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Abstract. Based on direct quaternion method, this paper explores the finite-time adaptive
synchronization (FAS) of fractional-order delayed quaternion-valued fuzzy neural networks
(FODQVFNNS). Firstly, a useful fractional differential inequality is created, which offers an
effective way to investigate FAS. Then two novel quaternion-valued adaptive control strategies
are designed. By means of our newly proposed inequality, the basic knowledge about fractional
calculus, reduction to absurdity as well as several inequality techniques of quaternion and fuzzy
logic, several sufficient FAS criteria are derived for FODQVFNNSs. Moreover, the settling time of
FAS is estimated, which is in connection with the order and initial values of considered systems as
well as the controller parameters. Ultimately, the validity of obtained FAS criteria is corroborated
by numerical simulations.

Keywords: quaternion-valued fuzzy neural networks, fractional order, finite-time synchronization,
adaptive control, time delay.

1 Introduction

As we know, artificial neural networks (ANNs) consist of numerous processing units,
which interconnect cheek by jowl. With the continuous development of neuroscience, the
dynamics of ANNs are deemed to preferable simulate information processing in human
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brain. The research of ANNs has drawn considerable concern among scholars owing
to their significant applications in extensive fields including pattern recognition, image
encryption, optimal control, and so on [15, 16]. Time delay is frequently encountered in
ANNSs by reason of the limit on the speed from information transmission between neurons.
And the existence of time delay not only increases complexity of dynamic analysis, but
also degenerates the performance of considered systems involving chaos, oscillation, and
instability. Hence, the dynamical behaviors of delayed neural networks (DNNs) have
been a hot research topic [4, 5, 32]. In addition, it is meaningful to develop fuzzy DNNs
by the combination of DNNs and fuzzy logic due to the ambiguity widely existing in
real world. Since Yang et al. creatively proposed fuzzy cellular neural networks in [29],
plenty of valuable results have been obtained for fuzzy neural networks (FNNs) such as
dissipativity [20] and synchronization [19].

Note that the studies above are considered in real-valued neural networks (R-VNNs)
or complex-valued neural networks (C-VNNs). However, the multidimensional data of-
tentimes encountering in color image processing, satellite attitude control, and wind fore-
casting is hard to be processed by R-VNNs and C-VNNs. Fortunately, this issue can
be perfectly resolved through quaternion-valued neural networks (Q-VNN5) established
via integrating quaternion with traditional ANNs. In addition, the approaches adopted
in R-VNNs and C-VNNs cannot be directly used to deal with Q-VNNs owing to non-
commutativity of quaternion multiplication, which increases the difficulty of Q-VNNs
research. Three effective methods have been introduced to analyze the dynamic behavior
of Q-VNNs up to now, namely, real decomposition method [2], plural decomposition
method [8], and direct quaternion method [22,31].

Nowadays, in contrast with integer-order calculus, fractional-order calculus has at-
tached more attention for its excellent performances in depicting infinite memory and
heritability characteristics of fractional systems in domains of chaotic maps [24], neural
networks [1,6,7,10,12,13,18,21,25-28], etc. In consideration of these unique advantages,
it is of practical significance to form fractional-order neural networks (F-ONNs) by the
incorporation of ANNSs and fractional derivative, and a wealth of interesting researches
about F-ONNs have been published in stability [6], dissipativity [1], stabilization [7, 10],
and so forth.

It is well known that the applications of ANNs are closely related with their dy-
namical behaviors. Synchronization, as an indispensable dynamical behavior, has stim-
ulated research enthusiasm of many scholars. Until now a myriad of outstanding syn-
chronization achievements in connection with fractional-order Q-VNNs (FOQ-VNNs)
have been derived, which can be classified as finite-time synchronization and infinite-
time synchronization on the basis of different convergence time. Compared with infinite-
time synchronization, the finite-time synchronization of FOQ-VNNSs has been received
more focus because of its stronger robustness and faster convergence speed. In order to
realize synchronization target, some effective control strategies have been put forward,
including but not limited to linear feedback control [26], state feedback control [12],
hybrid control [21, 28], sliding mode control [25], impulsive control [18], and adaptive
control [27]. Thereinto the adaptive control strategy can realize self-regulation of con-
trol gains to reduce control costs in comparison to other ones. However, the finite-time
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adaptive synchronization of FODQVFNNs has not been investigated till now. Therefore
it is spontaneous to propose the queries: whether FODQVFNNSs can realize the finite-
time adaptive synchronization via exploiting adaptive control method? If it can, how to
design effective adaptive controllers? How to obtain finite-time adaptive synchronization
criteria and estimate the relevant settling time? It is worth noting that these challeng-
ing and significative queries have not been considered yet, which inspires our research
interests.

Sparked by the aforementioned analysis, we devote to addressing the issue of finite-
time synchronization for FODQVFNNs with the help of adaptive control strategy. The
novelties of this paper are summarized below:

(1) A novel Caputo fractional-order differential inequality is established, which ex-
tends the existing result derived in [12].

(i) Different from the decomposition methods employed in [8, 19], the direct quater-
nion method is firstly used to investigate finite-time synchronization of
FODQVFNNS.

(iii)) Some sufficient finite-time synchronization criteria are obtained by designing two
effective quaternion-valued adaptive controllers, and the relevant settling time is
explicitly estimated.

(iv) The approaches adopted in this article can be further applied to fuzzy F-ONNs in
real or complex fields.

The remainder of this work is organized as follows. Some indispensable prelimi-
naries and the considered FODQVFNNSs are provided in Section 2. In Section 3, some
sufficient finite-time synchronization criteria are yielded under two different quaternion-
valued adaptive controllers. A numerical example is given in Section 4 to illustrate validity
of the obtained theoretical results. Section 5 offers the conclusion and future works.

Notations. R, R*, Q and Q" represent the set of real numbers, positive real num-
bers, quaternion numbers, and n-dimensional quaternion space, respectively. Let 91 =
{1,2,...,n}. For any §, = 08 + 16! +js/ + €55 € Q, where 6%, 61, 6/, 65 € R,
t € M, i, ), and € meet the Hamilton rules, i.e., 8 = ij = —ji, i = jt = —§),j = ti = —it,
and i> = j2 = €2 = —1. The conjugate of §, is defined as §, = 5% — i5] —j§7 — €5K,
and |6,] = ((6%)% + (61)% + (67)% + (65)2)!/2 denotes the module of §,. For § =
(61,02,...,6,)T € Q, the norm of & is ||0]| = (31", [6.]%)Y/2.

2 Preliminaries and model description

First several fundamental knowledge in relation to fractional calculus are retrospected
in this section. A novel Caputo differential inequality is proposed to obtain the finite-
time convergence after that, which is crucial to derive finite-time adaptive synchroniza-
tion criteria. Furthermore, the model of FODQVENN is formulated. Some of requisite
assumptions and lemmas are rendered for subsequent study.

https://www.journals.vu.lt/nonlinear-analysis
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Definition 1. (See [17].) The fractional integral of f(¢) with ¢ > 0 is defined by

t

WISF() = ﬁ / (t— B £(8) dB,

to
where I'(s) = f+oo e Pps—ldp.
Definition 2. (See [17].) Define the Caputo fractional derivative of f(¢) with0 < ¢ < 1
as -
£ D§f(t) = ml_ 5 / (tf_(%))< a.

to

Consider a kind of FODQVFNNs described as follows:

o Div (t) = —a,v,(t) + Z bur S (I/,Q(t)) + Z CoieUs
k=1

+ /\p:,nfm(l/n(t_ \/ leﬂfﬁ Vg t_X))
k=1 k=1

+ N v+ \/ Busvie + L(1), )
k=1 k=1

where 0 < ¢ < 1, v,(t) is the state variable of tth neuron. a, € R™ stands for the neuron
attenuation coefficient, b,, € Q and ¢,,; € R are the synaptic connection weights of xth
neuron, f,(-) : Q@ — Q denotes the activation function. p,, and g,, represent connection
weights of the fuzzy feedback MIN template as well as MAX template, «,,; and S3,,; are
the elements of fuzzy feed-forward MIN template as well as MAX template. x € RT is
the constant delay, A and \/ denote fuzzy AND as well as OR operations. vy, I, (¢) are the
external input and bias of +th neuron. The activation function f(-) obeys the assumptions
below.

Assumption 1. For fuzzy AND as well as OR operations, there exists a positive constant
o, such that f,(-) satisfies the following two inequalities:

( /i\ P (Fr(wi(t = x)) = fis (va(t — X))))
x < /n_\ pm(fﬁ(wﬁ(t - X)) — [r(ve(t — X))))

< ZJK|PM|(WH(t —X) — va(t - X)) (Wn(t —X) — va(t - X))v

Nonlinear Anal. Model. Control, 28(4):804-823, 2023
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( \/ Ou (fre (Wi (t = X)) — fis (vt — x))))

k=1

[V ontronti= ) -0

Z Tl 0wl (Wt = X) = it = X)) (Wi (t = x) = v(t = X))

Assumption 2. For any r, s € Q, there exists positive constant o,, such that

| fs(r) = Fiu(s)| < oxlr — 5.

FODQVENN (1) is considered as derive system, then the matching response system
is depicted by

tCngwb(t) = _abwb(t) + Z bmfm (Wn(t)) + Z CkVUk
k=1 k=1
+ /\ men(wn(t - X)) + \/ Ok fr (wm(t - X))
k=1 k=1

+ A\ uvn+ \ Bt + L)+ (8), @)

k=1 k=1

where u, (t) € Q is the adaptive controller to be designed. Let e, (t) = w,(t) — v,(¢), then
the error system can be shown as

tcngeb(t) = _aLeb + Zbu@fﬁ en /\ puq/f,;; €,€ t— ))

k=1
+ \/ Oucf(ex(t = X)) + w.(t), (3)
k=1

where
Felew()) = fiwn(®)) = fu(vae(t),
fﬁ(eﬁ(t - X)) = fﬁ(wli(t - X)) - fﬁ(l/n(t - X))

Remark 1. Since fuzzy logic, time delay, quaternion algebra, and fractional calculus are
all taken into consideration, our model (1) is more practical and general than delayed
Q-VNNs [31], FOQ-VNNs [1,6,7,10,12,18,21,26,28], fractional-order C-VNNs [27] as
well as fuzzy F-ONNS [13].

The following definitions and lemmas are given throughout this work for the later
study.

https://www.journals.vu.lt/nonlinear-analysis
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Definition 3. FODQVFNN (1) is said to realize the finite-time synchronization with
FODQVENN (2) if there exists constant T* in dependence on the initial values of
FODQVFNNS (1) and (2) such that

lim |e
t—T*

=0, le(t)=0 Vvt=T,

where ¢ € 91, and T* is called the settling time of finite-time synchronization.

Lemma 1. (See [29].) Let w(t) as well as v(t) be two states of FODQVFNN (1), then

(wn(t) /\ PurF (Vi (t

k=1

(wn \/ men Z/H

Z |pm‘|f/€ wn fN(VN(t))

Zl@m”fﬁ wn ) fn(Vﬁ(t))‘.

Lemma 2. (See [22].) If a1, an € Q, and R € R, then
_ _ _ 1__
ajasg + asay < Roqag + %042042.

Lemma 3. (See [14].) Assume that V(t) € Q is the differentiable function. Then

5Di (VV(1) < V@)EDiv(E) + (DY) V(H) ¥s € (0,1).
Lemma 4. (See [11].) For the case of 0 < ¢ < 1, we have
tolt DD f(t) = f(t) — f(to).

Lemma 5. (See [9].) Assume that . > 0 forr € 0, m > 1. Then
n n m
o< (Z@)
r=1 r=1

Lemma 6. (See [23].) If ¢ : R — R and ¢ : [tg,+00) — R are two continuously
differentiable functions, moreover, 1 is convex, then

mDie(v(t) < —5Di(t) Vs € (0,1).

dz/) dyto

Lemma 7. (See [30].) IfV(t) is the continuously differentiable function defined on [to, p),
then for any constant h and t € [to,p),

cDs(V(t) —h)? < 2(V(t) — h)EDEV(E) Vs € (0,1).

Nonlinear Anal. Model. Control, 28(4):804-823, 2023
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Lemma 8. Suppose ®(t) and ¥ (t) are two nonnegative continuously differentiable func-
tions and satisfy

£D; (D(t) + W (t) < —0D~™(t) — 7.

Then one has lim;_, - ®(t) = 0, as well as ®(t) = 0 for all t > T*, where 0 < ¢ < 1,
0>0m=>17>0, and

. F(1—|—§) 0 1/m~N m+1 0 1+1/my1/s
oo {0+ (2) ) -(F) ]
Particularly, for the case of U(t) = 0, we have
. F(l—i—() 0 1/m~\ m+1 0 14+1/m 1/¢
rons il () ) ()

Proof. Let &(t) = &(t) +¥(t)+ (6/7)"/™. Based on Lemma 5 and the nonnegativity of
W (t), we have

. 1 1
O (t) = 7
Q (D(t) + W (t) + (£)1/m) em(t) +wm(t) + ¢
1 T
Multiplying both sides of (4) by —0 gives
— 0™ (t) — T < —0DT (1), (5)
combining (4) and (5) as well as the definition of @(t) can derive that
ED;B(t) = £D5 (D(t) + W (t)) < —0970(t) — 7 < —0d™ (1),
which means . R
& (1)£.D5B(t) < . (©)
Applying Lemma 6 to (6), we get
DB () < (m+ 1)P™ (1) LD5O(t) < —O(m + 1). (7

Taking fractional integral for (7) with order ¢ from £, to ¢ on the basis of Lemma 4 yields

O(m + 1)(t — to)°

qc)m+1 t) < g§777,Jr1 ta) — ,

that is,

m o ¢11/(m+1)
é(t) < ngJrl(tO) _ 0( ];"(1)j_tg) tO) )

®)

https://www.journals.vu.lt/nonlinear-analysis
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It can follow from (8) and the definition of &(t) as well as the nonnegativity of ¥ (t)
that

(1) + (f)l/mg (1) < K@(to) W (ty) + (f_)) - a(m;(i)fs W} v

o) < K@(t‘)) B+ (i)) - 9(m+1)(t—to)<]1/(m+1)_ (9>1/m-

I(1+) T
Due to the nonnegativity and continuity of ¢(t), we can easily obtain

lim = &(T*) =0,

t—T*

1.e.,

in which

T =ty + {;((11:7;)) [(@(to) + W (to) + (f)l/m)mﬂ - (f_)lﬂ/m} }Ug. ©))

The proof by contradiction is adopted to verify @(t) = 0 for all ¢ > T* in the
following part. Suppose that there exists T* > T* satisfying (T*) > 0. Nevertheless, it
follows from the monotonicity of 8(m + 1)(t — to)°/T'(1 + <) and (9) that

o(T") < K@(to) +U(to) + (i)) _O(m+ 1)(T* — to)g} Yo (9)1/m

I(1+¢) T
< K@(to) + W (to) + (f_)) — 0(m ';(11)(12)— to)g} 1/{m+1) _ (f_)l/m
=0,

which is in contradiction with the nonnegativity of ®(¢). Therefore #(t) = 0 for all
t>T" O

Remark 2. What is noteworthy is that Lemma 8 provides an effective and novel method
to address the issue of FAS. Moreover, it can be reduced to Lemma 8 in [13] in the case
of x = 0and ¥(t) = 0, it can also be reduced to Lemma 8 in [12] under circumstance of
W (t) = 0. Therefore our Lemma 8 extends and improves the results obtained in [12, 13]
to some extent.

3 Main results

In this section, some sufficient finite-time synchronization criteria are derived via two dif-
ferent quaternion-valued adaptive control strategies. The novel quaternion-valued adap-
tive controller is designed as

_’\L t . t) — ﬁt(t) _ ﬁ(t) . t 0
w(t) = L PO~ Ty T S @O0
0, le.(t)] =0,

where ¥ > 2, £ D; 1, (t) = n.e.(t)e.(t).

(10)

Nonlinear Anal. Model. Control, 28(4):804-823, 2023
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Remark 3. Compared with linear feedback controller adopted in [26] and state feedback
controller used in [12], the adaptive controller can vastly reduce control costs because of
the fact that its control gain [, (¢) is updated by itself based on adaptive control law 7,.

Theorem 1. Under Assumption 1 as well as quaternion-valued adaptive controller (10),
FODQVFNNs (1) and (2) can achieve finite-time synchronization, and the settling time is
estimated as

Nz 9/(0—1) 3 1/s
n '

Proof. Consider the Lyapunov function as follows:

n n 1 R 2
Vi(t) =Y e(Be(t)+ ) Py ((t) = i17)",
=1 =1
Vll(t) Vlg(t)
where
1 1 1 1,9
i, —27r1+2772+2n7rg—|— Z o) L—|— wC (11)

By means of Lemmas 3 and 7, calculating the Caputo derivative of V;(t) with 0 <
¢ < 1 along the trajectory of (3) gives

DV (t)
<§j@ﬁ%ﬁﬁﬁw+@ma®ﬁﬁﬂ+§j§uuw—mmpmw>

zz{@@)l +mefn exlt /\pmf,@ ex(t = X))
=1

" e (t — — i (De _ veu(t) _ Ae. ()
+ H\_/l :QLHfH( H(t X)) e (t) L(t) (meL (t))ﬂ T(t)eb (t)]

+an eK bm“‘ /\ Purtr GK(t_X))

k=1

o — (e - e Aeut) |,
ﬂl“M“t”)mwﬁ)<o<» mmm]m}

https://www.journals.vu.lt/nonlinear-analysis
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= [eb(t)< men (em(t - X))) + < /\ men (en(t - X))) eL(t)]
=1 k=1 k=1
\/ mefs 6/@ - > + ( \/ QLKfK(eH(t - X)))eL(t)]
k=1

=1
+ D [ebusfu(en(®) + fulen()bme(t)] =27 (et)e(t))
—2mA =2 (a, + ii))e (e, (t). (12)
=1

It follows from Assumption 1 and Lemma 2 that

eL(ﬂ( /\ pm.fn(en(t_X))> + ( /\ pmfn(en(t_X))>eL(t)

k=1 k=1

:eb(t)[ /n\ pm(fn(wli(t_X)) - f“(y'{(t_ X)))]

k=1

/\ Pk f/{ wn(t - )) - fm(yﬁ(t - X)))]eb(t)

k=1

< me(He(t) + a7t

/\ Pur (fr (Wit = X)) = fu (walt —X)))]
x [ /_\ P (fr (Wit = X)) = F (vt — x»)]

< Wlmeb(t)"’771_1Zaﬁ‘pm|et(t_X)EL(t_X) (13)

k=1

and

<\”/ o fr(en(t =X ) (\7:/ Qm]M)@L(t)
= [\/ O (fre (et = X)) —fﬁ(yﬁ(t_x)))]

\/ Ok fﬁ wn t_ )) _fn(Vn(t_X)))] eb(t)

IN
3

se (t)e,(t) + 75! mema(t - X). (14)

k=1

Nonlinear Anal. Model. Control, 28(4):804-823, 2023
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It follows from Assumption 2 and Lemma 2 that

n

Z [T(t)bmfn (en (t)) + [ (@c (t))ﬂeb(t)]

t,k=1

[71’37(15)6,{ (t) + W;lmabmfn (65(15))}

Mﬁ

<

< [m3e,(t)e, () + ngbfﬁoi?(t)eﬂ(t)]

= (mrg, + Z 7r31bibof) e (t)e,(t). (15)
1 k=1

L=

In the light of fractional-order Razumikhin theorem [3], one has

Z |ﬁf1 Z Oxlpuclet — x)e(t — x) + 7T2_1 Z orlowle(t = x)e(t —x)

k=1
= Z [ZUL<W11|pKL| + W;1|Qnt|)

k=1

e (t—x)e,(t —x)

<wVi(t) = wCZeL(t)eL(t), (16)

where @ = maxi<,<n{>oney 0. (77 o] + 75 Mow])}, ¢ > 1. Combining (12)~(16)
with (11) derives

n

n 1-9
EDVI() < ~27 Y (e (Ben(t) ™ — 200 < 27 ( Za(ﬂa(ﬂ) — 2nA
=1

=1
= =29V (t) — 20

Based on Lemma 8, we yield that lim; ,7: V1 (t) = 0 and V;(t) = 0 for all ¢ > T7,

where
) P14 < 1/(9—1)\ @
T =1+ {(2779) [(Vn(to) + Via(to) + (:)\) >

Nz 9/(0—1)71/s
n ’

which means lim; ,7: ¢,(t) = O and ¢,(t) = 0 for all ¢t > T7. According to Definition 3,
FODQVFNNS (1) and (2) can realize finite-time synchronization within settling time T7.

https://www.journals.vu.lt/nonlinear-analysis
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The other novel quaternion-valued adaptive controller is designed by

i, (e, (t) — —2e® __Ae(®) (t

U,L(t) = # ( )e ( ) (eb(t)eb(t))19 eb(t)eL(t), |e ( )‘ ?é 07 (17)
0, le.(t)] =0,

where 9 > 2, £ D71, () = e, (t)e,(t) — 0, sign (. () — f1; )| (t) — i |27 O

Remark 4. The adaptive controller (17) offers an other effective means to investigate
finite-time synchronization of FODQVFNNS (1) and (2), which owns a different adaptive
control law in contrast to (10). The conclusion “£ D; Vs (t) < —qVa () — q2” can
be gained by employing controller (17), this is different with £ D; V11(t) + Via(t)) <
—29V{77(t) — 2ny” derived in Theorem 1.

Theorem 2. Under Assumption 1 as well as quaternion-valued adaptive controller (17),
FODQVFNNs (1) and (2) can realize finite-time synchronization, and the settling time is
reckoned as

F(l + g) |:< (ql)l/(ﬂ—l) )19 (ql )19/(19—1):| }1/§
Ts=to+{———2|(Wa(to) + (2 (& :
? ’ { Q9 2(fo) a2 a2
where q; = 21r\<nLl£n{7, 8.}, g2 = 2nA

Proof. Construct a Lyapunov function as follows:

where

1 1 1
ﬂf:§”1+27r2+2mr3+ Z“B»lbilomL 5@C — a. (18)

By utilizing Lemmas 3 and 7, similarly calculating Caputo derivative of V(t) with
the 0 < ¢ < 1 along the trajectory of (3) gives

iDi Va(t)
<O [aBEDie ) + (EDfe®)e 0] + 32200 (0) - i) EDim (0
=1 =1
Z{ [ +Zb/nffc e/-i +/\;Dmfﬁ €k t*X))
y A rACT t— - VL t €, t) — ’yeL(t) )\eL(t)
+>:/1Q Flenlt =) = 98 (e.(D)e(t)”  et)e.(t)
—a, 6 + Z fn en bm + /\ anm

Nonlinear Anal. Model. Control, 28(4):804-823, 2023


https://doi.org/10.15388/namc.2023.28.32505

816 S. Chen et al.

k=1 (e.(D)e(t)?  elt)e.(t)

n

+ \/ Qu@frﬁ (en(t - X)) - ﬂL(t)eb(t) - ,YeL(t) - )\eL(t) ‘|eb(t)}

+ 22 i (t ﬁ J(t) =6, Sign(ﬂL(t) - ﬂf)m/(t) — i

3

~ 29 (eDe(t) —225 () — i)"Y ™" = 2n,

= ; [ext) < Z\l puclen(t - x))) + ( !:\1 pf(e(t—x))) 6L<t>]

) S/l O f (er(t — X))) + (5{1 men(en(t_X))> eb(t)l
+ Y [eDbusfi(en(t) + fi(en(t)) bunen(t)]

- mﬁ; (eDe®) " - 2/22@((@@) —)’)

—2nA\ —2 Z(aL + i@ )e (t)e,(t)

=1

gz —2a, — 2,uL+7r1+772+n7r3+27731bibof+wg e, (t)e,(t)

k=1

273" (e Deu(t) ™ —225 () — i) ) = 2n. (19)
=1

Combining (18) with (19) derives
£DEVy(t) < 272 ()7 =236 () — i)*) T 20
=1

" n 1—29
- [Z CURUED SCICE I I

=—aV ’(t) - 2. (20)

It can follow from Lemma 8 and (20) that lim; , 75 V2(t) = 0 and V(t) = 0 for all
t > T3, where

1/(9—1)\ 9 9/(9—=1)141/s
R 1 )
Qv q2 Q0
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which means lim; ,7; e,(t) = 0 and e,(t) = 0 for all ¢ > T3. According to Defini-
tion 3, FODQVFNNSs (1) and (2) can realize finite-time synchronization within settling
time T35. O

Remark 5. In [2, 19], the dynamics of Q-VNNs were studied by utilizing decomposition
method. The direct quaternion method is adopted in this paper, which cannot only reduce
greatly the computational complexity, but keep system properties.

Remark 6. The asymptotic synchronization issues of FOQ-VNNs were investigated in
[18,21,26], the finite-time synchronization is considered in this paper, which has faster
convergence speed and stronger robustness. In [12, 13,27], the finite-time synchroniza-
tion of F-ONNs has been explored via adaptive control strategy in real, complex, and
quaternion fields, respectively. However, the above researches do not take into account of
quaternion or fuzzy factor. To our knowledge, the direct quaternion method-based finite-
time synchronization of FODQVFNN:Ss is studied by designing two effective quaternion-
valued adaptive controllers for the first time.

If the adaptive control gain items in (10) and (17) are changed into feedback one,
then quaternion-valued adaptive controller can degrade into quaternion-valued feedback
controller as follows:

—ue,(t) — ye ()  _Ae(t) t 0
w(t)y =4 M )~ Tewr ~mwew 1«10
0, le.(t)| = 0.

Combining quaternion-valued feedback controller (21) with Theorems 1 and 2 can easily
obtain the following corollary.

Corollary 1. Let Assumption 1 holds, FODQVFNNs (1) and (2) can achieve finite-
time synchronization under quaternion-valued feedback controller (21) if control gain
W, satisfies

1 1 1 1 & 1
pu = STt pm s+ > my b2 0l + 5@C — a. 22)
k=1

Furthermore, the settling time is estimated as

e 2 e ()Y ()"

Proof. Consider the Lyapunov function as follows: Vs(t) = >"""_; e,(t)e,(t).
Analogously to the proof of Theorems 1 and 2, one has

n

1 DiVa(t) < Z

=1

" 1-9
— 2y ( ZeL(t)eL(t)> — 20 (23)

=1

n
—2a, — 2u, + w1 + T2 + nw3 + nglbipf + w(|e,(t)e,(t)

k=1
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Combining (23) with condition (22) gives

" 1-9
£DsVs(t) < —2y ( > eL(t)eL(t)> —2mA = 29V V(1) — 20\, (24)

=1

It follows from Lemma 8 and (24) that lim; ,7; V3(t) = 0 and V3(t) = 0 for all
t > T3, where

s _ L(l+5) F \YO-DND N/ (01 731/
Ts=to+ {2197 {(Vza(to) + (n/\) = 7

which implies lim; s e,(t) = 0 and e,(t) = 0 for all ¢ > T3. In the light of Defini-
tion 3, FODQVFNNSs (1) and (2) can realize finite-time synchronization within settling
time T3. O

Remark 7. The criteria obtained in Theorems 1 and 2 as well as Corollary 1 are also true
when ¢ = 1, that is, our conclusions can be ulteriorly applied to integer-order systems.

4 Numerical example

Some numerical simulations are provided to verify the feasibility of our novel quaternion-
valued adaptive control strategies and obtained FAS criteria in this section. In this section,
we give a numerical example to demonstrate the effectiveness of the theoretical results.

Example 1. Consider FODQVFNN in the case of ¢ € {1, 2} as below:

tCthgl/L(t) = —a,v,(t) + Z buw fr (Vn(t)) + /\ Purfr (Vn(t - X))

k=1

2
+ \/ men(l/n(t - X)) + IL(t)a L= 1a2a (25)

where s = 0.9, (v (t),v2(t))T € Q2,
fuo(va(t)) = tanh (v (t)) + tanh (v (t))i + tanh (v (¢))i + tanh (v (2))€
with v (), vE(t), vl (t),vE(t) e R, I,(t) = 0,a1 = az = 1,

b1 =14+ 1i+ 1) — 18, bia = —1+0.8i — 0.6) — 0.6¢,

boy = —2 — 151+ 2j — 28, boo=—-1—1—j— ¢,
X=2(¢=2,01=02=m =72 =73 =01 =02 =1, p11 =02, p1o = -0.1,
P21 = —0.1, P22 = 0.2, 011 = —0.1, 012 = 0.2, 021 = 0.1, 020 = —0.2, the initial value
of FODQVENN (25) is chosen as

v(0) = (0.5 + 0.4i + 0.8) + 0.6¢, —0.5 + 0.6i — 0.1j + 0.1¢)".
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The controlled FODQVFENN is depicted as
2 2
tcngwL(t) = —a,w,(t) + Z bur fr (Wm(t)) + /\ Purtr (Wm(t - X))
K=1 k=1

2
+ V oufulwn(t =) + L) +u(t), =12, (26)
k=1

where ¢ = 0.9,
fu(we(t)) = tanh(wf(¢)) + tanh(w/(2))i + tanh(w](t))j + tanh(w/ (¢))e

with w(t), wl(t),w!(t),wX(t) € R, I,(t) = 0, the initial value of FOFQDNN (26) is
chosen as

w(0) = (0.6 — 0.1i — 0.3 + 0.5¢, —0.6 — 0.3i + 0.5 + 0.4¢) ™.

The other parameters of FODQVFNN (26) are the same as ones of FODQVFNN (25).

Remark 8. When w,(t) = 0 in FODQVFNN (26), the time evolution curves of e, (t)
(¢ = 1,2) are exhibited in Fig. 1, which displays that FODQVFNNs (25) and (26) cannot
realize FAS in defect of control. When adaptive controller u,(t) in FODQVENN (26)
is designed as (10), set v = 0.8, A = 0.2, 9 = 2.1, 51 = n2 = 04, 1:(0) = 0.1,
fi2(0) = 0.2. By simple calculation, one has ji7 = 10.825, i3 = 4.88. On the basis of
Theorem 1, FODQVFNNSs (25) and (26) can achieve FAS, which is depicted in Fig. 2.
The state trajectories of fiq (¢) and [i2(t) are displayed in Fig. 3. Obviously, it is necessary
to design effective control strategy in order to achieve the goal of synchronization. By the
comparison between Figs. 1 and 2, it is not difficult to see that the theoretical result of
Theorem 1 is feasible, and the new adaptive controller (10) is valid.

1,2

eb(t), 2

IS
T
I

5 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500

t

Figure 1. The error curves between FODQVFENNS (25) and (26) without controller.
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[le(t) —in(t)
18 ——jia(t)

0.5

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
t t

Figure 2. The time response curve of error norm Figure 3. Time evolutions of adaptive gains
|le(t)]| under controller (10). f1(t) and fia(¢).

1.8 T T 4 T T T T T T T T T

—lle@Il —n(t)

16 35 —ia(t)

1.4 3

12

25
= 1
5 2
—o0s8
15

0.6 ﬁ

0.4 !

0.2 0.5

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
t t

Figure 4. The time response curve of error norm Figure 5. Time evolutions of adaptive gains
[le(t)|| under controller (17). f11(t) and fi2(t).

Remark 9. When the adaptive controller u, () in FODQVFENN (26) is designed as (17), let
v=0.6,A=0.3,9 =21, = = 0.5, 11(0) = 0.545, [12(0) = 2.36. After simple
calculation, we get 17 = 8.545, ji5 = 6.36. On the basis of Theorem 2, FODQVFNNs
(25) and (26) can realize FAS, which is depicted in Fig. 4. The time evolutions of [i1 (¥)
and fi2(t) are displayed in Fig. 5. From Figs. 4, 5 it is evident that the FAS criterion
derived in Theorem 2 is correct, and the novel adaptive controller (17) is effective.

5 Conclusion

In this paper, the FAS issue of FODQVFNNs has been addressed via direct quaternion
method. At first, a valuable fractional differential inequality was developed to present
anovel thinking for the study of FAS. Moreover, some sufficient criteria have been yielded
to guarantee FAS of FODQVFNNSs by designing two different quaternion-valued adaptive
controllers. Finally, the numerical simulations were given to illustrate the validity of
derived FAS criteria. As we know, the parameter uncertainties, stochastic effects, external
disturbance, and other factors are inevitable in nature, therefore the dynamic analysis of
FODQVEFNNSs with above one or more factors may be a part of our future research.
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