τ∗, T ]) and

is positive.

Definition 1. Collection (S, I,R, u) is called a classical solution of problem (1)–(3),
(5) if S ∈ C2,1(Ω × (0,∞))∩C (Ω × [0,∞)]), ∂nS is continuous on Σ × (0,∞),
I ∈ C2,1,1(Ω × (((0,∞)× (0, T ]) \ {t = τ}))∩C (Ω × [0,∞)× [0, T ]), ∂nI is con-
tinuous on Σ × (0,∞) × (0, T ], R ∈ C2,1,1(Ω × (((0,∞) × (0, T1]) \ {t = τ1})) ∩
C(Ω × [0,∞) × [0, T1]), ∂nR is continuous on Σ × (0,∞) × (0, T1], u ∈ C1,1(Ω ×
(0,∞) ∩ C(Ω × [0,∞)) and if this collection satisfies equations (1)–(3), (5) and their
initial and boundary conditions.

We also use the definition of the classical solution to system (1), (3), (6), (7), (8).

Definition 2. Collection (S, F,R, u) is called a classical solution of problem (1), (3),
(7), (8) if S ∈ C2,1(Ω × (0,∞))∩C (Ω × [0,∞)]), ∂nS is continuous on Σ × (0,∞),
F ∈ C2,1,1(Ω × (((0,∞)× (0, T ]) \ {t = τ}))∩C (Ω × [0,∞)× [0, T ]), ∂nF is con-
tinuous on Σ × (0,∞) × (0, T ], R ∈ C2,1,1(Ω × (((0,∞) × (0, T1]) \ {t = τ1})) ∩
C(Ω × [0,∞) × [0, T1]), ∂nR is continuous on Σ × (0,∞) × (0, T1], u ∈ C1,1(Ω ×
(0,∞))∩C(Ω× [0,∞)) and if this collection satisfies equations (1), (3), (7), and (8) and
their initial and boundary conditions.

3 Existence, uniqueness, and estimates of the classical solution to
system (1)–(3), (5)(1)–(3), (5)(1)–(3), (5)

Consider the linear parabolic system

∂tf − div(ϕ∇f) + cf = q in Ω × (0, t∗], t∗ <∞,
∂nf = ψ on Σ × (0, t∗],

f |t=0 = f0 in Ω,

(9)

where f = f(x, t), q = q(x, t), ψ = ψ(x, t), c = c(x, t), ϕ = ϕ(x), and f0 = f0(x)
are given functions. We apply to this system a well-known result on the existence and
uniqueness of the classical solution of linear parabolic equations. Let Γ = Γ (ξ, x; t, t′)
be the fundamental solution of the differential equation ∂tf − div(ϕ∇f) + cf = 0, and
let n(ξ) be a unit outward normal vector to surface Σ at point ξ.

Theorem 1. (See [6, Chap. V, Sect. 3, Thm. 2 and Cor. 2]). LetΣ ∈ C1+β , ϕ ∈ C1+β(Ω)
and is positive in Ω, c ∈ Cβ,0(Ω× [0, t∗]), ψ ∈ C0,0(Σ× [0, t∗]), q ∈ Cβ,0(Ω× [0, t∗]),
0 < t∗ <∞, f0 ∈ C(Ω∗), Ω∗ ⊃ Ω, and satisfies the condition∣∣∣∣ ∫

Ω∗

∂Γ (ξ, x; t, 0)

∂n(ξ)
f0(x) dx

∣∣∣∣ 6 Ct−ε, ε ∈
(

1

2
, 1

)
, C = const. (10)
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Then system (9) has a unique solution f ∈ C2,1(Ω × (0, t∗]) ∩ C(Ω × [0, t∗]), which is
continuous in x, uniformly in Ω × [0, t∗].

It is shown [6, Chap. V, Sect. 3, Cor. 2] that condition (10) is fulfilled if function f0 is
continuously differentiable in a neighbourhood of the surface Σ ∈ C1+β . If a surface Σ
belongs to the class C2, then (see [19, Vol. IV, Part II, Chap. II, Sect. 101]) for sufficiently
small δ > 0, it is possible to construct surfaces Σ±δ , parallel to Σ, for any point ξ ∈ Σ
assigning a point ξ = ξ ± δn(ξ) ∈ Σ±δ , where n(ξ) = n(ξ). Let Ωδ = {x ∈ Rn:
dist{x,Σ} < δ} ⊂ Ω∗, δ > 0, be a neighbourhood of Σ, and let Ω+

δ = Ωδ \ Ω,
Ω−δ = Ωδ ∩ Ω with the surfaces ∂Ω+

δ = Σ ∪ Σ+
δ , ∂Ω−δ = Σ ∪ Σ−δ , respectively.

The following statement shows that, by increasing the smoothness of the surface Σ, the
condition of the continuous differentiability of f0 in Ωδ can be weakened.

Lemma 1. Let Σ ∈ C2, and let a nonnegative function f0(y) be continuous in Ω∗ and
continuously differentiable in Ωδ \ Σ. Suppose that there exist the normal derivatives of
function f0(y),

lim
y=ξ±sn(ξ)
s→+0

∂n(ξ)f0(y),

that are continuous on Σ. Then∫
Ωδ

∂Γ (ξ, y, t, 0)

∂n(ξ)
f0(y) dy 6

C

tε
, C = const, ε ∈

(
0,

1

2

)
, ξ ∈ Σ,

and this integral is a continuous function on the surface Σ.

Proof. The fundamental solution Γ can be represented by the formula Γ (ξ, y, t, t′) =
Γ0(ξ − y, y, t, t′) + Γ ′(ξ, y, t, t′), where

Γ0(ξ − y, y, t, t′) =
(
4πϕ(y)(t− t′)

)−n/2
exp

{
− |ξ − y|2

4ϕ(y)(t− t′)

}
is the principal term of the fundamental solution Γ . Therefore, it is enough to prove the
continuity of the integral∫

Ωδ

n∑
i=1

∂Γ0(ξ − y, y, t, 0)

∂ξi
ni(ξ)f0(y) dy

=

∫
Ωδ

n∑
i=1

∂Γ0(ξ − y, y, t, 0)

∂ξi

(
ni(ξ)− ni(ȳ) + ni(ȳ)

)
f0(y) dy.

It is easy to prove that∣∣∣∣ ∫
Ωδ

n∑
i=1

∂Γ0(ξ − y, y, t, 0)

∂ξi

(
ni(ξ)− ni(ȳ)

)
f0(y) dy

∣∣∣∣ 6 c

tε
, ε ∈

(
0,

1

2

)
,

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


An immunity-structured SEIRS epidemic model with variable infectivity and spatial heterogeneity 741

∫
Ωδ

n∑
i=1

∂Γ0(ξ − y, y, t, 0)

∂ξi
ni(ȳ)f0(y) dy

=

∫
Ωδ

H(ξ − y, y, t, 0)f0(y) dy −
∫
Ωδ

n∑
i=1

∂Γ0(ξ − y, y, t, 0)

∂yi
ni(ȳ)f0(y) dy,

where ȳ is a point on the surface Σ, which realizes the distance of the point y to the
surface Σ,

H(ξ − y, y, t, 0) =

(
|ξ − y|2

4t
− n

2ϕ(y)

)
Γ0(ξ − y, y, t, 0)

(
ϕy(y), n(ȳ)

)
.

It is easy to verify that the integral with the kernelH is a bounded and continuous function
on the surface Σ. Then∫
Ωδ

n∑
i=1

∂Γ0(ξ − y, y, t, 0)

∂yi
ni(ȳ)f0(y) dy

=

∫
Ω+
δ

n∑
i=1

∂Γ0(ξ−y, y, t, 0)

∂yi
ni(ȳ)f0(y) dy +

∫
Ω−
δ

n∑
i=1

∂Γ0(ξ−y, y, t, 0)

∂yi
ni(ȳ)f0(y) dy

= −
∫
Σ−
δ

Γ0(ξ − η, η, t, 0)f0(η) dΣ−η +

∫
Σ+
δ

Z0(ξ − η, η, t, 0)f0(η) dΣ+
η

−
∫
Ωδ

n∑
i=1

Γ0(ξ − y, y, t, 0)
(
ni(ȳ)f0(y)

)
yi

dy.

By virtue of the assumption of smoothness of the surface Σ, function
∑n
i=1(ni(ȳ))yi is

continuous. Moreover, conditions of lemma show that
∑n
i=1 ni(ȳ)(f0(y))yi = ∂n(ȳ)f0(y)

converges to a continuous function on the Σ if y approaches the Σ from within Ω or
from without Ω. Therefore, the last integral is also a continuous function. The proof is
complete.

In order to obtain a global existence result, we apply the method of steps and Lemma 1.
The following proposition gives the existence and uniqueness of the solution to sys-
tem (1)–(3), (5):

Theorem 2. Let assumptions (i)–(iv) hold. Then system (1)–(3), (5) has a unique globally
defined nonnegative solution (S, I,R, u) such that

(i) S ∈ C2,1(Ω × (0,∞)) ∩ C(Ω × [0,∞)),
(ii) I ∈ C2,1,1(Ω × (((0,∞)× (0, T ]) \ {t = τ})) ∩ C(Ω × [0,∞)× [0, T ]),

(iii) R ∈ C2,1,1(Ω × (((0,∞)× (0, T1]) \ {t = τ1})) ∩ C(Ω × [0,∞)× [0, T1]),
(iv) u(x, t) ∈ C1,1(Ω × (0,∞)) ∩ C(Ω × [0,∞)).

Proof. In order to prove the existence of the solution, we first consider system (7)1,2,3 for
0 6 t 6 τ on the characteristic lines τ = t + α, α = const ∈ [0, T ], of the operator
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∂t + ∂τ and system (3)1,2,3 for 0 6 t 6 τ1 on the characteristic lines τ1 = t + α1,
α1 = const ∈ [0, T1], of the operator ∂t+∂τ1 . Denoting A(x, t;α) := F (x, t, t+α) and
A1(x, t;α1) := R(x, t, t+ α1), we have the following equations:

∂tA(·, ·;α)− div
(
κi∇A(·, ·;α)

)
= 0

in Ω × (0, T − α], 0 6 α < T,

∂nA(·, ·;α) = 0 on Σ × (0, T − α], 0 6 α < T,

A(·, 0;α) = I0(x, α) in Ω, 0 6 α 6 T,

(11)

∂tA1(·, ·;α1)− div
(
κ1∇A1(·, ·;α1)

)
= 0,

in Ω × (0, T1 − α1], 0 6 α1 < T1,

∂nA1(·, ·;α1) = 0 on Σ × (0, T1 − α1], 0 6 α1 < T1,

A1(·, 0;α1) = R0(·, α1) in Ω, 0 6 α1 6 T1.

(12)

Assumptions (ii) and (iii) of hypotheses (H1) and Theorem 1 ensure the existence
and uniqueness of the solution A(·, ·;α) ∈ C2,1(Ω × (0, T − α]) with α ∈ [0, T )
and A(·, ·;α) ∈ C(Ω × [0, T − α]) with 0 6 α 6 T to system (11). Similarly,
Assumptions (ii) and (iii) of hypotheses (H1) and Theorem 1 guarantee the existence
and uniqueness of the solution A1(·, ·;α1) ∈ C2,1(Ω × (0, T1 − α1]) with α1 ∈ [0, T1)
and A1(·, ·;α1) ∈ (Ω × [0, T1 − α1]) with 0 6 α1 6 T1 to system (12). Moreover,
these solutions can be represented using the potential theory (see [6, Chap. V, Sect. 3])
and are Hölder continuous in x, uniformly in (Ω × [0, T − α]) and (Ω × [0, T1 − α1]),
respectively (see [17, Chap. 2, Thm. 1.2]). The nonnegativity follows from the positivity
lemma (see [17, Chap. 2, Sect. 2.2]).

In order to prove that A and A1 are continuously differentiable in α and α1, respec-
tively, we consider system (11) with A and I0 replaced by ∂αA and ∂αI0, respectively,
and system (12) with A1 and R0 replaced by ∂α1

A1 and ∂α1
R0, respectively. Again,

by virtue of assumptions (ii) and (iii) of hypotheses (H1) and Theorem 1, each of these
two new systems has a unique solution ∂αA(·, ·;α) ∈ C2,1(Ω × (0, T − α]) with
α ∈ [0, T ) and ∂α1

A1(·, ·;α1) ∈ C2,1(Ω × (0, T1 − α1]) with α1 ∈ [0, T1). Direct
computation shows that function F = F (x, t, τ) = A(x, t; τ − t) satisfies equations
(7)1,2,3 for τ − t > 0, and that function I defined by (6)1 is a solution to system (2)1,2,3
and lies in C2,1,1(Ω × (0, τ ] × (0, T ]) ∩ C(Ω × [0, τ ] × [0, T ]). Similarly, function
R(·, ·, ·) = A1(x, τ1; τ1 − t) ∈ C2,1,1(Ω × (0, τ1] × (0, T1]) ∩ C(Ω × [0, τ1] × [0, T1])
satisfies system (3)1,2,3 for τ1 − t > 0.

Second, denoting B(x, τ ;α) := F (x, τ + α, τ) and B1(x, τ1;α1) := R(x, τ1 + α1,
τ1), we rewrite systems (7)1,2,4 and (3)1,2,4 on the characteristic lines t = α+ τ , α > 0,
and t = α1 + τ1, α1 > 0, of the operators ∂t + ∂τ and ∂t + ∂τ1 , respectively:

∂τB(·, ·;α)− div
(
κi∇B(·, ·;α)

)
= 0 in Ω × (0, T ], α > 0,

∂nB(·, ·;α) = 0 on Σ × (0, T ], α > 0,

B(·, 0;α) = S(·, α)u(·, α) in Ω, α > 0,

(13)
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∂τB1(·, ·;α1)− div
(
κi∇B1(·, ·;α1)

)
= 0 in Ω × (0, T1], α1 > 0,

∂nB1(·, ·;α1) = 0 on Σ × (0, T1], α1 > 0,

B1(·, 0;α1) = γ1I(·, α1, T ) in Ω, α1 > 0.

(14)

By virtue of Eq. (6)1, the function I(·, t, τ) = F (·, t, τ) exp{−
∫ τ
τ−t ν(s) ds}, where

F (·, t, τ) := A(·, t; τ − t) is known for (t, τ) ∈ [0, τ∗] × [τ∗, T ]. Changing variables,
function u determined by Eq. (8) can be reduced to

u(·, t) =

T−t∫
τ∗−t

k(·, y + t) exp

{
−

y+t∫
y

ν(s) ds

}
A(·, t; y) dy, 0 6 t 6 τ∗,

which shows that u is known for t ∈ [0, τ∗] and that u ∈ C1,1(Ω×(0, τ∗]∩C(Ω×[0, τ∗]).
Moreover, u is Hölder continuous in x, uniformly in Ω × [0, τ∗]. Because I(x, t, T ) =

A(x, t;T − t) exp{−
∫ T
T−t ν(s) ds} and R(x, t, T1) = A1(x, τ ;T1 − t) are Hölder con-

tinuous in x, uniformly in Ω × [0, T ] and Ω × [0, T1], respectively, assumptions (i)
and (iii) of hypotheses (H1) and Theorem 1 show that system (1) has a unique solution
S ∈ C2,1(Ω × (0, τ∗]) ∩ C(Ω × [0, τ∗]), which by virtue of the positivity lemma is
nonnegative. Moreover, S is Hölder continuous in x, uniformly in Ω × [0, τ∗], and can
be represented by the formula (see [6, Chap. V, Sect. 3])

S(x, t) =

t∫
0

∫
Σ

Γ (x, t, ξ, s)µ(ξ, s) dΣξ ds

+

∫
Ω0

Γ (x, t, y, 0)S0(y) dy +

t∫
0

∫
Ω

Γ (x, t, y, s)f(y, s) dy ds. (15)

Here t ∈ [0, τ∗], Γ is a fundamental solution of the equation ∂tS−div(κ∇S)+uS= 0,
f(y, s) = γI(y, s, T ) + R(y, s, T1), Ω0 ⊃ Ω, function S0 is extended on Ω0 \ Ω pre-
serving the same smoothness, nonnegativity, and notation, µ is a continuous and bounded
solution of the integral equation (see [6, Chap. V, Sec. 3])

µ(ξ, t) =

t∫
0

∫
Σ

Q1(ξ, t, η, s)µ(η, s) dΣη ds+ ψ(ξ, t),

ψ(ξ, t) =

∫
Ω0

Q1(ξ, t, y, 0)S0(y) dy +

t∫
0

∫
Ω

Q1(ξ, t, y, s)f(y, s) dy ds,

Q1(ξ, t, η, s) = −2
∂Γ (ξ, t, η, s)

∂n(ξ)
, ξ ∈ Σ, t ∈ ×[0, τ∗].
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We note that function S expressed by formula (15) is defined in the whole space
Rn and is continuously differentiable in Ω0 \ Σ. Moreover, it has continuous normal
derivatives ∂n(ȳ)S(ȳ, t) = limy→ȳ∈Σ ∂n(ȳ)S(y, t) regardless of whether the variable
y approaches Σ along the normal n(ȳ) from inside or outside domain Ω. The similar
equality for normal derivatives of function A(·, ·;α), α ∈ [0, T ], is true.

Next, we consider system (13). For every τ ∈ [0, T ], we can extend function k on
Ωδ \Ω preserving the same smoothness, nonnegativity, and definition (see [13, Chap. IV,
Sect. 4]). Since function S expressed by Eq. (15) is defined inΩ0 and function uS for any
fixed t ∈ [0, T ] satisfies conditions of Lemma 1, an application of Theorem 1 shows that
linear system (13) has a unique solution B ∈ C2,1(Ω × (0, T ])∩C (Ω × [0, T ]), which
obviously is nonnegative, Hölder continuous in x, uniformly in Ω × [0, T ], and can be
represented by the formula (see [6, Chap. V, Sec. 3])

B(x, τ ;α) =

τ∫
0

∫
Σ

Γ (x, τ, ξ, s)ϕ(ξ, s;α) dΣξ ds+

∫
Ω0

Γ (x, τ, y, 0)B0(y, α) dy,

where α ∈ [0, τ∗], function B0(y, α) = u(y, α)S(y, α) is continuous in Ω0 and contin-
uously differentiable in Ω0 \Σ for α ∈ (0, τ∗], Γ is a fundamental solution of Eq. (13),
Ω0 ⊃ Ω, and ϕ is a continuous and bounded solution of the integral equation

ϕ(ξ, τ ;α) =

τ∫
0

∫
Σ

Q1(ξ, τ, η, s)ϕ(η, s;α) dΣη ds+ φ(ξ, τ ;α),

where ξ ∈ Σ, τ ∈ ×[0, T ],

φ(ξ, τ ;α) =

∫
Ω0

Q1(ξ, τ, y, 0)B0(y, α) dy,Q1(ξ, τ, η, s) = −2
∂Γ (ξ, τ, η, s)

∂n(ξ)
.

By arguments used to find the smoothness of ∂αA(x, t;α), it is easy to see that
∂αB(·, ·;α) ∈ C2,1(Ω × (0, T ]) ∩ C(Ω × [0, T ]) with α ∈ (0, τ∗]. Direct computation
shows that function F = F (x, t, τ) = B(x, τ ; t− τ) satisfies Eqs. (7)1,2,4 and that func-
tion I , determined by (6)2 with F (x, t, τ) = B(x, τ ; t−τ), is known inΩ× [τ, τ +τ∗]×
[0, T ], satisfies Eq. (2)1,2,4, and lies in C2,1,1(Ω × (τ, τ + τ∗] × (0, T ]) ∩ C(Ω × [τ,
τ+τ∗]× [0, T ]). In particular, we have found function I(·, T ) ∈ C2,1(Ω×(T, T +τ∗])∩
C(Ω × [T, T + τ∗]). Then by virtue of Eq. (8), function u is known in (Ω × [τ∗, 2τ∗]
and lies in C1,1(Ω× (τ∗, 2τ∗])∩C(Ω× [τ∗, 2τ∗]). Moreover, function u is continuously
differentiable in t at t = τ∗ since from Eq. (8) it follows that

lim
t→τ∗−0

∂tu(·, t) = lim
t→τ∗−0

T∫
τ∗

∂t

(
k(·, τ) exp

{
−

τ∫
τ−t

ν(s) ds

}
A(·, t; τ − t)

)
dτ

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


An immunity-structured SEIRS epidemic model with variable infectivity and spatial heterogeneity 745

and

lim
t→τ∗+0

∂tu(·, t) = lim
t→τ∗+0

∂t

( t∫
τ∗

k(·, τ) exp

{
−

τ∫
0

ν(s) ds

}
B(·, τ ; t− τ) dτ

+

T∫
t

k(·, τ) exp

{
−

τ∫
τ−t

ν(s) ds

}
A(·, t, τ − t) dτ

)

= lim
t→τ∗+0

T∫
τ∗

∂t

(
k(·, τ) exp

{
−

τ∫
τ−t

ν(s) ds

}
A(·, t; τ − t)

)
dτ.

Arguing similarly as above, we prove the existence and uniqueness of a nonnegative
solutionB1(·, ·;α1) ∈ C2,1(Ω×(0, T1])∩C(Ω×[0, T1]) with α1 ∈ [0, τ∗] to system (14).
By argument above, we can also prove that

∂αB1(·, ·;α1) ∈ C2,1
(
Ω × (0, T1]

)
∩ C

(
Ω × [0, T1]

)
for α1∈(0, τ∗]. Direct computation shows that functionR=R(x, t, τ1)=B1(x, τ1; t−τ1)
satisfies (3)1,2,4. It is easy to see thatR lies inC2,1,1(Ω×(τ1, τ1 +τ∗]×(0, T1])∩C(Ω×
[τ1, τ1 +τ∗]×[0, T1]). Hence,R(·, T1) ∈ C2,1(Ω×(T1, T1 +τ∗])∩C(Ω×[T1, T1 +τ∗])
is known.

Since u ∈ C1,1(Ω × (0, 2τ∗]) ∩ C(Ω × [0, 2τ∗]) is known, we can find a unique
nonnegative function S ∈ C2,1(Ω × (0, 2τ∗]) ∩ C(Ω × [0, 2τ∗]) from Eqs. (15) and
(1). Then from Eqs. (13) we find a unique nonnegative function B(·, ·;α) ∈ C2,1(Ω ×
(0, T ]) ∩ C(Ω × [0, T ]) with α ∈ [τ∗, 2τ∗], and by Eqs. (6)2 and (2)1,2,4 we determine
I ∈ C2,1,1(Ω × (τ + τ∗, τ + 2τ∗] × (0, T ]) ∩ C(Ω × [τ + τ∗, τ + 2τ∗] × [0, T ]). This
allows us to construct function u ∈ C1,1(Ω × [2τ∗, 3τ∗]) ∩ C(Ω × [2τ∗, 3τ∗]).

Continuing this process, we find the solution (S, I,R, u) for x ∈ Ω, τ ∈ [0, T ], and
any t > 0. Thus we have proved the existence and uniqueness of the solution (S,B,B1)
to Eqs. (1), (13), (14) and the existence of the solution (S, I,R, u) to Eqs. (1)–(3), (5).

The proof of the uniqueness is standard, and we skip it.

4 Long-time behaviour of the solution (S, I,R,u) to system (1)–(3)(1)–(3)(1)–(3),
(5)(5)(5)

In this section, we show that the total number of infected individuals and the total number
of individuals recovered with temporary immunity for any diffusion coefficients eventu-
ally tend to zero and that the spatial averages of the infected individuals and of those
who recover with temporary immunity asymptotically converge to zero, provided that all
diffusion coefficients are equal. Denote

φ(x, t) =

T∫
0

F (x, t, τ) dτ, φ0(x) =

T∫
0

I0(x, τ) dτ,
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ψ(x, t) =

T1∫
0

R(x, t, τ1) dτ1, ψ0(x) =

T1∫
0

R0(x, τ1) dτ1

and integrate Eqs. (7)1 and (3)1 over (0, T ) and (0, T1), respectively, to have

∂tφ = −F (·, ·, T ) + uS + div(κ∇φ) in Ω × (0,∞),

∂nφ = 0 on Σ × (0,∞),

φ(·, 0) = φ0 in Ω,

(16)

∂tψ = −R(·, ·, T1) + γ1r(T )F (·, ·, T ) + div(κ∇ψ),

∂nψ = 0 on Σ × (0,∞),

ψ(·, 0) = ψ0 in Ω.

(17)

Set

P (x, t) = S(x, t) + φ(x, t) + ψ(x, t), P0(x) = S0(x) + φ0(x) + ψ0,

P ∗0 = max
Ω

P0(x), I∗0 = max
Ω×[0,T ]

I0, k∗ = max
Ω×[0,T ]

k, R∗0 = max
Ω×[0,T1]

R0,

ωi := max
(
I∗0 , k

∗(P ∗0 )2
)
, ω1 := max(R∗0, γ1ωi), ρ(t, T ) = 1− (γ+γ1)ζ(t, T ),

ζ(t, τ) =

{
exp{−

∫ τ
τ−t ν(s) ds} if 0 6 t 6 τ,

r(τ) = exp{−
∫ τ

0
ν(s) ds} if t > τ,

Z(t, τ) =

∫
Ω

I(x, t, τ) dx, Q(t, τ1) =

∫
Ω

R(x, t, τ1) dx,

Z0(τ) =

∫
Ω

I0(x, τ) dx, Q0(τ1) =

∫
Ω

R0(x, τ1) dx.

Lemma 2. Let (S, I,R, u) be a solution to system (1)–(3), (5) guaranteed by Theo-
rem 2. Then the integrals

∫
Ω
S(x, t) dx,

∫
Ω
φ(x, t) dx, and

∫
Ω
ψ(x, t) dx with t > 0 do

not exceed
∫
Ω
P0(x) dx, and the integrals

∫ t
0
Z(s, T ) ds,

∫ t
0
Z(s, 0) ds,

∫ t
0
Q(s, T1) ds,∫ t

0

∫
Ω
u(x, s)S(x, s) dx ds,

∫ t
0

∫ T
τ∗ Z(s, τ) dτ ds,

∫ t
0

∫
Ω
u(x, s) dxds are uniformly bound-

ed for all t > 0.
Moreover:
(i) these six temporal integrals converge as t→∞,

(ii) there exist nonnegative limits of
∫
Ω
S(x, t) dx,

∫
Ω
φ(x, t) dx,

and
∫
Ω
ψ(x, t) dx as t→∞,

(iii) limt→∞
∫ T

0
Z(t, τ) dτ = limt→∞

∫ T
0

∫
Ω
F (x, t, τ) dxdτ =

limt→∞
∫
Ω
u(x, t) dx = limt→∞

∫ T1

0
Q(t, τ1) dτ1 = 0.

If κs = κi = κ1 =: κ, then P 6 P ∗0 and u 6 k∗P ∗0 in Ω × [0,∞), I 6 F 6 ωi in
Ω × [0,∞)× [0, T ], and R 6 ω1 in Ω × [0,∞)× [0, T1].
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Proof. Assuming equal diffusion coefficients, we add Eqs. (16) and (17) to Eqs. (1) to
get

∂tP − div(κ∇P ) = −ρ(·, T )F (·, ·, T ) in Ω × (0,∞),

∂nP = 0 on Σ × (0,∞),

P (·, 0) = P0 in Ω.

(18)

An application of the positivity lemma to this system yields P 6 P ∗0 inΩ× [0,∞), which
shows that

u(x, t) 6 k∗
T∫

0

I(x, t, τ) dτ 6 k∗P ∗0 , x ∈ Ω, t > 0,

and the positive lemma applied to Eqs. (11)–(14) yields I 6 ωi, R 6 ω1.
In the case of any diffusion coefficients, we integrate Eqs. (16)1 and (17)1 over Ω,

add to Eq. (1)1 integrated over Ω, and integrate their sum over (0, t) to have

∫
Ω

P (x, t) dx =

∫
Ω

P0(x) dx−
t∫

0

ρ(s, T )

∫
Ω

F (x, s, T ) dxds

6
∫
Ω

P0(x) dx− (1− γ − γ1)

t∫
0

∫
Ω

F (x, s, T ) dx ds.

Since the left-hand side of the above equality is nonnegative and the temporal integrals in
the equality and inequality above do not decrease in t, they are bounded for all t > 0 and
converge as t→∞. This yields the existence of the nonnegative limt→∞

∫
Ω
P (x, t) dx.

If we integrate system Eq. (17)1 over Ω × (0, t), we obtain

∫
Ω

ψ(x, t) dx =

∫
Ω

ψ0(x) dx+ γ1

t∫
0

∫
Ω

ζ(s, T )F (x, s, T ) dxds−
t∫

0

Q(s, T1) ds.

Because the first temporal integral on the right-hand side of this equality converges as
t → ∞ and the left-hand side is nonnegative, the second temporal integral on the right-
hand side is bounded for all t > 0 and is not decreasing in t. Therefore, it converges, and
hence, the integral

∫
Ω
ψ(x, t) dx converges to a nonnegative limit as t→∞.

Integration of Eq. (1)1 over Ω × (0, t) yields

∫
Ω

S(x, t) dx =

∫
Ω

S0(x) dx+

t∫
0

(∫
Ω

γζ(s, T )F (x, s, T ) dx+Q(s, T1)

)
ds

−
t∫

0

∫
Ω

u(x, s)S(x, s) dxds.
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Since the first temporal integral on the right-hand side of this equality converges as
t → ∞ and the left-hand side is nonnegative, the second temporal integral on the right-
hand side is bounded for all t > 0. Because it does not decrease, it converges as t→∞.
This and the equality above yield the existence of the nonnegative limt→∞

∫
Ω
S(x, t) dx.

By integrating Eqs. (2) and (3) over Ω we derive the systems

∂tZ + ∂τZ = −νZ in (0,∞)× (0, T ],

Z(0, ·) = Z0, τ ∈ [0, T ],

Z(·, 0) =

∫
Ω

u(x, ·)S(x, ·) dx in [0,∞),

∂tQ+ ∂τ1Q = 0 in (0,∞)× (0, T1],

Q(0, ·) = Q0 in [0, T1],

Q(·, 0) = γ1Z(·, T ) in [0,∞)

and solve them to have

Z(t, τ) =

{
Z0(τ − t) exp{−

∫ τ
τ−t ν(s) ds}, t 6 τ 6 T,

Z(t− τ, 0)r(τ), 0 6 τ 6 t,
(19)

Q(t, τ1) =

{
Q0(τ1 − t), t 6 τ1, τ1 ∈ [0, T1],

γ1Z(t− τ1, 0), t > τ1, τ1 ∈ [0, T1].
(20)

Similarly, from system (7) we get

∫
Ω

F (x, t, τ) dx =

{∫
Ω
F (x, 0, τ − t) dx = Z0(τ − t), t 6 τ,∫

Ω
F (x, t− τ, 0) dx = Z(t− τ, 0), τ 6 t.

By virtue of Eq. (19), we obtain for t > T ,

t∫
0

Z(s, T ) ds 6

t∫
0

∫
Ω

F (x, s, T ) dxds = C +

t∫
T

∫
Ω

F (x, s, T ) dxds

= C +

t∫
T

∫
Ω

F (x, s− T, 0) dxds

= C +

t−T∫
0

∫
Ω

F (x, y, 0) dx dy, C =

T∫
0

∫
Ω

F (x, s, T ) dxds,
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which shows that the integral
∫ t

0
Z(y, 0) dy =

∫ t
0

∫
Ω
F (x, y, 0) dxdy converges as

t→∞. Then using Eq. (19), we get for t > T ,

∫
Ω

u(x, t) dx 6 k∗
T∫

τ∗

Z(t, τ) dτ 6 k∗
T∫

τ∗

∫
Ω

F (x, t, τ) dx dτ

= k∗
T∫

τ∗

∫
Ω

F (x, t− τ, 0) dxdτ = k∗
t−τ∗∫
t−T

∫
Ω

F (x, y, 0) dxdy

= k∗
t−τ∗∫
0

∫
Ω

F (x, y, 0) dxdy − k∗
t−T∫
0

∫
Ω

F (x, y, 0) dxdy → 0 as t→∞.

Similarly, we have for t > T ,

T∫
0

Z(t, τ) dτ 6

T∫
0

Z(t− τ, 0) dτ =

t∫
t−T

Z(s, 0) ds→ 0 as t→∞,

and for t > T1,

T1∫
0

Q(t, τ1) dτ1 =

T1∫
0

Q(t− τ, 0) dτ1 =

t∫
t−T1

Q(y, 0) dy

= γ1

t∫
t−T1

Z(y, T ) dy 6 γ1

t∫
t−T1

∫
Ω

F (x, y − T, 0) dx dy

= γ1

t−T∫
t−T−T1

∫
Ω

F (x, y, 0) dxdy → 0 as t→∞.

For t > T , we also have

t∫
0

ds

T∫
0

Z(s, τ) dτ =

T∫
0

dτ

t∫
0

Z(s, τ) ds = C +

T∫
0

dτ

t∫
T

Z(s, τ) ds

= C +

T∫
0

dτ

t∫
T

Z(s− τ, 0) ds = C +

T∫
0

dτ

t−τ∫
T−τ

Z(y, 0) dy

6 C + T

t∫
0

Z(s, 0) ds <∞, C =

T∫
0

ds

T∫
0

Z(s, τ) dτ,
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which shows that
∫ t

0
ds
∫ T

0
Z(s, τ) dτ converges as t→∞. Similarly,

t∫
0

ds

∫
Ω

u(x, s) dx 6 k∗
t∫

0

ds

T∫
τ∗

Z(t, τ) dτ <∞.

The proof is complete.

Lemma 3. If all diffusion coefficients are equal and (S, I,R, u) is the solution to sys-
tem (1)–(3), (5) guaranteed by Theorem 2, then limt→∞maxΩ P (·, t) 6 P ∗0 .

Proof. Consider a sequence P (·, tj) := S(·, tj)+
∫ T

0
F (·, tj , τ) dτ +

∫ T1

0
R(·, tj , τ1) dτ1

with 0 = t0 < t1 < t2 < · · · < tj < · · · , tj → ∞ as j → ∞ and rewrite Eqs. (18) as
follows:

∂tP − div κ∇P = −ρ(t, T )F (·, ·, T ) in Ω × (tj ,∞),

∂nP = 0 on Σ × (tj ,∞),

P (·, t)|t=tj = P (·, tj) in Ω.

The positivity lemma immediately yields P 6 maxΩ P (·, tj) in Ω× [tj ,∞). Arguing as
above, we also have

P 6 max
Ω

P (·, tj+1) 6 max
Ω

P (·, tj) in Ω × [tj+1,∞).

Letting tj run to infinity in this inequality, we observe that function maxΩ P (·, t) does
not increase in variable t. Moreover, it is bounded from above by P ∗0 and from below by
zero. Hence, it has a limit between zero and P ∗0 . The proof is complete.

Lemma 4. Let all diffusion coefficients be equal, and let (S, I,R, u) be the solution to
system (1)–(3), (5) guaranteed by Theorem 2. Then

lim
t→∞

Z(t, τ) = 0 in [0, T ], lim
t→∞

Q(t, τ1) dx = 0 in [0, T1].

Proof. In the case of equal diffusion coefficients, Lemma 2 shows that

Z(t, 0) =

∫
Ω

S(x, t)u(x, t) dx 6 P ∗0

∫
Ω

dx

T∫
0

k(x, τ)I(x, t, τ) dτ

6 k∗P ∗0

T∫
0

Z(t, τ) dτ.

This and Lemma 2 yield
lim
t→∞

Z(t, 0) = 0. (21)

Then it follows from Eqs. (19) and (21) that

lim
t→∞

Z(t, τ) = lim
t→∞

Z(t− τ, 0)r(τ) = 0 for τ ∈ [0, T ].
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This and Eqs. (20) and (21) show that

lim
t→∞

Q(t, τ1) = lim
t→∞

Q(t− τ1, 0) = lim
t→∞

γ1Z(t− τ1, T ) = 0.

The proof is complete.

Lemma 4 shows that, in the case of equal diffusion coefficients, the spatial averages
Z(t, τ)/|Ω| and Q(t, τ1)/|Ω| of the infected individuals and those who recover with
temporary immunity, respectively, where τ ∈ [0, T ], τ1 ∈ [0, T1], and |Ω| is the measure
of the domain Ω, eventually converge to zero.

Remark 1. Let all diffusion coefficients be equal. Since 0 6 r(T )
∫
Ω
F (x, t, τ) dx 6

Z(t, τ) → 0 as t → ∞, then
∫
Ω
F (x, t, τ) dτ → 0 as t → ∞. This shows that, in the

case of equal diffusion coefficients, the spatial average value of the infected individuals
eventually extinguishes even if the mortality ν = 0 in [0, T ].

Lemma 5. Assume that (S, I,R, u) is the solution to system (1)–(3), (5) guaranteed
by Theorem 2, and let the functions S, φ, and ψ be uniformly bounded. Then the limit
limt→∞

∫
Ω
S(x, t) dx is positive.

Proof. The proof of this lemma is based on the arguments used in the proofs of Lem-
mas 3.24 and 3.26 in [1], and for the sake of brevity of this article, we are forced to omit
its details.

Corollary 1. Equations (18) show that, in the case of equal diffusion coefficients, func-
tions S, φ, ψ are uniformly bounded by the constant maxΩ P (·, T ), and therefore, in this
case, Lemma 5 is true.

Define a spatial average of function S by the equality S(t) =
∫
Ω
S(x, t) dx/|Ω|, and

let S∞ = limt→∞ S(t).

Lemma 6. Assume that (S, I,R, u) is the solution to system (1)–(3), (5) guaranteed by
Theorem 2. Let functions S, I , R, and u be uniformly bounded. Then S − S∞ → 0 in
W 1

2 (Ω) as t→∞.

Proof. Let positive constants ωs, ωi, ω1, and ω∗ be the upper bounds of functions S, I ,
R, and u, respectively. To prove this lemma, we may apply an argument used in [3]. We
first prove that limt→∞

∫
Ω
S2(x, t) dx, limt→∞

∫ t
0

∫
Ω
S2(x, t) dx, and limt→∞

∫ t
0

ds×∫
Ω
κ(x)|∇S(x, s)|2 dx are finite. We multiply Eq. (1)1 by 2S, integrate over Ω, and then

integrate by parts to have

∂t

∫
Ω

S2(x, t) dx = 2

∫
Ω

(
γI(x, t, T ) +R(x, t, T1)

)
S(x, t) dx

− 2

∫
Ω

S2(x, t)u(x, t) dx− 2

∫
Ω

κ
∣∣∇S(x, t)

∣∣2 dx.
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Integration of this equation over (0, t) yields

∫
Ω

S2(x, t) dx =

∫
Ω

S2
0(x) dx+ 2

t∫
0

ds

∫
Ω

(
γI(x, s, T ) +R(x, t, T1)

)
S(x, s) dx

− 2

t∫
0

ds

∫
Ω

S2(x, t)u(x, s) ds− 2

t∫
0

ds

∫
Ω

κ(x)
∣∣∇S(x, s)

∣∣2 dx.

Since S is bounded, the first temporal integral on the right-hand side of this equation by
Lemma 2 converges. The sum of the second and third temporal integrals on the same
side of this equation is bounded by the sum of the first two terms on the same side, and
the third and fourth temporal integrals on the right-hand side do not decrease. Therefore,
they have finite limits. Hence, there exists a finite nonnegative limit of the left-hand side
as time tends to infinity, i.e., limt→∞

∫
Ω
S2(x, t) dx <∞.

Because
∫∞

0
ds
∫
Ω
κ(x)|∇S(x, s)|2 dx converges, there exist two increasing se-

quences {tk} and {tk}, tk+1 = tk + h, h = const > 0, tk ∈ (tk, tk+1), k = 1, 2, . . . ,
such that

tk+1∫
tk

∫
Ω

κ(x)
∣∣∇S(x, s)

∣∣2 dxds = h

∫
Ω

κ(x)
∣∣∇S(x, tk)

∣∣2 dx→ 0 as k →∞.

Since κ∗ := minΩ κ > 0,
∫
Ω
|∇S(x, tk)|2 dx→ 0 as k →∞.

Next, we multiply Eq. (1)1 by ∂tS, integrate over Ω, and use the upper bound for S
to obtain∫
Ω

(
∂tS(x, t)

)2
dx 6

∫
Ω

(
γI(x, t, T ) +R(x, t, T1)

)
∂tS(x, t) dx

+ ωs

∫
Ω

u(x, t)
∣∣∂tS(x, t)

)∣∣dx+

∫
Ω

∂tS(x, t) div κ(x)∇S(x, t) dx.

Young’s inequality, integration by parts, and use of the boundary condition of system (1)
show that∫
Ω

(
∂tS(x, t)

)2
dx 6

1

2ε

∫
Ω

(
γI(x, t, T )2 +R2(x, t, T1)

)
dx+ η

∫
Ω

(
∂tS(x, t)

)2
dx

+ ωs

(
1

2ε

∫
Ω

u(x, t)2 dx+
ε

2

∫
Ω

(
∂tS(x, t)

)2
dx

)

− 1

2
∂t

∫
Ω

κ(x)
∣∣∇S(x, t)

∣∣2 dx,
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where η = (1 + γ)ε/2. The upper bounds of I(x, t, T ), R(x, t, T1), and u(x, t) yield

µ

∫
Ω

(
∂tS(x, t)

)2
dx 6

max(ωi, ω1)

2ε

∫
Ω

(
γI(x, t, T ) +R(x, t, T1)

)
dx

+
ωsω

∗

2ε

∫
Ω

u(x, t) dx− 1

2
∂t

∫
Ω

κ(x)
∣∣∇S(x, t)

∣∣2 dx, (22)

where µ := 1 − (1 + γ + ωs)/2. If we integrate this inequality over (t1, t) with t1 > 0,
we obtain

µ

t∫
t1

(∫
Ω

(
∂sS(x, s)

)2
dx

)
ds 6 G(t)− 1

2

∫
Ω

κ(x)
∣∣∇S(x, t)

∣∣2 dx,

where

G(t) :=
max(ωi, ω1)

2ε

t∫
t1

ds

∫
Ω

(
γI(x, s, T ) +R(x, t, T1)

)
dx

+
ωsω

∗

2ε

t∫
t1

ds

∫
Ω

u(x, s) dx+
1

2

∫
Ω

κ(x)
∣∣∇S(x, t1)

∣∣2 dx.

The temporal integrals in G(t) above converge as t→∞. Hence, limt→∞G(t) is finite.
For ε < 2(1 + γ + ωs)

−1, the left-hand side of the inequality above is nonnegative,
nondecreasing, and bounded from above by limt→∞G(t). Therefore, the integral on the
left-hand side of the inequality above also converges to a finite limit, which is equal to or
less then limt→∞G(t)/µ. Since κ∗ > 0, then

κ∗

∫
Ω

∣∣∇S(x, t)
∣∣2 dx 6

∫
Ω

κ(x)
∣∣∇S(x, t)

∣∣2 dx 6 2G(t) 6 2 lim
t→∞

G(t)

for t > t1, and, because S is bounded, S(x, t) ∈W 1
2 (Ω) for t > 0.

Integration of inequality (22) over (tk, t), t ∈ (tk, tk+1], yields

µ

t∫
tk

ds

∫
Ω

(
∂tS(x, s)

)2
dx

6
max(ωi, ω1)

2ε

t∫
tk

ds

∫
Ω

(
γI(x, s, T ) +R(x, t, T1)

)
dx+

ωsω
∗

2ε

t∫
tk

ds

∫
Ω

u(x, t) dx

− 1

2

∫
Ω

κ(x)
∣∣∇S(x, t)

∣∣2 dx+
1

2

∫
Ω

κ(x)
∣∣∇S(x, tk)

∣∣2 dx.
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All temporal integrals and the last term on the right-hand side of this inequality converge
to zero as t→∞. Hence,

lim
t→∞

∫
Ω

κ(x)
∣∣∇S(x, t)

∣∣2 dx = 0 and lim
t→∞

∫
Ω

∣∣∇S(x, t)
∣∣2 dx = 0

since κ > κ∗ > 0. Then the Poincaré–Wirtinger inequality shows that∫
Ω

(
S(x, t)− S(t)

)2
dx 6 K

∫
Ω

∣∣∇S(x, t)
∣∣2 dx→ 0 as t→∞, (23)

where K is a constant independent of t, and S(t) =
∫
Ω
S(x, t) dx/|Ω|. Observe that by

Lemma 5, S∞ > 0. Thus S−S(t)→ 0 inW 1
2 (Ω) as t→∞. The proof is complete.

In the case where n = 1, the Sobolev embedding theorem yields limt→∞ S = S∞
for all x ∈ Ω.

Corollary 2. In the case of equal diffusion coefficients, ωs = P ∗0 , ωi = ωi, ω1 = ω1,
ω∗ = k∗P ∗0 . Consequently, in this case, Lemma 6 is true.

According to [4] and [5], densities of the infected individuals and susceptibles con-
verge in C(Ω × [0, T ]) and C(Ω) to zero and a positive number, respectively, as t→∞.
According to our model in the case of equal diffusion coefficients, density I for τ ∈ [0, T ]
and function R for τ1 ∈ [0, T1] converge to zero in L1(Ω), while the density of suscep-
tibles, S, converges in L1(Ω) to a positive number. The claim that limt→∞ S(x, t) > 0,
limt→∞ I(x, t, τ) = 0 with τ ∈ [0, T ], limt→∞R(x, t, τ1) = 0 with τ1 ∈ [0, T1],
limt→∞ u(x, t) = 0 for all x ∈ Ω, and the dimension of the region Ω greater than
one under the hypotheses (H1) is an open problem.

In the next section, we improve the data smoothness of model (1)–(3) and (5) so
that conditions of Theorem 5.3 from [13, Chap. IV, Sect. 5] would be satisfied, and,
using Theorem 5.3 from [13, Chap. IV, Sect. 5], for any diffusion coefficients and any
Ω dimension, prove the existence of a unique nonnegative globally defined solution
(S, I,R, u) such that I and R converge to zero in C(Ω × [0, T ]) and C(Ω × [0, T1]),
respectively, and S tends to a positive number in C(Ω) as t→∞.

5 System (1)–(3), (5)(1)–(3), (5)(1)–(3), (5) with improved smoothness of the model data

Assume that a constant β ∈ (0, 1), the surfaceΣ is of classC2+β , and given functions S0,
I0, R0, κs, κi, ν, k satisfy the following smoothness conditions (called (H2) hypotheses):

(i) S0 ∈ C2+β(Ω), S0 > 0 in Ω, ∂nS0 = 0 on Σ,
(ii) I0 ∈ C2+β,1(Ω × [0, T ]), I0 > 0 in Ω × [0, T ], ∂nI0 = 0 on Σ × [0, T ],

(iii) R0 ∈ C2+β,1(Ω × [0, T1]), R0 > 0 in Ω × [0, T1], ∂nR0 = 0 on Σ × [0, T1],
(iv) κs, κi ∈ C2+β(Ω) and are positive in Ω.
(v) ν ∈ Cβ/2([0, T ]) and is positive in [0, T ],

(vi) k ∈ C2+β,1(Ω × [τ∗, T ]) ∩ C(Ω × [τ∗, T ]) and is positive in Ω × [τ∗, T ].
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Theorem 3. Under hypotheses (H2) (assumptions (i)–(vi)), system (1)–(3), (5) has a non-
negative globally defined solution (S, I,R, u) such that

(i) S ∈ C2+β,1+β/2(Ω × [0,∞)),
(ii) I ∈ C2+β,1,1(Ω × (([0,∞)× [0, T ]) \ {t = τ})),

(iii) R ∈ C2+β,1,1(Ω × (([0,∞)× [0, T1]) \ {t = τ1})),
(iv) u ∈ C2+β,1(Ω × [0,∞)).

Proof. The proof of this theorem is based on the direct application of Theorem 5.3 from
[13, Chap. IV, Sect. 5] to equations (11) for t ∈ [0, τ ]× [0, T ], (12) for t ∈ [0, τ1]× [0, T1],
(13) for t− τ ∈ [jτ∗, (j + 1)τ∗], and (14) for t− τ1 ∈ [jτ∗, (j + 1)τ∗], j = 0, 1, 2, . . . ,
and therefore, we skip it.

Further in this section, we consider the long time behaviour of the solution guaranteed
by Theorem 3.

Lemma 7. Under the hypotheses (H2), I and R → 0 uniformly in Ω × [0, T ] and Ω ×
[0, T1], respectively, u→ 0 and S → S∞ uniformly in Ω as t→∞.

Proof. We first prove that S, I , R, and u are uniformly bounded. Set ν∗ = min[0,T ] ν(τ).
Since u(·, α)S(·, α) ∈ C2+β(Ω) and ν∗ > 0, the positivity lemma shows that the
function Ĩ , determined by equations

∂tĨ + ∂τ Ĩ − div(κi∇Ĩ) = −ν∗Ĩ in Ω × (τ + τ∗,∞)× (0, T ],

∂nĨ = 0 on Σ × (τ + τ∗,∞)× (0, T ],

Ĩ(·, ·, 0) = S(·, ·)u(·, ·) in Ω × [τ∗,∞)

(24)

written on the characteristic lines α = t − τ , is a majorant of function I for t > τ + τ∗,
and it can be represented as

Ĩ(x, t, τ) =

∫
Ω

G(x, x′, τ)S(x′, t− τ)u(x′, t− τ) dx′,

where G(x, x′, τ) is the Green function for system (24) written on the characteristic lines
t = τ + α, α > 0. It is well known (see e.g., [4, 5] and [7, Chap. VI, Sect. VI.2]) that for
x, x′ ∈ Ω and τ > τ ′ > 0, function G is bounded, i.e., |G(x, x′, τ)| 6 C(τ ′) = const.
Hence,

Ĩ(x, t, T ) =

∫
Ω

G(x, x′, T )S(x′, t− T )u(x′, t− T ) dx′

6 C(τ∗)

∫
Ω

S(x′, t− T )u(x′, t− T ) dx′.

The positivity lemma yields that S̃ determined in [t∗,∞) with t∗ > T + T1 by

S̃(t) = max
Ω

S(x, t∗) +

t∫
t∗

(
γmax

Ω
I(x, s, T ) + γ1 max

Ω
I(x, s− T1, T )

)
ds
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is a majorant for function S. Moreover,

S̃(t) 6 max
Ω

S(x, t∗) + C(τ∗)γ

t∫
t∗

∫
Ω

S(x, s− T )u(x, s− T ) dxds

+ C(τ∗)γ1

t∫
t∗

∫
Ω

S(x, s− T − T1)u(x, s− T − T1) dxds

6 max
Ω

S(x, t∗) + C(τ∗)(γ + γ1)

∞∫
0

∫
Ω

S(x, y)u(x, y) dxdy <∞

since by Lemma 2 the temporal integral in the above inequality converges and therefore
function S is uniformly bounded. Then for t > t∗,

u(x, t) 6 k∗C(τ∗)

T∫
τ∗

∫
Ω

S(x, t− τ)u(x, t− τ) dx dτ

6 k∗C(τ∗)

t−τ∗∫
t−T

∫
Ω

S(x, y)u(x, y) dxdy

= k∗C(τ∗)

( t−τ∗∫
0

∫
Ω

S(x, s)u(x, s) dxds−
t−T∫
0

∫
Ω

S(x, s)u(x, s) dxds

)
→ 0 as t→∞

because by Lemma 2 both temporal integrals converge. Hence, function u is also uni-
formly bounded. Then for t > t∗,

I(x, t, τ) 6 max
Ω

S(x, t− τ)u(x, t− τ)→ 0

and hence
R 6 γ1 max

Ω
I(x, t− T1, T )→ 0 as t→∞.

It is evident that the functions I and R are uniformly bounded, and therefore, Lem-
mas 5 and 6 can be used in the case under consideration. Denoting maximum of upper
bounds of functions S, I , and R by ω and using Lemma 6, we get that the spatial average
of S tends to a positive number S∞ in W 1

2 (Ω) as t→∞.
Second, since functions S, I , R, and u are uniformly bounded, [13, Chap. V, Sect. 7]

yields that |∇S| is also uniformly bounded. Then direct application of inequality (23) for
p > n > 2 yields∫

Ω

(
S(x, t)− S(t)

)p
dx 6 C1

∫
Ω

(
S(x, t)− S(t)

)2
dx 6 C1K

∫
Ω

|∇S|2 dx,
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∫
Ω

|∇S|p dx 6 C2

∫
Ω

|∇S|2 dx,

and Eq. (23) shows that∫
Ω

(
S(x, t)− S(t)

)p
dx+

∫
Ω

|∇S|p dx→ 0 as t→∞.

By the Sobolev embedding theorem, it follows that limt→∞ S(x, t) = S∞ for all x ∈ Ω.
The proof is complete.

It is easy to see that, in the case where minΩ S0 > 0, the function Ŝ determined as

Ŝ(t) = min
Ω

S0 exp

{
−

t∫
0

max
Ω

u(x, s) ds

}

is a minorant for S. Moreover,

Ŝ(t) = C1 min
Ω

S0 exp

{
−

t∫
t∗

max
Ω

u(x, s) ds

}

> C1 min
Ω

S0 exp

{
−k∗C(τ∗)

t∫
t∗

T∫
τ∗

∫
Ω

S(x, s− τ)u(x, s− τ)

}
dx dτ ds

> C1 min
Ω

S0 exp

{
−k∗C(τ∗)(T − τ∗)

∞∫
0

∫
Ω

S(x, y)u(x, y) dx dy

}

=: S∗ > 0

since the temporal integral converges. Hence, S∞ > S∗ > 0.
Assume that I0 > 0 in Ω× [0, T ]. Applying an argument similar to that used to prove

Theorem 3.4 in [9, p. 137, Chap. 7, Sect. 3], we can prove that

S∞ 6

( T∫
τ∗

min
Ω

k(x, τ) dτ

)−1

.

Remark 2. Since 0 6 r(T )F 6 I and I → 0 uniformly in Ω × [0, T ] as t → ∞, then
F also tends to zero uniformly in Ω × [0, T ] as t → ∞. This shows that under the (H2)
hypotheses the class of infected individuals eventually disappears even if the mortality
rate ν is identically zero.
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6 Concluding remarks

We conclude this work by summarizing main results. We proposed and analysed a math-
ematical model for the spread description of an epidemic disease of variable infectivity in
an asexual infection-age-and-immunity-structured population with spatial dispersal. It is
assumed that some individuals recover from the disease with temporary immunity, another
part recover with permanent immunity, and the last part recover with no immunity. The
demographic changes such as births and deaths due to natural causes and the chronologi-
cal age of individuals are disregarded. The model is based on the system of partial integro-
differential equations including a PDE for evolution description of individuals recovered
with temporary immunity. The existence and uniqueness of the globally defined classical
solution is proved. The long-time behaviour of its solution is studied for two classes (H1

and H2) of the model data smoothness.
In the case of model data of class H1, we have proved that the total number of

infected individuals and the total number of individuals recovered with temporary im-
munity for any diffusion coefficients eventually tend to zero and that for equal diffusion
coefficients the spatial average of susceptible individuals tends to a positive number,
while the spatial averages of the infected individuals and of those who recover with
temporary immunity asymptotically converge to zero. The claim that limt→∞ S(x, t) >
0, limt→∞ I(x, t, τ) = 0 with τ ∈ [0, T ], limt→∞R(x, t, τ1) = 0 with τ1 ∈ [0, T1],
limt→∞ u(x, t) = 0 for all x ∈ Ω, and the dimension of the region Ω greater than one
under hypotheses (H1) is an open problem.

In the case of the model data of class H2, we have proved that for any diffusion
coefficients, the density of susceptible individuals, S, eventually tends to a positive num-
ber uniformly in Ω, while densities I and R tend to zero uniformly in Ω × [0, T ] and
Ω× [0, T1], respectively. The class of infected individuals disappears even if the mortality
ν is identically zero.

References

1. W.E. Fitzgibbon, C.B. Martin, J.J. Morgan, A diffusive epidemic model with criss-cross
dynamics, J. Math. Appl., 184(3):399–414, 1994, https://doi.org/10.1006/jmaa.
1994.1209.

2. W.E. Fitzgibbon, J.J. Morgan, A diffusive epidemic model on a bounded domain of arbitrary
dimension, Dffer. Integral Equ., 1(2):125–132, 1998, https://doi.org/10.57262/
die/1371747478.

3. W.E. Fitzgibbon, J.J. Morgan, S.J. Waggoner, A quasilinear system modelling the spread of
infectious disease, Rocky Mt. J. Math., 22(2):579–592, 1992, http://www.jstor.org/
stable/44237480.

4. W.E. Fitzgibbon, M.E. Parrot, G.F. Webb, Diffusive epidemic models with spatial and age
dependent heterogeneity, Discrete Contin. Dyn. Syst., 1(1):35–57, 1995, https://doi.
org/10.3934/dcds.1995.1.35.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1006/jmaa.1994.1209
https://doi.org/10.1006/jmaa.1994.1209
https://doi.org/10.57262/die/1371747478
https://doi.org/10.57262/die/1371747478
http://www.jstor.org/stable/44237480
http://www.jstor.org/stable/44237480
https://doi.org/10.3934/dcds.1995.1.35
https://doi.org/10.3934/dcds.1995.1.35
https://www.journals.vu.lt/nonlinear-analysis


An immunity-structured SEIRS epidemic model with variable infectivity and spatial heterogeneity 759

5. W.E. Fitzgibbon, M.E. Parrot, G.F. Webb, A diffusive age-structured SEIRS epidemic model,
Methods Appl. Anal., 3(3):358–369, 1996, https://doi.org/10.4310/MAA.1996.
v3.n3.a5.

6. A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Clifs,
NJ, 1964.

7. M.G. Garoni, J.L. Menaldi, Green Functions for Second Order Parabolic Integro-Differential
Problems, J. Wiley & Sons, New York, 1992.

8. F. Hoppensteadt, An age dependent epidemic model, J. Franklin Inst., 197:325–333, 1974.
9. M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Appl. Math.

Monogr., Vol. 7, Giardini Editori e Stampatori, Pisa, 1995.
10. H. Inaba, Kermack and McKendrick revisited: The variable susceptibility model for infectious

diseases, Jap. J. Ind. Appl. Math., 18:273–292, 2001, https://doi.org/10.1007/
BF03168575.

11. W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory of epidemics.
II. The problem of endemicity, Proc. R. Soc. Lond., Ser. A, 138(834):55–83, 1932, https:
//doi.org/10.1098/rspa.1932.0171.

12. S.M. Kissler, C. Tedijanto, E. Goldstein, Y.H. Grad, M. Lipsitch, Protecting the transmission
dynamics of SARS-CoV-2 through the postpandemic period, Science, 368(6493):860–868,
2020, https://doi.org/10.1126/science.abb5793.

13. A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralceva, Linear and Quasi-linear Equation of
Parabolic Type, Transl. Math. Monogr., Vol. 23, AMS, Providence, RI, 1968.

14. P. Magal, C.C. McCluskey, G.F. Webb, Lyapunov functional and global asymptotic stability
for an infection-age model, Appl. Anal., 89(7):1109–1140, 2010, https://doi.org/10.
1080/00036810903208122.

15. M. Martcheva, An Introduction to Mathematical Epidemiology, Texts Appl. Math., Vol. 61,
Springer, New York, 2015, https://doi.org/10.1007/978-1-4899-7612-3.

16. C.C. McCluskey, Global stability for an SEI model of infectious disease with age structure and
immigration of infecteds, J. Math. Biol., 13(2):1227–1249, 2016, https://doi.org/10.
3934/mbe.2015008.

17. C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Springer, New York, 1992, https:
//doi.org/10.1007/978-1-4615-3034-3.

18. V. Skakauskas, The Kermack-McKendrick epidemic model with variable infectivity modified,
J. Math. Anal. Appl., 507(2):125817, 2022, https://doi.org/10.1016/j.jmaa.
2021.125817.

19. V.I. Smirnov, A Course of Higher Mathematics, Vol. II, Part II, Nauka, Moscow, 1981 (in
Russian).

20. H.R. Thieme, J. Yang, An endemic model with variable re-infection rate and applications
to influenza, Math. Biosci., 180(1–2):207–235, 2002, https://doi.org/10.1016/
s0025-5564(02)00102-5.

21. G.F. Webb, An age-dependent epidemic model with spatial diffusion, Arch. Ration. Mech.
Anal., 75:91–102, 1980, https://doi.org/10.1007/BF00284623.

22. R. Zhang, D. Li, S. Liu, Global analysis of an age-structured SEIR model with immigration
of population and nonlinear incidence rate, J. Appl. Anal. Comput., 9(4):1470–1492, 2019,
https://doi.org/10.11948/2156-907X.20180281.

Nonlinear Anal. Model. Control, 28(4):735–759, 2023

https://doi.org/10.4310/MAA.1996.v3.n3.a5
https://doi.org/10.4310/MAA.1996.v3.n3.a5
https://doi.org/10.1007/BF03168575
https://doi.org/10.1007/BF03168575
https://doi.org/10.1098/rspa.1932.0171
https://doi.org/10.1098/rspa.1932.0171
https://doi.org/10.1126/science.abb5793
https://doi.org/10.1080/00036810903208122
https://doi.org/10.1080/00036810903208122
https://doi.org/10.1007/978-1-4899-7612-3
https://doi.org/10.3934/mbe.2015008
https://doi.org/10.3934/mbe.2015008
https://doi.org/10.1007/978-1-4615-3034-3
https://doi.org/10.1007/978-1-4615-3034-3
https://doi.org/10.1016/j.jmaa.2021.125817
https://doi.org/10.1016/j.jmaa.2021.125817
https://doi.org/10.1016/s0025-5564(02)00102-5
https://doi.org/10.1016/s0025-5564(02)00102-5
https://doi.org/10.1007/BF00284623
https://doi.org/10.11948/2156-907X.20180281
https://doi.org/10.15388/namc.2023.28.32230

	Introduction
	The model
	Existence, uniqueness, and estimates of the classical solution to system (1)–(3), (5)
	Long-time behaviour of the solution (S,I,R,u) to system (1)–(3), (5)
	System (1)–(3), (5) with improved smoothness of the model data
	Concluding remarks
	References

