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Abstract. In this paper, we are concerned with the study of the mathematical analysis for an
optimal control of a nonlocal degenerate aggregation model. This model describes the aggregation
of organisms such as pedestrian movements, chemotaxis, animal swarming. We establish the well-
posedness (existence and uniqueness) for the weak solution of the direct problem by means of
an auxiliary nondegenerate aggregation equation, the Faedo–Galerkin method (for the existence
result) and duality method (for the uniqueness). Moreover, for the adjoint problem, we prove the
existence result of minimizers and first-order necessary conditions. The main novelty of this work
concerns the presence of a control to our nonlocal degenerate aggregation model. Our results are
complemented with some numerical simulations.

Keywords: aggregation equation, nonlocal models, degenerate diffusion, finite volume, optimal
control, adjoint problem.

1 Introduction

Nonlocal aggregation model has recently received great attention in biological applica-
tions. There exists a large variety of biological aggregation models such as the flocking of
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birds, aggregation of fish and the swarming insect. We refer the reader to a large number
of works have focused on biological aggregation [6, 7, 10, 12, 16, 18–20, 22, 23].

In this paper, we consider the following nonlocal degenerate equation:

∂tu− div
(
a(u)∇u− u∇K ∗ u

)
= F (u,w) in ΩT ,(

a(u)∇u− u∇K ∗ u
)
· η = 0 on ΣT ,

u(x, 0) = u0(x) in Ω.

(1)

Herein,ΩT := Ω×(0, T ),ΣT := ∂Ω×(0, T ), T > 0 is a fixed time, andΩ is a bounded
domain in R3 with Lipschitz boundary ∂Ω and outer unit normal η. In the model above,
the density of the population is represented by u = u(x, t), a(u) is a density-dependent
diffusion coefficient. Furthermore, K is the sensing (interaction) kernel that models the
long-range attraction. In the convolution term, u is extended by zero, outside of Ω. More
precisely,

∇K ∗ u(x) =

∫
Ω

∇K(x− y)u(y) dy.

Note that system (1) arises in many models of biology and, in particular, in social organi-
zations, which is one of the fundamental aspects of animal behaviors.

In this paper, we assume that the density-dependent diffusion coefficient a(u) degen-
erates for u = 0 and u = u. This means that the diffusion vanishes when u approaches
values close to the threshold u and also in the absence of the population. This interpreta-
tion was proposed in [2] and in the references therein for the chemotaxis model.

To summarize, the following main assumptions are made:

(A1) a ∈ C1([0, 1]), a(0) = a(u) = 0 and a(s) > 0 for 0 < s < u;
(A2) K ∈ C2(R3) is a nonnegative radially nonincreasing function with the norm

‖K‖C2(R3) <∞ and
∫
R3 K(x) dx = 1.

In addition, the reaction function F has the following form:

F (u,w) = αu− wu2,

where, α > 0 is the Malthusian growth coefficient, and w(·) (the control) is a nonnegative
function of the intraspecific competition.

Regarding the degeneracy of the diffusion coefficient, a typical example of a is a(u) =
u(u− u). Note that the degeneracy of the diffusion coefficient and the nonlocal term are
major concerns for the mathematical and numerical treatment of equation (1).

To put this paper in the proper perspective, we mention that the nonlocal aggregation
equation investigated analytically and numerically by many authors: [6, 22] for the study
of the pure aggregation equation, i.e., a(u) = 0 and F = 0, [8] for the existence result,
[3, 4] for the blowup of the solution and [13, 14] for the analysis of the numerical simula-
tion.

Many studies have focused on the competition between the degenerate diffusion as
a repellent force and nonlocal aggregation terms as attractive force (see, e.g., [15]). This
competition is observed in many biological phenomenon from social pattern formation to
microbiological dynamics under chemotaxis force [5]. From a mathematical perspective,
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we mention, for example, the work [17] where the author proposed and proved the exis-
tence results of local and global solutions to a class of aggregation equations depending
on attraction kernel regularity. In passing, we want to mention that the authors in [5]
considered and studied the model (1) with F := 0 and a(u) = 0 for u = 0.

In our study, we are concerned with the mathematical analysis and numerical simu-
lations of an optimal control problem arising in the study of population dynamics. Our
model is governed by a degenerate aggregation-diffusion equation. To this model, we
introduce a notion of a weak solution for the direct problem and prove its well-posedness.
Comparing to [5] (equation (1) with F := 0 and a(u) = 0 for u = 0), in this paper, we
prove the existence of solutions by applying the Faedo–Galerkin method, deriving a priori
estimates and then passing to the limit in the approximate solutions using monotonicity
and compactness arguments. The uniqueness of these weak solutions is guaranteed by
using the duality method. For the analysis of our optimal control problem, we use the
Lagrangian framework in which the control problem is set as a constrained minimization
problem. Note that, if there exists of a minimum to a suitable Lagrangian functional, it is
a stationary point.

The numerical solution of our optimal control problem constrained by degenerate
nonlocal aggregation model requires the proper discretization of the direct and the adjoint
problems and the treatment of an optimization problem. From the standpoint of our
specific application the main goal is to determine the control response to reduce the pattern
formation generated by a nonlocal attraction term. More specifically, we are interested in
determining the optimal intra species competition to insure a minimal pattern formation
due the attraction force.

The structure of the paper is organized as follows. In Section 2, we present the main
results, and we prove the well-posedness (existence and uniqueness) result to our de-
generate aggregation model. Section 3 will be devoted to the optimal control problem.
We present our optimal control approach, introduce a functional useful for minimize,
prove the existence of the control, and we derive the adjoint-state problem. Finally, in
Section 4, we introduce the numerical scheme for both direct and adjoint problem, present
the optimal control procedure, and we demonstrate various realizations showing the effect
of the optimal control solution on the overcrowding of the population.

2 Existence and uniqueness of weak solution

2.1 Weak solutions for the nonlocal degenerate equation

Before stating our main results, we give the definition of a weak solution for system (1).

Definition 1. A weak solution of (1) is a nonnegative function u satisfying the following
conditions:

(C1) u ∈ L∞(ΩT ), A(u) :=
∫ u
0
a(r) dr ∈ L2(0, T ;H1(Ω)), u ∈ Cw(0, T ;L2(Ω)),

∂tu ∈ L2(0;T ; (H1(Ω))′), u(0) = u0;
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(C2) For all ϕ ∈ L2(0, T ; (H1(Ω))′),

T∫
0

〈∂tu, ϕ〉dt+

∫∫
ΩT

a(u)∇u · ∇ϕdxdt−
∫∫
ΩT

u(∇K ∗ u) · ∇ϕdx dt

=

∫∫
ΩT

F (u,w)ϕdx dt. (2)

Here Cw(0, T ;L2(Ω)) denotes the space of continuous functions with values in (a closed
ball of) L2(Ω) endowed with the weak topology, and 〈·, ·〉 denotes the duality pairing
between H1(Ω) and (H1(Ω))′.

Our first result is the following well-posedness (existence and uniqueness) theorem
for weak solutions.

Theorem 1. Assume that conditions (A1), (A2) hold and u0 ∈ L∞(Ω) with 0 6 u0 6 u,
where u is a positive constant in R. Then there exists a unique weak solution to the
nonlocal degenerate equation (1) in the sense of Definition 1.

2.2 Existence of weak solution

Note that a major difficulty for the analysis of equation (1) is the strong degeneracy of the
diffusion term and the presence of the nonlocal term. To handle this difficulty, we replace
the original diffusion term a(u) by aε(u) = a(u) + ε (ε > 0) and consider the following
nonlocal nondegenerate equation:

∂tu− div
(
aε(u)∇u− u∇K ∗ u

)
= F (u,w) in ΩT ,(

aε(u)∇u− u∇K ∗ u
)
· η = 0 on ΣT ,

u(x, 0) = u0(x) in Ω.

(3)

To prove Theorem 1, we first prove existence of solutions to the nondegenerate prob-
lem (3) by using the Faedo–Galerkin method (in an appropriate functional setting). Con-
vergence is achieved by means of a priori estimates and compactness arguments.

In what follows, we use the abbreviation “a.e.” to denote “almost everywhere”, which
means that a property or condition holds for all points in a set, except for a set of points
that has measure zero.

2.2.1 The Faedo–Galerkin solution

To construct our Faedo–Galerkin approximation, we employ a classical Hilbert basis,
which is orthonormal in L2 and orthogonal in H1. We look for solutions to the prob-
lem obtained from the projection of (3) onto the finite-dimensional subspace Sn :=
span{e1, . . . , en}. The approximate solution takes the following form:

un : [0, T ]→ Sn, un(t) =

n∑
l=1

cn,l(t)el.
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Herein, {el}∞l=1 is an orthogonal basis inH1(Ω) and an orthonormal basis in L2(Ω). Our
first goal is to determine the coefficients cn = {cn,l}nl=1 such that (l = 1, . . . , n)

〈∂tun, el〉+

∫
Ω

aεn(un)∇un · ∇el dx−
∫
Ω

un(∇K ∗ un) · ∇el dx

=

∫
Ω

(
wun − u2n

)
el dx (4)

and with reference to the initial condition

un(0) = u0,n =

n∑
l=1

cnl (0)el, cnl (0) :=

∫
Ω

u0,n(x)el(x) dx.

Herein, εn := 1/n, n > 0. More explicitly, we can write (4) as an equation of ordinary
differential equation (l = 1, . . . , n)

c′n,l(t) = −
∫
Ω

aεn(un)∇un · ∇el dx+

∫
Ω

un(∇K ∗ un) · ∇el dx

+

∫
Ω

(
wun − u2n

)
el dx

:= Fl
(
t, cn,1(t), . . . , cn,n(t)

)
, (5)

where we have used the orthonormality of the basis. Observe that Fl (l = 1, . . . , n)
is a Carathéoodory function. Therefore, using the standard ODE theory, there exists an
absolutely continuous functions {cn,l}nl=1 satisfying (5) for a.e. t ∈ [0, t′) for some t′ > 0.
The next is to show that the local solution constructed above can be extended to the whole
time interval [0, T ) (independent of n), but this can be done as in [1], so we omit the
details.

Observe that from (4) the Faedo–Galerkin solution satisfies the following weak for-
mulation:

T∫
0

〈∂tun, ϕ〉dt+

∫∫
ΩT

aεn(un)∇un · ∇ϕ dx dt−
∫∫
ΩT

un(∇K ∗ un) · ∇ϕdxdt

=

∫∫
ΩT

F (un, wn)ϕdx dt (6)

for all test functions ϕ ∈ L2(0, T ;H1(Ω)).

2.2.2 Maximum principle

In this section, we prove that the solution of the nonlocal degenerate equation (2) satisfies
the following version of maximum principle.

https://www.journals.vu.lt/nonlinear-analysis
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Lemma 1. Assume that 0 6 u0 6 u, then the solution un to problem (3) satisfies

0 6 un(x, t) 6 eλtu for a.e. (x, t) ∈ ΩT ,
where λ ∈ R such that

λ > −‖w‖L∞(ΩT ) −
∥∥div(∇K ∗ un)

∥∥
L∞(ΩT )

. (7)

Proof. For technical reasons, we need to extend the function f(u) := αu − wu2 so that
it becomes measurable on ΩT , continuous with respect to u. We do this by setting (recall
that α and w are nonnegative)

F̃ (u,w) =

{
F (u,w) if u > 0,

0 else.

Next, we define the following new variable ũn by setting un = eλtũn, where λ > 0
is defined in (7). It follows from (3) that ũn satisfies

∂tũn − div
(
am
(
eλtũn

)
∇ũn

)
+ eλt div

(
ũ+n∇K ∗ ũn

)
= −λũn + e−λtF̃

(
eλtũ+n , w

)
, (8)

where ũ+n = max{ũn, 0}. Multiplying this equation by u−n = max{−ũn, 0} and inte-
grating over Ω, the result is

1

2

d

dt

∫
Ω

|ũ−n |2 dx−
∫
Ω

aεn
(
eλtũn

)
∇ũn · ∇ũ−n dx+ eλt

∫
Ω

ũ+n∇K ∗ ũn · ∇ũ−n dx

=

∫
Ω

(
λũn − e−λtF̃

(
e−λtũ+n , w

))
ũ−n dx. (9)

Observe that∫
Ω

aεn(eλtũn)∇ũn · ∇ũ−n dx = −
∫
Ω

aεn(eλtũn)|∇ũ−n |2 dx 6 0,∫
Ω

ũ+n∇K ∗ ũn · ∇ũ−n dx = 0

and ∫
Ω

(
λũn − e−λtF

(
e−λtũ+n , w

))
ũ−n dx = −

∫
Ω

λ|ũ−n |2 dx 6 0.

Using this, we get easily from (9)

1

2

d

dt

∫
Ω

|ũ−n |2 dx 6 0.

Since the data u0 is nonnegative, we deduce that ũ−n (x, t) = 0 for a.e. (t, x) ∈ ΩT .
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In the following step, we show that ũn(x, t) 6 u, for a.e. (x, t) ∈ ΩT . To do this, it
suffices to prove that (ũn − u)+ = 0. We multiply equation (8) by (ũn − u)+, and we
integrate over Ω to obtain

1

2

d

dt

∫
Ω

∣∣(ũn − u)+
∣∣2 dx+

∫
Ω

aεn(eλtũn)∇ũn · ∇(ũn − u)+ dx

− eλt
∫
Ω

ũnKn · ∇(ũn − u)+ dx

=

∫
Ω

(
−λũn + e−λtF̃

(
eλtũn, w)

)
(ũn − u)+ dx 6

∫
Ω

(−λũn + αũn)(ũn − u)+ dx

=

∫
Ω

(−λ+ α)
∣∣(ũn − u)+

∣∣2 dx+

∫
Ω

(−λ+ α)u(ũn − u)+ dx, (10)

where Kn := ∇K ∗ un. Regarding the degenerate diffusion term, we have∫
Ω

aεn
(
eλtũn

)
∇ũn · ∇(ũn − u)+ dx =

∫
Ω

aεn(eλtũn)
∣∣∇(ũn − u)+

∣∣2 dx > 0. (11)

For the nonlocal term, we use an integration by part to deduce∫
Ω

ũnKn · ∇(ũn − u)+ dx

=

∫
Ω

(ũn − u)+Kn · ∇(ũn − u)+ dx+

∫
Ω

uKn · ∇(ũn − u)+ dx

=
1

2

∫
Ω

Kn · ∇
∣∣(ũn − u)+

∣∣2 dx+

∫
Ω

uKn · ∇(ũn − u)+ dx

= −1

2

∫
Ω

div(Kn)
∣∣(ũn − u)+

∣∣2 dx+
1

2

∫
∂Ω

∣∣(ũn − u)+
∣∣2Kn · ηdσ(x)

−
∫
Ω

udiv(Kn)(ũn − u)+ dx+

∫
∂Ω

u(ũn − u)+Kn · ηdσ(x)

6 −1

2

∫
Ω

div(Kn)
∣∣(ũn − u)+

∣∣2 dx−
∫
Ω

u div(Kn)(ũn − u)+ dx, (12)

where we have used (recall that in (A2), K is radially nonincreasing)

Kn · η 6 0 on ΣT .

https://www.journals.vu.lt/nonlinear-analysis
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Collecting the previous estimates (11) and (12), we readily conclude from (10)

1

2

d

dt

∫
Ω

∣∣(ũn − u)+
∣∣2 dx+

∫
Ω

(
λ− w +

1

2
div(Kn)

)∣∣(ũn − u)+
∣∣2 dx

+

∫
Ω

u
(
λ− w + div(Kn)

)
(ũn − u)+ dx 6 0. (13)

Now, by the choice of λ in (7) we deduce from (13)

1

2

d

dt

∫
Ω

∣∣(ũn − u)+
∣∣2 dx 6 0.

Using that u0 6 u, we conclude from this un(t, ·) 6 eλtu in Ω for t ∈ (0, T ). This
concludes the proof of the lemma.

2.2.3 A priori estimates

First, we denote

A(r) =

r∫
0

a(s) ds and A(r) =

r∫
0

A(s) ds.

To pass to the limit in (6) and prove the existence of the solution u, we need the following
a priori estimates lemma.

Lemma 2. The solution un to problem (3) satisfies∥∥A(un(x, t)
)∥∥
L∞(0,T ;L1(Ω))

+
∥∥∇A(un)

∥∥
L2(ΩT )

+ εn‖un‖L∞(0,T ;L2(Ω)) + εn‖∇un‖L2(ΩT ) 6 C, (14)

‖∂tun‖L2(0,T ;(H1(Ω))′) 6 C (15)

for some constant C > 0 not depending of n.

Proof. We substitute ϕ = Aεn(un) := A(un) + εnun in (6), and we integrate over
(0, τ) with τ < T to obtain

τ∫
0

〈
∂tun, Aεn(un)

〉
dt+

∫∫
Ωτ

∣∣∇A(un)
∣∣2 dxdt+ εn

∫∫
Ωτ

|∇un|2 dxdt

−
∫∫
Ωτ

un(∇K ∗ un) · ∇Aεn(un) dxdt

=

∫∫
Ωτ

F (un, w)Aεn(un) dxdt. (16)

Nonlinear Anal. Model. Control, 28(4):780–803, 2023
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Next, using Young inequality and Lemma 1, we obtain∣∣∣∣ ∫∫
Ωτ

un(∇K ∗ un) · ∇Aεn(un) dxdt

∣∣∣∣
6
∫∫
Ωτ

|∇K ∗ un|2|un|2 dxdt+
1

2

∫∫
Ωτ

∣∣∇A(un)
∣∣2 dx dt+

εn
2

∫∫
Ωτ

|∇un|2 dxdt

6 C1 +
1

2

∫∫
Ωτ

∣∣∇A(un)
∣∣2 dx dt+

εn
2

∫∫
Ωτ

|∇un|2 dxdt (17)

and ∫∫
Ωτ

∣∣F (w, un)Aεn(un)
∣∣dxdt 6 C2 (18)

for some constants C1, C2 > 0. Now, exploiting (17) and (18), we deduce from (16)

sup
0<τ6T

∫
Ω

A
(
un(τ)

)
dx+ εn sup

0<τ6T

∫
Ω

∣∣un(τ)
∣∣2 dx+

1

2

∫∫
ΩT

∣∣∇A(un)
∣∣2 dx dt

+
εn
2

∫∫
Ωτ

|∇un|2 dxdt

6 C3 (19)

for some constant C3 > 0. This implies the desired estimate (14).
To prove estimate (15), we take ϕ ∈ L2(0, T ;H1(Ω)), and we use the weak formula-

tion (6) to obtain∣∣∣∣∣
T∫

0

〈∂tun, ϕ〉dt

∣∣∣∣∣ 6
∫∫
ΩT

∣∣∇Aεn(un) · ∇ϕ
∣∣dxdt

+

∫∫
ΩT

∣∣un(∇K ∗ un) · ∇ϕ
∣∣dxdt+

∫∫
ΩT

∣∣F (un, w)ϕ
∣∣dxdt,

6
∥∥∇Aεn(un)

∥∥
L2(ΩT )

‖∇ϕ‖L2(ΩT )

+ ‖∇K ∗ un‖L∞(ΩT )‖un‖L2(ΩT )‖∇ϕ‖L2(ΩT )

+
∥∥F (un, w)

∥∥
L2(ΩT )

‖ϕ‖L2(ΩT )

6 C4‖ϕ‖L2(0,T ;H1(Ω))

for some constant C4 > 0, where we have used (19). This implies

‖∂tum‖L2(0,T ;(H1(Ω))′) 6 C4. �
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2.2.4 Passing to the limit

Thanks to Lemma 2 and Aubin–Simon compactness theorem (see, e.g., [21]), we can
extract subsequences, which we do not relabel, such that, as n→∞,

un → u weakly-∗ in L∞(ΩT ),

A(un)→ A weakly in L2
(
0, T ;H1(Ω)

)
,

(20)√
εnuε → 0 weakly in L2

(
0, T ;H1(Ω)

)
,

∂tuε → ∂tu weakly in L2
(
0, T ;

(
H1(Ω)

)′)
.

Next, we use the compact embedding L∞(Ω) ⊂ (H1(Ω))′ and Corollary 4 of [21] to
deduce that un is a Cauchy sequence in C(0, T ; (H1(Ω))′).

Observe that A(uε) is uniformly bounded in S, where

S =
{
u ∈ L2

(
0, T,H1(Ω)

)
: ∂tu ∈ L2

(
0, T ;

(
H1(Ω)

)′)}
.

From the compact imbedding S ⊂ L2(ΩT ) we deduce that there exists a subsequence of
un such that

A(un)→ A strongly in L2(ΩT ).

Since A is monotone, we get A(u) = A. Therefore,

A(un)→ A(u) strongly in L2(ΩT ) and a.e. in ΩT .

Moreover, as A−1 is well defined and continuous, we apply the dominated convergence
theorem to un = A−1(A(un)) to obtain

un → u strongly in L2(ΩT ) and a.e. in ΩT .

Using this and the weak-∗ convergence of un to u in L∞(ΩT ), we obtain

un → u strongly in Lq(ΩT ) for 1 6 q <∞.

With the above convergences, we are ready to identify the limit u as a weak solution of (1).
Let ϕ ∈ L2(0, T ;H1(Ω)) be a test function in (6). By (20) it is clear that, as ε→ 0,

T∫
0

〈∂tun, ϕ〉dt→
T∫

0

〈∂tu, ϕ〉dt

and ∫∫
ΩT

aεn(un)∇un · ∇ϕdx dt→
∫∫
ΩT

a(u)∇u · ∇ϕdxdt.

Since un(∇K ∗ un) is bounded in L∞(ΩT ), we also have that, as n→∞,∫∫
ΩT

un(∇K ∗ un) · ∇ϕdx dt→
∫∫
ΩT

u(∇K ∗ u) · ∇ϕdx dt.
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Similarly, we have, as n→∞,∫∫
ΩT

F (un, w)ϕdxdt→
∫∫
ΩT

F (u,w)ϕdxdt.

We have finally identified u as a solution of (1).

2.3 Uniqueness of the weak solution

In this section, we prove uniqueness of weak solutions to our nonlocal degenerate aggre-
gation model, thereby completing the well-posedness analysis. The uniqueness proof of
weak solutions is proved by using duality technique.

First, we consider u1 and u2 two solutions of system (1). We set U = u1 − u2, then
U satisfies (for i = 1, 2)

∂tU −∆
(
A(u1)−A(u2)

)
+ div(u1∇K ∗ u1 − u2∇K ∗ u2)

= F (u1, w)− F (u2, w) in ΩT ,(
∇A(ui)− ui∇K ∗ ui

)
· η = 0 on ΣT ,

ui(x, 0) = u0(x) in Ω.

(21)

Now, we define the function ϕ solution of the problem

−∆ϕ(t, ·) = U(t, ·) in Ω and ∇ϕ(t, ·) · η = 0 on ∂Ω (22)

for a.e. t ∈ (0, T ). Since u1 and u2 are bounded in L∞, then we get from the theory of
linear elliptic equations the existence, uniqueness and regularity of solution ϕ satisfying

ϕ ∈ C
(
[0, T ];H2(Ω)

)
with

∫
Ω

ϕ(t, ·) dx = 0.

Note that from the boundary condition of ϕ in (22) and U(0, ·) = 0 we deduce that

∇ϕ(0, ·) = 0 in L2(Ω). (23)

Multiplying the second equation in (21) by ψ ∈ L2(0, T ;H1(Ω)) and integrating
over Ωt := (0, t)×Ω, we get

t∫
0

〈∂sU,ψ〉ds+

∫∫
Ωt

∇
(
A(u1)−A(u2)

)
· ∇ψ dxds

=

∫∫
Ωt

(u1∇K ∗ u1 − u2∇K ∗ u2) · ∇ψ dxds

+

∫∫
Ωt

(
F (u1, w)− F (u2, w)

)
ψ dx ds. (24)
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Since ϕ ∈ L2(0, T ;H1(Ω)), we can take ψ = ϕ in (24), and we obtain from (22), (23)

2

t∫
0

〈∂sU,ϕ〉ds = −2

t∫
0

〈∂s∆ϕ,ϕ〉ds =

∫
Ω

∣∣∇ϕ(t, x)
∣∣2 dx−

∫
Ω

∣∣∇ϕ(0, x)
∣∣2 dx

=

∫
Ω

∣∣∇ϕ(t, x)
∣∣2 dx (25)

and
t∫

0

〈∂sU,ϕ〉ds−
∫∫
Ωt

(
A(u1)−A(u2)

)
∆ϕdx ds

=

∫∫
Ωt

(u1∇K ∗ u1 − u2∇K ∗ u2) · ∇ϕdxds

+

∫∫
Ωt

(
F (u1, w)− F (u2, w)

)
ϕdxds. (26)

Since u1 and u2 are bounded in L∞, then there exist constants C5, C6 > 0 such that∣∣F (u1, w)− F (u2, w)
∣∣ 6 C5|u1 − u2|, (27)∣∣u1∇K ∗ u1 − u2∇K ∗ u2)
∣∣ 6 C6|u1 − u2|. (28)

Using (22), (27), (28), Hölder’s, Young’s, Sobolev–Poincaré’s inequalities, (26) yields

t∫
0

〈∂sU,ϕ〉ds 6 −Ca
∫∫
Ωt

|U |2 dxds+
Ca
4

∫∫
Ωt

|U |2 dxds+ C7

t∫
0

‖∇ϕ‖2L2(Ω) ds

+
Ca
4

∫∫
Ωt

|U |2 dx ds+ C8

t∫
0

‖ϕ‖2L2(Ω) ds

6 C9

t∫
0

‖∇ϕ‖2L2(Ω) ds

for some constants C7, C8, C9 > 0. Using this and (25), we deduce∫
Ω

∣∣∇ϕ(t, x)
∣∣2 dx = 2

t∫
0

〈∂sU,ϕj〉ds 6 2C9

t∫
0

‖∇ϕ‖2L2(Ω) ds. (29)

Finally, we use Gronwall’s lemma to conclude from (29)

∇ϕ = 0 a.e. in ΩT ,

ensuring the uniqueness of weak solutions.
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3 The optimal control problem

In this subsection, we provide the existence of the solution for the optimal control problem
of the nonlocal degenerate equation (1). We considered the following cost functional for
the optimization of the population density and aggregation term:

J(w, u) =
ε1
2

T∫
0

∫
Ωc

|w|2 dx dt+
ε2
2

∫∫
ΩT

∣∣u(∇K ∗ u)
∣∣2 dxdt, (30)

where ε1 and ε2 denote regularization parameters. Herein, Ωc ⊂ Ω is the control subdo-
main. We define the set of admissible controls U by

U =
{
w ∈ L∞(ΩT ): w 6 w(t, x) 6 w

}
,

where w ∈ R∗+ and w ∈ R∗+ are the minimal and the maximal intraspecific competition
rates, respectively. We consider the following minimization problem:

min
w
J(w, u) subject to (1). (31)

3.1 Existence of the control

In this subsection, we show the existence of the optimal solution w∗ ∈ U for the prob-
lem (31).

Lemma 3. Assume that u0 ∈ L∞(Ω). Then there exists a solution w∗ ∈ U of the optimal
control problem (30).

Proof. Let wn be a minimizing sequence of J such that

inf
w∈U
{J} 6 J(wn) 6 inf

w∈U
{J}+

1

n
.

Thanks to the definition of J , the sequence (wn)n is bounded in L2(ΩT ). This implies
that wn converge weakly to an w∗. Let un be a solution to problem (1) with respect to the
control wn. Working exactly as in Section 2, we deduce the following convergence (upon
a subsequence):

un → u∗ strongly in Lq(ΩT ) and a.e. in ΩT for 1 6 q <∞.

Note that, since the cost functional J(·, ·) is continuous and convex on L2(ΩT ) × U ,
it follows that J(·, ·) is weakly lower semicontinuous. Hence, by exploiting the strong
convergence of un combined with the weak lower semicontinuity of J we arrive to

J(u∗, w∗) 6 lim inf
n→∞

J(wn) 6 inf
w∈U

{
J(w)

}
= J(u∗, w∗).

This implies the existence result of our optimal control solution (31).
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3.2 Optimal conditions and dual problem

In this subsection, we derive the optimality conditions based on the Lagrangian formula-
tion. We introduce the Lagrange functional L defined by (recall that A(u) =

∫ u
0
a(s) ds)

L(u,w, p) = J(w, u) +

∫∫
ΩT

(
ut − div

(
a(u)∇u− u(∇K ∗ u)

)
− F (u,w)

)
p dxdt

=
ε1
2

T∫
0

∫
Ωc

|w|2 dxdt+
ε2
2

∫∫
ΩT

∣∣u(∇K ∗ u)
∣∣2 dxdt

+

∫∫
ΩT

(
ut − div

(
a(u)∇u− u(∇K ∗ u)

)
− F (u,w)

)
p dxdt

=
ε1
2

T∫
0

∫
Ωc

|w|2 dxdt+
ε2
2

∫∫
ΩT

∣∣u(∇K ∗ u)
∣∣2 dxdt−

∫∫
ΩT

∂tu pdx dt

+

∫∫
ΩT

(
∇A(u)− u(∇K ∗ u)

)
∇p dxdt−

∫∫
ΩT

F (u,w)p dxdt

=
ε1
2

T∫
0

∫
Ωc

|w|2 dxdt+
ε2
2

∫∫
ΩT

∣∣u(∇K ∗ u)
∣∣2 dxdt−

∫∫
ΩT

∂tu pdx dt

−
∫∫
ΩT

A(u)∆p dx dt+

∫∫
ΣT

A(u)∇p · η dσ(x) dt

−
∫∫
ΩT

u(∇K ∗ u) · ∇p dxdt−
∫∫
ΩT

F (u,w)pdx dt.

The first-order optimality system characterizing the adjoint variables is given by the
Lagrange multipliers, which result from equating the partial derivative of L with respect
to u equal to zero:(

∂L(u,w, p)

∂u
, δu

)
= ε2

∫∫
ΩT

u(∇K ∗ u)
(
(∇K ∗ u)δu+ u(∇K ∗ δu)

)
dxdt−

∫∫
ΩT

∂t p δu

−
∫∫
ΩT

a(u)∆p δudx dt−
∫∫
ΩT

(
δu(∇K ∗ u) + u(∇K ∗ δu)

)
∇p dxdt

−
∫∫
ΩT

∂uF (u,w)p δudx dt
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= ε2

∫∫
ΩT

u|∇K ∗ u|2δudxdt+ ε2

∫∫
ΩT

|u|2(∇K ∗ u)(∇K ∗ δu) dxdt

−
∫∫
ΩT

∂t p δu−
∫∫
ΩT

a(u)∆p δudxdt−
∫∫
ΩT

(∇K ∗ u)∇p δudxdt

−
∫∫
ΩT

u(∇K ∗ δu)∇p dxdt+

∫∫
ΩT

∂uF (u,w)p δudx dt

=

∫∫
ΩT

[
−∂tp− a(u)∆p− (∇K ∗ u)∇p+ ε2u|∇K ∗ u|2 − ∂uF (u,w)p

]
δudx dt

−
∫∫
ΩT

[
u∇p− ε2|u|2(∇K ∗ u)

]
· (∇K ∗ δu) dx dt. (32)

Observe that

B :=

∫∫
ΩT

(
u∇p− ε2|u|2(∇K ∗ u)

)
(x) · (∇K ∗ δu)(x) dxdt

=

T∫
0

∫
Ω×Ω

(
u∇p− ε2|u|2(∇K ∗ u)

)
(x) · ∇K(x− y)δu(y) dy dxdt

= −
T∫

0

∫
Ω×Ω

(
u∇p− ε2|u|2(∇K ∗ u)

)
(x) · ∇K(y − x)δu(y) dy dxdt

= −
∫∫
ΩT

(
u∇p− ε2|u|2(∇K ∗ u)

)
∗ ∇K δu dxdt. (33)

Next, we exploit (32) and (33) to deduce the adjoint equation of the nonlocal degenerate
aggregation model (1)

−∂tp− a(u)∆p− (∇K ∗ u)∇p+ (u∇p) ∗ ∇K
= ∂uF (u,w)p+ FK(u) in ΩT ,

∇p · η = 0 on ΣT ,
p(x, T ) = pT (x) = 0 in Ω,

(34)

where

∂uF (u,w) = α− 2wu and FK(u) := ε2
(
|u|2∇K ∗ u

)
∗ ∇K − ε2u|∇K ∗ u|2.

To find the optimal conditions, we calculate the gradient of the functional J(w, u):(
∂L

∂w
, δw

)
= ε1

T∫
0

∫
Ωc

w δw dxdt−
∫∫
Ωc

u2p δw dxdt and ∇J(w, u) =
∂L

∂w
.
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Therefore, the optimality condition can be written as follows:

T∫
0

∫
Ωc

(
ε1w + u2p

)
dx dt = 0.

Remark 1. Note that in aggregation equations, it is common to use an even kernel
(K(−x) = K(x)). We mention that the gradient of an even function became odd (i.e.,
∇K(−x) = −∇K(x).)

4 Numerical discretization

In this section, we present numerical methods to solve the nonlocal aggregation prob-
lem (1). We propose a numerical scheme to approximate the solution of the associated
adjoint problem (34), and we implement the optimal control solver of the minimization
problem (30). To approximate the solution of the direct problem (1) and adjoint prob-
lem (34), we will use the numerical scheme introduced in [9]. First, let us consider
a Cartesian mesh with the step hi in the direction i ∈ {1, . . . , d} and h = maxi hi.
Denote by (CJ)J∈Zd the space cells, where each cell CJ has a center xJ := (x1 . . . , xd)
with xi = Jihi for i ∈ {1, . . . , d}. Next, we let ei the canonical basis of Zd, and we
denote (unJ)J∈Zd the approximation of cell average of u(t, ·) at a given time tn = nτ .

We propose the following numerical approximation for the direct problem (1) (recall
that (s)+ = max{0, s} and (s)− = max{0,−s} for a real number s):

un+1
J = unJ +

d∑
i=1

τ

hi

((
Bni,J

)+
a
(
unJ
)
−
(
Bni,J+ei

)−
a
(
unJ+ei

)
−
(
Bni,J−ei

)+
a
(
unJ−ei

)
+
(
Bni,J

)−
a
(
unJ
))

−
d∑
i=1

τ

hi

((
Ani,J

)+
unJ −

(
Ani,J+ei

)−
unJ+ei

−
(
Ani,J−ei

)+
unJ−ei +

(
Ani,J

)−
unJ
)

+ τF
(
unJ , w

n
J

)
. (35)

The numerical discrete aggregation and diffusion velocities are defined respectively by

Ani,J := −
∑
L∈Zd

unLDiK
L
J and Bni,J :=

unJ+ei − u
n
J

hi
,

where DiK
L
J = ∂xiK(xJ − xL) for a pointy potential K.

Now, for the solution of adjoint problem (34), we consider (pnJ)J∈Z the finite-volume
approximation of cell average of p(t, ·) at a given time t = nτ . We use the following
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numerical approximation of the adjoint problem (34):

pn−1J = pnJ +

d∑
i=1

τ

hi

((
Bni,J

)+
a
(
unJ
)
−
(
Bni,J+ei

)−
a
(
unJ+ei

)
−
(
Bni,J−ei

)+
a
(
unJ−ei

)
+
(
Bni,J

)−
a
(
unJ
))

−
d∑
i=1

τ

hi

((
Ani,J

)+
unJ −

(
Ani,J+ei

)−
unJ+ei

−
(
Ani,J−ei

)+
unJ−ei +

(
Ani,J

)−
unJ
)

−
d∑
i=1

τ

hi

(
Fni,J −Fni,J+ei

)
+ τ
(
FK
(
unJ
)

+ ∂uF
(
unJ , w

n
J

)
pnJ
)
, (36)

where

Bni,J :=
pnJ+ei − p

n
J

hi
, and Ani,J :=

d∑
i=1

∑
L∈Zd

unL
pnL+ei − p

n
L−ei

2hi
DiK

L
J .

The term Fni,J can be computed as

Fni,J := ψni,Ju
n
J−ei + φn

(
rni,J
)
ψni,J

(
1− τ

hi
ψni,J

)[
unJ − unJ−ei

]
,

where the convection velocity is given by

ψni,J := a′
(
unJ
)unJ − unJ−ei

hi
−
∑
L∈Z

unLDiK
L
J and rni,J :=

unJ−ei − u
n
J−2ei

unJ − unJ−ei
.

Following the establishment of the essential discretization of the direct and adjoint prob-
lems, we must develop a numerical approach to minimize the specified cost function (30).
It is common knowledge that the basic gradient descent approach does not ensure global
convergence relative to the initial guest. Therefore, we implemented the nonlinear con-
jugate gradient technique [11] to achieve global convergence performance (see Algo-
rithm 1). However, this class of methods has many limitations in terms of convergence to
a global minimum.

5 Numerical simulations

In this section, we present an efficient implementation of the proposed numerical
schemes (35), (36) with the optimal control Algorithm 1 to simulate the population dy-
namics under attractive forces. We focus our simulations on the effect of the optimal
control (30) on the pattern formation induced by attractive forces under several initial
conditions.

To compute unJ for direct (35) and pnJ for adjoint (36) problems, we choose the
computational domain Ω := (−4, 4)× (−4, 4), the diffusion function a(u) = u(u− u),
the time step τ = 0.001 and h1 = h2 = 0.1. For the aggregation kernel, we choose the
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Algorithm 1. The optimal control solver.
1: Input: u0, err ← 1
2: Initialize: w0, α, tol, k ← 0
3:
4: while ‖∇J(wk)‖ > tol do
5: for t = t1, . . . , tfinal do
6: Giving τk2 Compute uh from the direct problem;
7: end for
8: Compute the cost function J(wk, uh)
9: for t = tfinal, . . . , t0 do

10: Giving wk , uh, compute ph by solving the adjoint problem;
11: end for
12: Compute the gradient gk+1 = ∇J(wk, ph);
13: Compute yk = gk+1 − gk
14: Compute step length αk
15: Update the values of w: wk+1 = wk + αkdk;
16: Compute βk = (yk − 2dk‖yk‖2/(dTk yk))

T gk+1/(d
T
k yk)

17: dk = −gk + βkdk−1;
18: Update the direction dk = gk + βkdk−1

19: k ← k + 1
20: end while

Gaussian distribution

K(x) =
1

σ
√

2π
exp

(
−1

2

‖x‖2

σ2

)
for all x ∈ R2,

where σ > 0 is a given parameter.
In the next subsections, we will present various tests and simulations. The first test

is devoted to examine the effect of the aggregation and degenerate diffusion terms in the
absence of the reaction term. Afterward, we will investigate the effect of the reaction term
under various parameters. The final subsection focuses on evaluating the efficiency of the
optimal control algorithm by considering two different initial conditions, and examining
the impact of the resulting optimal control on the aggregation dynamics in each case.

5.1 Aggregation diffusion equation

In order to show the effect of the attractive force under a degenerate diffusion coefficient,
we run different numerical simulations under different initial conditions.

Figure 1 presents the dynamic of a three group under attractive force. In Fig. 2, we
depict the evolution of a randomly distributed initial population density.

It is well known that a diffusion process drives individuals of a given population
towards lower densities according to gradient direction. In the other hand, the attraction
force forms a velocity field that drives individuals from lower density groups to higher
density groups. These two effects drive the solution to various forms of steady states. For
example, in Fig. 1, we notice that a single group is formed from three different population
densities. Starting from a randomly distributed initial condition with a sharper attraction
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Figure 1. Evolution of the population dynamics using Gaussian attraction (with σ = 0.8), the initial condition
u0 = exp(c((X + 1)2 + Y 2)) + 0.8 exp(c(X2 + (Y − 1)2)) + exp(c((X − 0.8)2 + (Y + 1)2)), where
c = −1.

Figure 2. Evolution of the population dynamics using Gaussian attraction (with σ = 0.2) and a random initial
population density u0.

kernel (i.e., σ = 0.2), Fig. 2 shows the formation of several groups due to attraction
forces.

5.2 Aggregation equation with nonlinear interaction term

To lessen the effect of over-crowding phenomenon, a degenerate diffusion plays a counter
effect role. In more realistic phenomenon inspired from nature, the overcrowding effect
comes with costs on the population. The mortality rate of the population rises due to
some limited resources. This can be modeled by using logistic reaction term F (u,w) :=
αu− wu2.

Note that the logistic reaction term F (with α = 0.25 and w = 0.25) eliminates the
aggregation phenomenon in Fig. 3. Moreover, the solution achieves in short time range a
constant steady-state solution u ≡ 1. When α = 0.1 and w = 0.1, we observe that the
evolution of the population is closer to the aggregation dynamics (see Fig. 4). In the last
experiment of the direct problem (consult Fig. 5), we notice that the reaction term drives
a random distributed initial condition to a more regular steady-state solution comparing
to Fig. 2. We conclude that, according to the value of α, we can control the dominance of
the logistic reaction term.

In the next subsection, we study and control the aggregation effect acting on the
intraspecific competition rate w.
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Figure 3. Evolution of the population dynamics using the logistic source term F (with α=0.25 andw=0.25),
a nonlocal pointy Gaussian potential (with σ = 0.8) and the initial population u0 = exp(c((X+1)2+Y 2))+
0.8 exp(c(X2 + (Y − 1)2)) + exp(c((X − 0.8)2 + (Y + 1)2)), where c = −1.

Figure 4. Evolution of the population dynamics using the logistic source term F (with α = 0.1 and w = 0.1),
the nonlocal pointy Gaussian potential (with σ = 0.8) and the initial population u0 = exp(c((X + 1)2 +
Y 2)) + 0.8 exp(c(X2 + (Y − 1)2)) + exp(c((X − 0.8)2 + (Y + 1)2)), where c = −1.

Figure 5. Evolution of the population dynamics using the logistic source term F (with α = 0.01 and w =
0.01), the nonlocal pointy Gaussian potential (with σ = 0.2) and a random initial population density.

5.3 Optimal control simulation of the degenerate aggregation model

In this subsection, we implement several tests showing the efficiency of the proposed
optimal control procedure to eliminate the hoarding effect. In each test, we plot the
comparison between the controlled and the uncontrolled dynamics. In Figs. 6 and 8, we
present a comparison between the controlled and uncontrolled dynamics of a given initial
population density and a given attraction kernel. In the first and second rows of each
figure, we illustrate the effects of an uncontrolled and controlled dynamic, respectively,
and the third raw illustrates the development of the optimal solution w.
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Figure 6. A comparison between controlled and uncontrolled dynamics acting on competition coefficient w,
where a(u) = u(u − u), σ = 0.5, T = 3, c = −1, u0(x, y) = 0.8 exp(c((X + 1)2 + Y 2)) +
0.64 exp(c(X2 + (Y − 1)2)) + 0.8 exp((X − 0.8)2 + (Y + 1)2).

Figure 7. The outputs of the algorithm 1 with respect to Fig. 6 with ε1 = 1 and ε2 = 10−8. The L2-norm
of the gradient of the cost functional at the left, the minimization values of the cost functional J(w, u) at the
middle and the average of the optimal control w(t) =

∫
Ω w(x, t) dx at the right.

The gradient of the functional, as depicted in Figs. 7 and 9, is an important metric
for evaluating the performance of the optimization process. A decrease in the gradient to
a value less than 10−5 indicates a significant improvement in the minimization process.
This decrease in gradient is accompanied by a significant reduction in the cost functional,
which approaches values close to 0. This leads to a reduced crowding effect compared
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Figure 8. A comparison between controlled and uncontrolled dynamics acting on competition coefficient w
where σ = 0.25, T = 4, α = 0.005. The initial condition u0(x, y) is a uniform random distribution.

Figure 9. The outputs of the algorithm 1 with respect to Fig. 8 with ε1 = 1 and ε2 = 10−10. The L2-norm
of the gradient of the cost functional at the left, the minimization values of the cost functional J(w, u) at the
middle and the average of the optimal control w(t) =

∫
Ω w(x, t) dx at the right.

to the outcome of the direct problem, where the population dynamics is not guided by
a control mechanism. Observations of the controlled solution in comparison to the un-
controlled solution in Fig. 6 reveal that the optimal control, represented by the control
variable w, is effective in minimizing the attraction force between groups of individuals.
By targeting the centers of the groups the optimal control minimizes the attraction force
and prevents the formation of a single crowd at t = 3.0. This same effect is observed in

Nonlinear Anal. Model. Control, 28(4):780–803, 2023
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Fig. 8 with a random initial distribution, where the optimal control decreases the gradient
and the resulting attractive force preventing the formation of multiple crowds. These
observations demonstrate the effectiveness of the optimal control approach in reducing
crowding effects.

6 Conclusion

In this paper, we dealt with an optimal control to a two-sidedly degenerate aggregation
equation with logistic source term. We provided a rigorous analysis of the mathematical
model. We have proposed an optimal control procedure to reduce the over-crowding and
pattern formation. We derived the adjoint state equation with the corresponding explicit
formulation of the gradient of the cost functional. We showed a numerical simulation of
the natural dynamics of different initial population under different attraction forces. More-
over, we have computed the optimal carrying capacity that reduces the pattern formation
and the over-crowding effect.

Finally, we want to mention that the well-posedness of the adjoint problem (34) will
be the subject of a forthcoming paper.
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