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Abstract. By employing event-triggered control technique, this paper investigates the leader-
following formation control problem of general linear multi-agent systems with distributed infinite
input time delays. To decrease computing costs, a novel event-triggered formation protocol taking
into consideration of the distributed infinite time delays between agents is put forward. Under the
designed triggering function and triggering condition, a sufficient condition on leader-following
formation is obtained, and then the Zeno-behavior of triggering time sequences is excluded for
the concerned closed-loop system. The continuous update of controller for each agent is avoided.
Finally, the correctness and the effectiveness of these theoretical results are demonstrated by two
numerical examples.
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1 Introduction

Distributed cooperative control of multi-agent systems (MASs) [4,11,21] has been widely
concerned owing to its many advantages including cost reduction, higher reliability, ef-
ficiency and flexibility, and so on. As one of the most important problems in coopera-
tive control of MASs, formation control has been intensively studied due to its broad
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application in various areas, such as formation navigation of autonomous vehicles, atti-
tude tracking of spacecrafts, collaborative load transport of robots, cooperative surveil-
lance of aircrafts, just to name a few. The objective of formation control is to design
distributed control protocol for each agent so that all agents can achieve and retain some
given geometric pattern [5, 23, 31].

To achieve distributed formation, communication among agents plays a key role. For
MASs, exchanging information among agents, time delays occur [14, 20]. Time delays
may result in performance degradation and even instability of the closed-loop system.
Therefore, formation problem of MASs featuring time delays has long attracted interest;
see [10, 13, 16] and the references therein.

All of the aforementioned formation control of MASs with time delays focused on
bounded delays. However, in formation control problems, the current state of the system
may be related to all the previous history. Moreover, MASs may have different delay
intervals so that a unified model (such as the pantograph equation in physics) or a com-
plete influence of the whole past of the state is required. Consequently, it is necessary
to consider MASs with distributed infinite delay in formation problems, and modeling of
such distributed infinite delays is needed. The distributed infinite delays have been utilized
to model many practical applications, i.e., remote control of mechatronic systems [24],
HIV-1 infection passes [2], population dynamic systems [9], traffic flow dynamics [18],
neural networks [25], and so on. More recently, the consensus of MASs with distributed
infinite time delays starts to receive increasing attention [27, 28], which is the basis of
formation problem of MASs.

On the other hand, the key of implement of information exchange among the agents
is to choice an appropriate control mechanism. Due to the superiority of reducing the
controller update and maintaining a satisfactory control performance of the closed-loop
system, the event-triggered control (ETC) mechanism [7, 26, 29] has attracted persistent
attention to explore the formation control problem of MASs with time delays; see [3, 6,
12, 17]. For instance, researchers in [3] designed a distributed event-triggered formation
scheme based on complex-valued Laplacian to study MASs with time delays. In consider-
ation of time delays, event-triggered control strategies [12,17] were proposed to cope with
formation control problem of second-order MASs. It is worth noting that only bounded
time delays were considered in these aforementioned event-triggered formation results.
Nevertheless, as far as the authors’ knowledge, the event-triggered formation control of
MASs with distributed infinite time delays still remains open.

Motivated by the aforementioned discussions, our work aims at designing an event-
triggered controller for the formation control of general linear MASs with distributed
infinite input time delays. The main contributions of this paper are summarized:

(i) The formation protocol considering distributed infinite input time delays is de-
veloped, which not only has practical advantages, but also include bounded dis-
tributed input delays as special cases.

(ii) The ETC approach is applied to deal with the leader-following formation control
of general linear MASs. The result shows that continuous update of controller
is avoided, which means the improvement of the usage of a limited bandwidth

Nonlinear Anal. Model. Control, 28(4):760–779, 2023

https://doi.org/10.15388/namc.2023.28.32277


762 Y. Deng, W. Zhu

resource. Moreover, the Zeno-behavior of the event-triggered time sequence is
excluded.

(iii) A sufficient condition for achieving formation is presented, and the convergence
rate is estimated. To make the theoretical results more convincing, a practical
example is introduced, i.e., the leader-following formation of nonholonomic ve-
hicles of unicycle type.

Notations. Rn and Rn×m stand for the set of n-dimensional real column vectors and
n ×m-dimensional real matrices, respectively. Given a matrix A, λi(A) denotes the ith
eigenvalues of matrixA, and Reλi(·) be the real part of the ith eigenvalue. AT represents
the transpose of A. A > 0 implies that A is a positive definite matrix. A ⊗ B means
Kronecker product of matrices A and B. ‖·‖ represents the Euclidean norm for vectors
or the induced 1-norm for matrix. diag{a1, . . . , an} denotes a diagonal matrix, where ai,
i = 1, . . . , n, are its diagonal elements.

2 Preliminaries

Consider the following general linear multi-agent systems:

Leader: ẋ0(t) = Ax0(t),
(1)

Followers: ẋi(t) = Axi(t) +Bui(t), i = 1, . . . , N,

where A ∈ Rn×n, B ∈ Rn×m. x0(t) ∈ Rn represents the state of agent 0. xi(t) ∈ Rn
and ui(t) ∈ Rm denote the state and control input of agent i, respectively.

The communication topology among the N followers with one leader is represented
by a digraph (directed graph) G̃ = (Ṽ , E, Ã) with a set of nodes Ṽ = {0, 1, 2, . . . , N, }.
Ã = [aij ]N×N is the adjacency matrix of followers, where aij > 0 if and only if
(j, i) ∈ E, and aij = 0, otherwise. B̃ = diag{b1, . . . , bN} is the leader adjacency
matrix associated with G̃, where bi > 0 if node 0 is a in-neighbor of agent i, and bi = 0
otherwise. The degree matrix is given byD = diag{d1, d2, . . . , dN}with di =

∑N
j=1 aij .

The Laplacian is defined as L = D − Ã, and then H = L+ B̃.

Definition 1. Let h = [hT
0 , h

T
1 , . . . , h

T
N ]T be the desired leader-following formation. The

MASs (1) is said to achieve the desired leader-following formation h if for i = 1, . . . , N ,
limt→∞ ‖(xi(t)− hi)− (x0(t)− h0)‖ = 0 holds with any given initial conditions.

The ETC strategy with distributed infinite input time delays is designed as

ui(t) = −F
+∞∫
0

ki(τ)qi
(
tik − τ

)
+Q(hi − h0), t ∈

[
tik, t

i
k+1

)
(2)

in which ki(τ) : [0,+∞)→ [0,+∞) is the delay kernel satisfying
∫ +∞

0
ki(τ) dτ = 1,

and
∫ +∞

0
ki(τ)eµτ dτ <+∞ for µ> 0. F ∈Rm×n is a control gain matrix, Q∈Rm×n
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is also a control gain matrix that makes (A+BQ)(hi − h0) = 0 [6, 30].

qi(t) =

N∑
j=1

aij
((
xi(t)− hi

)
−
(
xj(t)− hj

))
+ bi

((
xi(t)− hi)−

(
x0(t)− h0

))
is the combining measurement information. tik is called to be triggering time instant for
each agent i, which is defined as follows:

tik+1 = inf
{
tik > 0: fi(t) > 0

}
, (3)

where
fi(t) =

∥∥ei(t)∥∥− β1

∥∥qi(tik)∥∥− β2e−λ(t−t0) (4)

is the triggering function with β1 > 0, β2 > 0, λ > 0, and the measurement error
ei(t) = qi(t

i
k)− qi(t). ei(t) is reset to 0 at t = tik.

Let ξi(t) = (xi(t)−hi)−(x0(t)−h0), ξ(t) = [ξT
1 , . . . , ξ

T
N ]T, and e(t) = [eT

1 (t), . . . ,
eT
N (t)]T. In terms of (1) and (2), one has

ξ̇i(t) = ẋi(t)− ẋ0(t) +Bui(t)

= A
(
(xi(t)− hi)− (x0(t)− h0)

)
+ (A+BQ)(hi − h0)

−BF
+∞∫
0

ki(τ)qi(t− τ) dτ −BF
+∞∫
0

ki(τ)ei(t− τ) dτ

= Aξi(t)−BF
+∞∫
0

ki(τ)qi(t− τ) dτ −BF
+∞∫
0

ki(τ)ei(t− τ) dτ

= Aξi(t)−BF
+∞∫
0

ki(τ)

(
N∑
j=1

aij
(
ξi(t)− ξj(t)

)
+ biξi(t)

)
dτ

−BF
+∞∫
0

ki(τ)ei(t− τ) dτ.

Then, according to Kronecker product of matrix [8], it holds

ξ̇(t) = (IN ⊗A)ξ(t)−
+∞∫
0

(
Ĥ(τ)⊗BF

)
ξ(t− τ) dτ

−
+∞∫
0

(
K̂(τ)⊗BF

)
e(t− τ) dτ (5)

in which K̂(τ) = diag{k1(τ), . . . , kN (τ)} and Ĥ(τ) = [ĥij(τ)]N×N with

ĥij(τ) =

{
(
∑N
j=1 aij + bi)ki(τ), i = j,

−aijki(τ), i 6= j.
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Definition 2. The event-triggering time sequence {tik} is free of Zeno-behavior if for
all i, infk{tik+1 − tik} > 0.

Assumption 1. The communication graph G̃ has a spanning tree with the leader as the
root.

Remark 1. (See [19].) Based on Assumption 1, Reλi(H) > 0, i = 1, . . . , N . Obvi-
ously, a positive constant η can be found to make sure ηReλi(H) > 1, i = 1, . . . , N .

Assumption 2. (A,B) is stabilization.

Remark 2. (See [32].) Based on Assumption 2, for any given positive definite matrix
M = MT, a unique positive definite matrix P = PT can be found to ensure the algebraic
Riccati equation below holds:

PA+AP − PBBTP +M = 0. (6)

As a result, according to linear optimal control theory, the eigenvalues λi(A − BBTP )
are positive.

Thus, owing to Assumptions 1 and 2, Reλi(A− ηλi(H)BBTP ) < 0, i = 1, . . . , N .
Furthermore, Reλi(IN ⊗A− ηH ⊗BBTP ) < 0. Hence, for t > t0, we can take these
positive constants W and $ satisfying∥∥e(IN⊗A−ηH⊗BBTP )(t−t0)

∥∥ 6W e−$(t−t0). (7)

3 Main results

A sufficient condition on leader-following formation control of MASs (1) is obtained in
this section, and the Zeno-behavior of {tik} is excluded for any agent.

In order to reading conveniently, let

v =
µ+$ +Wφ‖BF‖ −

√
(µ+$ +Wφ‖BF‖)2 − 4µ$

2
,

y =
(µ− λ)($ − λ)−Wφ‖BF‖λ

(µ− λ)($ − λ)−Wφ‖BF‖λ+W‖H‖
√
N‖BF‖ψ(µ− λ)

,

+∞∫
0

∥∥Ĥ(τ)
∥∥eµτ dτ = φ and

+∞∫
0

∥∥K̂(τ)
∥∥eµτ dτ = ψ.

We have the following lemma.

Lemma 1. A positive constant λ satisfying 0 < λ < v can be found to make sure
(µ− λ)($ − λ)−Wφ‖BF‖λ > 0, λ < min(µ,$), and y ∈ (0, 1).

Proof. By the definition of v, for any λ ∈ (0, v), it is clear that λ2−(µ+$+Wφ‖BF‖)λ+
µ$ > 0 and λ < min(µ,$). Thus, we have (µ−λ)($−λ)−Wφ‖BF‖λ > 0 and then
0 < y < 1. The proof is completed.

Now, we are in the position to state the main results in this paper.
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Theorem 1. Consider the leader-following MASs (1) with event-triggered formation pro-
tocol (2), where {tik} for each agent i is determined by (3). The control gain matrix
F = ηBTP with P satisfies (6) and η > 1/Reλi(H), and control gain matrix Q
satisfies (A+BQ)(hi−h0) = 0. Then MASs (1) can achieve leader-following formation
for 0 < λ < v, β1 ∈ (0, y), β2 > 0.

Proof. From (5) it holds

ξ̇(t) =

(
(IN ⊗A)−

+∞∫
0

(
Ĥ(τ)⊗BF

)
dτ

)
ξ(t)

+

+∞∫
0

(
Ĥ(τ)⊗BF

)(
ξ(t)− ξ(t− τ)

)
dτ−

+∞∫
0

(
K̂(τ)⊗BF

)
e(t− τ) dτ. (8)

Since
∫ +∞

0
ki(τ) dτ = 1, we have

∑N
j=1

∫ +∞
0

aijki(τ) dτ =
∑N
j=1 aij = di and∫ +∞

0
biki(τ) dτ = bi

∫ +∞
0

ki(τ) dτ = bi. Therefore,
∫ +∞

0
Ĥ(τ) dτ = D−Ã+B̃ = H .

Consequently, (8) becomes

ξ̇(t) =Wξ(t) +

+∞∫
0

(
Ĥ(τ)⊗BF

)(
ξ(t)− ξ(t− τ)

)
dτ

−
+∞∫
0

(
K̂(τ)⊗BF

)
e(t− τ) dτ,

whereW = IN ⊗A−H ⊗BF .
Utilizing the variation of parameter formula, we get

ξ(t) = eW(t−t0)ξ(t0) +

t∫
t0

+∞∫
0

eW(t−s)(Ĥ(τ)⊗BF
)(
ξ(s)− ξ(s− τ)

)
dτ ds

−
t∫

t0

+∞∫
0

eW(t−s)(K̂(τ)⊗BF
)
e(s− τ) dτ ds.

Recalling (7) yields

‖ξ(t)‖ 6W e−$(t−t0)
∥∥ξ(t0)

∥∥
+W

t∫
t0

+∞∫
0

e−$(t−s)∥∥Ĥ(τ)⊗BF
∥∥∥∥ξ(s)− ξ(s− τ)

∥∥dτ ds

+W

t∫
t0

+∞∫
0

e−$(t−s)∥∥K̂(τ)⊗BF
∥∥∥∥e(s− τ)

∥∥dτ ds. (9)
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The following inequality is enforced by triggering condition (4)∥∥ei(t)∥∥ 6 β1

∥∥qi(tik)∥∥+ β2e−λ(t−t0) = β1

∥∥qi(t) + ei(t)
∥∥+ β2e−λ(t−t0)

6 β1

∥∥∥∥∥
N∑
j=1

aij
((
xi(t)− hi

)
−
(
xj(t)− hj

))
+ bi

((
xi(t)− hi

)
−
(
x0(t)− h0

))∥∥∥∥∥+ β1

∥∥ei(t)∥∥+ β2e−λ(t−t0)

6 β1‖H‖
∥∥ξ(t)∥∥+ β1

∥∥ei(t)∥∥+ β2e−λ(t−t0).

Thus, ∥∥e(t)∥∥ 6
β1‖H‖

√
N

1− β1

∥∥ξ(t)∥∥+
β2

√
N

1− β1
e−λ(t−t0). (10)

Substituting (10) into (9), we have∥∥ξ(t)∥∥ 6W e−$(t−t0)
∥∥ξ(t0)

∥∥
+W

t∫
t0

+∞∫
0

e−$(t−s)∥∥Ĥ(τ)⊗BF
∥∥∥∥ξ(s)− ξ(s− τ)

∥∥dτ ds

+
Wβ1‖H‖

√
N

1− β1

t∫
t0

+∞∫
0

e−$(t−s)∥∥K̂(τ)⊗BF
∥∥∥∥ξ(s− τ)

∥∥dτ ds

+
Wβ2

√
N

1− β1

t∫
t0

+∞∫
0

e−$(t−s)∥∥K̂(τ)⊗BF
∥∥e−λ(s−t0−τ) dτ ds

= W e−$(t−t0)
∥∥ξ(t0)

∥∥
+W‖BF‖

t∫
t0

+∞∫
0

e−$(t−s)∥∥Ĥ(τ)
∥∥∥∥ξ(s)− ξ(s− τ)

∥∥dτ ds

+
W‖BF‖β1‖H‖

√
N

1− β1

t∫
t0

+∞∫
0

e−$(t−s)∥∥K̂(τ)
∥∥∥∥ξ(s− τ)

∥∥dτ ds

+
W‖BF‖β2

√
N

1− β1

t∫
t0

+∞∫
0

e−$(t−s)∥∥K̂(τ)
∥∥e−λ(s−t0−τ) dτ ds. (11)

Denote

r =
Wβ2

√
N‖BF‖ψ(µ−λ)

(1−β1)(µ−λ)($−λ)−W
(
β1‖H‖

√
N‖BF‖ψ(µ−λ)+λφ‖BF‖(1−β1)

) .
https://www.journals.vu.lt/nonlinear-analysis
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Since β1 ∈ (0, y), one has

(1− β1)(µ− λ)($ − λ)

−W
(
β1‖H‖

√
N‖BF‖ψ(µ− λ) + λφ‖BF‖(1− β1)

)
> 0.

Moreover, due to the fact that β2 > 0 and λ < µ, we have r > 0.
Denote Z = max{r,W‖ξ(t0)‖}. Next, for any ρ > 1, we will prove that∥∥ξ(t)∥∥ < ρZe−λ(t−t0) ∆

= ζ(t), t > t0. (12)

Otherwise, we can find t∗ > t0 satisfying ‖ξ(t∗)‖ = ζ(t∗) and ‖ξ(t)‖ < ζ(t) when
t ∈ [t0, t

∗).
Subsequently, from (11) one has

ζ(t∗) =
∥∥ξ(t∗)∥∥

< ρW e−$(t∗−t0)
∥∥ξ(t0)

∥∥
+ ρWZ‖BF‖

t∗∫
t0

+∞∫
0

e−$(t∗−s)(e−λ(s−t0−τ) − e−λ(s−t0)
)∥∥Ĥ(τ)

∥∥dτ ds

+
Zβ1‖H‖+ β2

1− β1
ρW
√
N‖BF‖

t∗∫
t0

+∞∫
0

e−$(t∗−s)e−λ(s−t0−τ)
∥∥K̂(τ)

∥∥dτ ds

= ρW e−$(t∗−t0)
∥∥ξ(t0)

∥∥+ ρWZ‖BF‖
t∗∫
t0

e−$(t∗−s)e−λ(s−t0) ds

×
+∞∫
0

∥∥Ĥ(τ)
∥∥eµτ

(
e(λ−µ)τ − e−µτ

)
dτ

+
Zβ1‖H‖+ β2

1− β1
ρW
√
N‖BF‖

t∗∫
t0

e−$(t∗−s)e−λ(s−t0) ds

×
+∞∫
0

∥∥K̂(τ)
∥∥eµτe(λ−µ)τ dτ

6 ρW e−$(t∗−t0)
∥∥ξ(t0)

∥∥+ ρWZ‖BF‖
t∗∫
t0

e−$(t∗−s)e−λ(s−t0) ds

×
+∞∫
0

∥∥Ĥ(τ)
∥∥eµτ dτ · sup

τ>0

(
e(λ−µ)τ − e−µτ

)
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+
Zβ1‖H‖+ β2

1− β1
ρW
√
N‖BF‖

t∗∫
t0

e−$(t∗−s)e−λ(s−t0) ds

×
+∞∫
0

∥∥K̂(τ)
∥∥eµτ dτ · sup

τ>0
e(λ−µ)τ .

Since supτ>0(e(−µ+λ)τ − e−µτ ) < λ/(µ − λ) [27] and supτ>0(e(λ−µ)τ ) = 1, one
has

ζ(t∗) < ρW e−$(t∗−t0)
∥∥ξ(t0)

∥∥
+ ρWZ‖BF‖ λφ

µ− λ
1

$ − λ
(
e−λ(t∗−t0) − e−$(t∗−t0)

)
+
Zβ1‖H‖+ β2

1− β1
ρW
√
N‖BF‖ ψ

$ − λ
(
e−λ(t∗−t0) − e−$(t∗−t0)

)
= ρ

{
W
∥∥ξ(t0)

∥∥− (WZ

(
β1‖H‖

√
N‖BF‖ψ

(1− β1)($ − λ)
+

λφ

µ− λ
‖BF‖
$ − λ

)
+
Wβ2

√
N‖BF‖ψ

(1− β1)($ − λ)

)}
e−$(t∗−t0)

+ ρ

(
WZ

(
β1‖H‖

√
N‖BF‖ψ

(1− β1)($ − λ)
+

λφ

µ− λ
‖BF‖
$ − λ

)
+
Wβ2

√
N‖BF‖ψ

(1− β1)($ − λ)

)
e−λ(t∗−t0).

Case 1. Z = r, which indicates that

W
∥∥ξ(t0)

∥∥ 6WZ

(
β1‖H‖

√
N‖BF‖ψ

(1− β1)($ − λ)
+

λφ

µ− λ
‖BF‖
$ − λ

)
+
Wβ2

√
N‖BF‖ψ

(1− β1)($ − λ)
.

Then one has

ζ(t∗) < ρ

(
WZ

(
β1‖H‖

√
N‖BF‖ψ

(1− β1)($ − λ)
+

λφ

µ− λ
‖BF‖
$ − λ

)
+
Wβ2

√
N‖BF‖ψ

(1− β1)($ − λ)

)
× e−λ(t∗−t0)

= ζ(t∗). (13)

Case 2. Z = W‖ξ(t0)‖, which indicates that

W
∥∥ξ(t0)

∥∥ >WZ

(
β1‖H‖

√
N‖BF‖ψ

(1− β1)($ − λ)
+

λφ

µ− λ
‖BF‖
$ − λ

)
+
Wβ2

√
N‖BF‖ψ

(1− β1)($ − λ)
.
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Then one has

ζ(t∗) < ρ

{
W
∥∥ξ(t0)

∥∥− (WZ

(
β1‖H‖

√
N‖BF‖ψ

(1− β1)($ − λ)
+

λφ

µ− λ
‖BF‖
$ − λ

)
+
Wβ2

√
N‖BF‖ψ

(1− β1)($ − λ)

)}
e−λ(t∗−t0)

+ ρ

(
WZ(

β1‖H‖
√
N‖BF‖ψ

(1− β1)($ − λ)
+

λφ

µ− λ
‖BF‖
$ − λ

)
+
Wβ2

√
N‖BF‖ψ

(1− β1)($ − λ)

)
e−λ(t∗−t0)

= ρW
∥∥ξ(t0)

∥∥e−λ(t∗−t0) = ζ(t∗). (14)

The contradictions in (13) and (14) show that inequality (12) is valid for any ρ > 1.
Letting ρ→ 1, the inequality below can be acquired:∥∥ξ(t)∥∥ 6 Ze−λ(t−t0), t > t0, (15)

which indicates that the leader-following formation is reached and the convergence rate
can be estimated by λ.

The proof is completed.

Theorem 2. With the same conditions in Theorem 1, there does not exist Zeno-behavior
for triggering time sequence {tik}.

Proof. Denote

χi(t) = ui(t)−Q(hi − h0) = −F
+∞∫
0

ki(τ)qi
(
tik − τ

)
dτ, t ∈ [tik, t

i
k+1).

Thus,

χ(t) = −
+∞∫
0

(
Ĥ(τ)⊗ F

)
ξ(t− τ) dτ −

+∞∫
0

(
K̂(τ)⊗ F

)
e(t− τ) dτ. (16)

For t ∈ [tik, t
i
k+1), computing the upper right-hand Dini derivative of ‖ei(t)‖, we get

D+
∥∥ei(t)∥∥
6
∥∥ėi(t)∥∥ =

∥∥q̇i(t)∥∥ =

∥∥∥∥∥
N∑
j=1

aij
(
ẋi(t)− ẋj(t)

)
+ bi

(
ẋi(t)− ẋ0(t)

)∥∥∥∥∥
=

∥∥∥∥∥
N∑
j=1

aij
(
Axi(t)+Bui(t)−Axj(t)−Buj(t)

)
+bi

(
Axi(t) +Bui(t)−Ax0(t)

)∥∥∥∥∥
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=

∥∥∥∥∥
N∑
j=1

aij
(
A((xi − hi)− (x0 − h0)

)
+ (A+BQ)(hi − h0) +Bχi(t)

−A
(
(xj − hj)− (x0 − h0)

)
− (A+BQ)(hj − h0)−Bχj(t)

)
+ bi

(
A((xi − hi)− (x0 − h0)) + (A+BQ)(hi − h0) +Bχi(t)

)∥∥∥∥∥
=

∥∥∥∥∥
N∑
j=1

aij
(
A(ξi(t)− ξj(t)) +B(χi(t)− χj(t))

)
+ bi

(
Aξi(t) +Bχi(t)

)∥∥∥∥∥
6 ‖H ⊗A‖

∥∥ξ(t)∥∥+ ‖H ⊗B‖
∥∥χ(t)

∥∥. (17)

Substituting (16) into (17) yields

D+
∥∥ei(t)∥∥ 6 ‖H ⊗A‖

∥∥ξ(t)∥∥+ ‖H ⊗B‖
+∞∫
0

∥∥Ĥ(τ)⊗ F
∥∥∥∥ξ(t− τ)

∥∥dτ

+ ‖H ⊗B‖
+∞∫
0

∥∥K̂(τ)⊗ F
∥∥∥∥e(t− τ)

∥∥ dτ.

Let % = ‖H ⊗B‖‖F‖
√
N/(1− β1). Using (10) and (15), it holds

D+
∥∥ei(t)∥∥ 6 ‖H ⊗A‖

∥∥ξ(t)∥∥+ ‖H ⊗B‖‖F‖
+∞∫
0

∥∥Ĥ(τ)
∥∥∥∥ξ(t− τ)

∥∥dτ

+ %β1‖H‖
+∞∫
0

∥∥K̂(τ)
∥∥∥∥ξ(t− τ)

∥∥dτ + %β2

+∞∫
0

∥∥K̂(τ)
∥∥e−λ(t−t0−τ) dτ

6 ‖H ⊗A‖Ze−λ(t−t0)

+ ‖H ⊗B‖‖F‖Ze−λ(t−t0)

+∞∫
0

∥∥Ĥ(τ)
∥∥eµτ dτ · sup

τ>0

(
e(λ−µ)τ

)

+ %β1‖H‖Ze−λ(t−t0)

+∞∫
0

∥∥K̂(τ)
∥∥eµτ dτ · sup

τ>0

(
e(λ−µ)τ

)

+ %β2e−λ(t−t0)

+∞∫
0

∥∥K̂(τ)
∥∥eµτ dτ · sup

τ>0

(
e(λ−µ)τ

)
= Ξe−λ(t−t0), (18)

where Ξ = ‖H ⊗A‖Z + ‖H ⊗B‖‖F‖Zφ+ %β1‖H‖Zψ + %β2ψ.
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By (18) and ei(tik) = 0 one has∥∥ei(t)∥∥ 6
Ξ

λ

(
e−λ(tik−t0) − e−λ(t−t0)

)
.

When the triggering function (4) crosses zero, the next event will be triggered, i.e.,

β1

∥∥qi(tik)
∥∥+ β2e−λ(tik+1−t0) =

∥∥ei(tik+1)
∥∥ 6

Ξ

λ

(
e−λ(tik−t0) − e−λ(tik+1−t0)

)
.

Hence,

β2e−λ(tik+1−t0) 6
Ξ

λ

(
e−λ(tik−t0) − e−λ(tik+1−t0)

)
.

Letting T ik = tik+1 − tik, we can obtain that

β2e−λT
i
k 6

Ξ

λ

(
1− e−λT

i
k
)
,

that is,

e−λT
i
k 6

Ξ
λ

β2 + Ξ
λ

< 1,

and then

T ik > − 1

λ
ln

Ξ
λ

β2 + Ξ
λ

> 0. (19)

From (19) one can derive that for any agent i, infk{T ik} > 0, which means that there does
not exist Zeno-behavior for any agent.

The proof is completed.

4 Simulation results

The theoretical results are illustrated through two numerical examples. The simulation is
performed by MATLAB software, and the pseudocode of the event-triggered formation
control strategy is shown as follows:

Input: The initial states x0(t0), xi(t0), the desired formation h,
the delay kernels ki(τ), other parameters, like event-
triggered parameters β1, β2 and the control matrixes F , Q.

Output: The error of states, the event-triggering instants, and
the evolvement of agents.

BEGIN
t0 = 0;

for t = 0 : ~ : T − ~ do
Update the leader’s state x0(t) based on (1);
Update the followers’s state xi(t) based on (1) under
control input (2);
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for i = 1 : N do
Compute the combined error ei(t) and the combined
state qi(t

i
k);

If ‖ei(t)‖ > β1‖qi(tik)‖+ β2e
−λt then

Record the instant as tik+1 and update the state
xi(t) at tik+1;

Else
The event has not occurred, and update the state
xi(t) at instant t ∈ [tik, t

i
k+1);

End
End

END

Example 1. Suppose MASs consist of five follower agents with one leader. Let the con-
nectivity weights a12 = a14 = a21 = a25 = a32 = a45 = a53, b4 = b5 = 1. The other
weights are all equal to zero. Obviously, Assumption 1 is satisfied, and

H =


2 −1 0 −1 0
−1 2 0 0 −1
0 −1 1 0 0
0 0 0 2 −1
0 0 −1 0 2

 .
The delay kernels are given as: k1(τ) = e−τ , k2(τ) = e−τ , k3(τ) = 2e−2τ , k4(τ) =

2e−2τ , k5(τ) = 5e−5τ , which satisfy
∫ +∞

0
ki(τ) dτ = 1 and

∫ +∞
0

ki(τ)eµτ dτ < +∞
by taking µ < 1, i = 1, . . . , 5. Furthermore, one can compute that φ = 3.7521 and
ψ = 1.1111 by choosing µ = 0.1.

Assume that

A =

−0.5 −0.1 0.2
−0.1 −0.4 0.1
−0.1 −0.2 −0.6

 , B =

0.1 0.02 0.02
0.3 0.4 0.5
0.6 −0.5 −0.4

 .
One can verify that (A,B) is stabilization. Given

Q =

5.0000 10.3125 −30.6250
0.0000 −0.8958 4.4583
0.0000 −1.1042 2.5417

 ,
we can get A + BQ = 0. Let the desired formation h = [hT

0 , h
T
1 , . . . , h

T
5 ]T, where

h0 = [50, 20, 80]T, h1 = [30, 30, 10]T, h2 = [60, 30, 10]T, h3 = [70, 20, 10]T, h4 =
[50, 10, 10]T, h5 = [10, 20, 10]T.

Letting M = 0.001 diag{1, 1, 1}, by solving the Riccati equation (6) we have

P =

 0.0010 −0.0003 0.0001
−0.0003 0.0014 −0.0001
0.0001 −0.0001 0.0008

 ,
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Figure 1. Simulation results.

F = ηBTP =

0.0003 0.0000 0.0001
0.0008 0.0014 0.0013
0.0024 −0.0028 −0.0007

 ,
where

η =
1

min Re(λi(H))
= 3.3887.

Hence, one has W = 27.7318, $ = 0.3337 according to (7). Then v = 0.0312 and
y = 0.0112 by choosing λ = 0.03 ∈ (0, v). Then by Theorem 1 the leader-following
formation can be reached for β1 ∈ (0, y) and β2 > 0.

Let β1 = 0.01 and β2 = 0.1. The initial conditions are set as x0(t0) = [30, 10, 1]T,
xi(t0) = 5i · [1, 2, 3]T, i = 1, 2, 3, 4, 5. The simulation results are depicted in Fig. 1.

Event-triggering instants for each follower are shown in Fig. 1(a), which demonstrates
that the frequency of controller update is greatly reduced and there is no Zeno-behavior.
As described in Fig. 1(b), ‖ei‖ for followers all converge to 0. The evolution of all agents
is shown in Fig. 1(c), which indicates the accomplishment of the desired formation.
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Example 2. Suppose MASs include one leader and six followers of nonholonomic ve-
hicles of unicycle type. For i = 0, 1, 2, . . . , 6, each vehicle has the follwing kinematic
model:

˙̄xi = νi cosϑi,

˙̄yi = νi sinϑi,

ϑ̇i = ωi,

where [x̄i, ȳi]
T denotes the Cartesian coordinates of the center of mass, ϑi represents

the heading angle in the inertial frame. νi and ωi denote the linear velocity and angular
velocity, respectively.

By linearizing the kinematic model for each vehicle [1,22] the leader-following MASs
can be described by (1) with the following system parameter matrices [6, 15, 30]:

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , B =


0 0
0 1
0 0
0 1

 .
One can verify that (A,B) is stabilization.

Let the connectivity weights a12 = a16 = a25 = a31 = a34 = a36 = a41 = a43 =
a54 = a56 = a61 = a63, b1 = b2 = b6 = 1. The other weights are all equal to zero.
Obviously, Assumption 1 is satisfied, and

H =


3 −1 0 0 0 −1
0 2 0 0 −1 0
−1 0 3 −1 0 −1
−1 0 −1 2 0 0
0 0 0 −1 2 −1
−1 0 −1 0 0 3

 .

The delay kernels are given as: k1(τ) = e−τ, k2(τ) = e−τ, k3(τ) = 2e−2τ, k4(τ) = 2e−2τ,
k5(τ)=5e−5τ, k6(τ)=2e−2τ, which satisfy

∫ +∞
0

ki(τ) dτ = 1 and
∫ +∞

0
ki(τ)eµτ dτ <

+∞ by taking µ < 1, i = 1, . . . , 6. Furthermore, φ = 4.8772 and ψ = 1.1111 by
choosing µ = 0.1.

The desired formation is described by h= [hT
0 , h

T
1 , . . . , h

T
6 ]T, where h0 = [0, 5, 0, 1]T,

h1 = [−10
√

3, 5, 30, 1]T, h2 = [10
√

3, 5, 30, 1]T, h3 = [20
√

3, 5, 0, 1]T, h4 = [10
√

3, 5,
−30, 1]T, h5 =[−10

√
3, 5,−30, 1]T, h6 =[−20

√
3, 5, 0, 1]T. It is clear thatA(hi−h0)=0

for any i, thus, Q can be chosen as 0.
Letting M = 0.01 diag{1, 1, 1, 1}, by solving the Riccati equation (6) we have

P =


0.0458 0.1000 0.0000 0.0000
0.1000 0.4583 0.0000 0.0000
0.0000 0.0000 0.0458 0.1000
0.0000 0.0000 0.1000 0.4583

 ,
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Figure 2. Simulation results.

and then

F = ηBTP =

[
0.1779 0.8115 0.0000 0.0000
0.0000 0.0000 0.1779 0.8115

]
,

where

η =
1

min(Reλi(H))
= 1.7793.

Hence, one has W = 61.317, $ = 0.229 according to (7). Then v = 9.3818 · 10−5

and y = 1.6376 · 10−5 by choosing λ = 9.0 · 10−5 ∈ (0, v). Then by Theorem 1 the
leader-following formation can be reached for β1 ∈ (0, y) and β2 > 0.

Let β1 = 1.6 · 10−5 and β2 = 1.0 · 10−4. The initial conditions are set as x0(t0) =
[30, 5, 50, 1]T, x1(t0) = [0,−3, 100, 3]T, x2(t0) = [80,−4,−20,−6]T, x3(t0) =
[0,−3.5,−80, 6]T, x4(t0) = [−100, 2.5, 0, 7]T, x5(t0) = [60, 2,−100, 8]T, x6(t0) =
[−80, 1, 90,−12]T. The simulation results are depicted in Fig. 2. Event-triggering instants
for each follower are shown in (a), which demonstrates that the frequency of controller
update is reduced and the Zeno-behavior is excluded. (b) shows the evolution of ‖ei‖ for
followers. As described in (c) of the path of all agents, the desired formation is achieved.

Nonlinear Anal. Model. Control, 28(4):760–779, 2023

https://doi.org/10.15388/namc.2023.28.32277


776 Y. Deng, W. Zhu

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

(a) Events for followers

0 10 20 30 40 50 60 70 80

0

20

40

60

80

100

120

140

(b) Error

(c) Agents converge to a desired formation

Figure 3. Simulation results.

However, we find that the number of triggering time instants for MASs is very large if
λ = 9.0 · 10−5 and β1 ∈ (0, 1.6376 · 10−5) by the above calculation. In fact, the desired
formation can still be reached for some large values of β1 and λ. For example, choosing
λ = 0.1, β1 = 0.3, and β2 = 1, the simulation results are shown in Fig. 3, from which
we can also obtain the desired formation and exclude Zeno-behavior. Thus, it should be
noted that 0 < λ < v and β1 ∈ (0, y) is only a sufficient condition in Theorem 1. How to
release the conservative condition is interested for us in future study.

5 Conclusion

The leader-following formation for general linear MASs with distributed infinite input
time delays is explored based on the ETC approach. Considering the distributed infinite
time delays between agents, a novel event-triggered formation control protocol is put
forward. Utilizing inequality technique, leader-following formation is achieved without
Zeno-behavior. It should be noted that this paper only deals with fixed formation for
a classic linear MASs model with fixed communication topology, which are too strict
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in practical application. In practice, MASs may be subject to unmatched nonlinear dy-
namics, external disturbance and uncertainty, while communication topology may be
switching. In addition, the fixed formation is not conducive for agents to adjust rela-
tive positions in time while avoiding obstacles and to expand or contract the movement
scales. Therefore, the time-varying formation of nonlinear MASs considering external
disturbance and uncertainty with switching topology will be investigated in further study.
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